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Consistent Transformations of Knowledge Bases
in Answer Set Programming

J.C. Acosta-Guadarrama, IIT, UACJ; LANTI, Mexico

Abstract—One of the major and traditional topics of Artificial Intelligence over many years has been knowledge representation and
reasoning. It has proved to be a strong theoretical framework for Logic Programming to manage dynamic knowledge bases. In this
work, one of two parts, we go through current and some of those past proposals to update knowledge coded into Answer Set
Programming knowledge bases, by analysing their features and identifying challenges to represent correct evolving knowledge.

Index Terms—Consistency, Belief Revision, Belief Update, Knowledge Bases.
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1 INTRODUCTION

THERE is a preliminary version of this paper has first
appeared as a technical report in [3]. Here we revisit it

and update it to current approaches, to classify them and
compare them.

One of the significant and traditional topics in Artifi-
cial Intelligence over the last years has been knowledge
representation and reasoning; this issue has proved to be a
robust theoretical framework to manage knowledge bases.
This particular topic has become more widely studied in the
administration of knowledge bases of intelligent (rational)
agents, especially in situations of incomplete knowledge
from a changing environment. This area of research is
known in the literature as belief change, and its relevance to
program transformation is fundamental if we are interested
in producing correct knowledge bases, especially if they
represent critical systems requirements.

The history of semantics for updates1 of logic programs
(in our context, formalisms for program transformations) is
rather long. Indeed, it begins in the days of some of the first
versions of PROLOG with its commands assert and retract.
However, sooner they began to yield conflicting information
and other (perhaps unexpected) side effects. It was also time
of research on databases with publications like [21], and in
particular for logical databases [19], [20], [36]. Nevertheless,
some of the first formalisms to carry out proper changes to
monotonic theories have been originally studied by [6], [23],
[25], [27], [29], whereas in the non-monotonic side by [26], [28],
[30].

In particular, [22] formulated the Stable Models Semantics
(also refereed as Answer Sets Semantics, SM or simply ASP),
and more concrete proposals arose within that framework,
aimed at the problem of updating knowledge represented

This project is mainly supported by The National Council for Science and
Technology, CONACYT, 280712, Consolidación de Laboratorios Nacionales
2017. We are also grateful to The Autonomous University of Juarez

• Acosta-Guadarrama is with the Department of Electrical and Computer
Engineering, Engineering Institute of Technology, Juarez, Mexico, 32310.
E-mail: see http://www.jguadarrama.link

Manuscript received October 10, 2016 at ENC 2016; revised October 24, 2016.
1. For historical reasons, in this paper we call it update, although it’s

actually belief revision. A study on the difference was first introduced
by [24].

in ASP [2], [9], [14], [15], [16], [17], [32], [34], [35], [38], [39],
[42].

In this work we introduce current and some of those
past proposals to transform knowledge bases represented
by logic programs. We point out features as well as some of
their limitations to represent correct evolving knowledge and
of course, correct program transformations. Nevertheless, this
survey is just a small thread of a massive research over more
than two decades, and is by no means exhaustive. It just
takes into account those proposals that are the most relevant
and of interest in our opinion.

The rest of our paper is divided into a very quick
glimpse of basic background (Section 2) necessary to un-
derstand program transformations in ASP; the approaches
to update logic programs are classified into several different
categories (Sections 3–6) and a section for discussion and
final remarks—Section 7. Each of the approaches show a few
particular examples to illustrate their definitions, as well as
common observations to show disadvantages and to compare
with the others.

2 PRELIMINARIES

A main foundation of these proposals is the well-known
Answer Sets Semantics, also known as Stable-Models Se-
mantics. In this paper it is assumed, though, that the reader
is familiar with basic notions of logic programming and
(extended) disjunctive logic programs, DLP, EDLP, which
are easily available in the literature.

2.1 Logic Programming and Answer Sets

As we represent knowledge by means of ASP programs
for being one of the most studied and founded successful
semantics to reason about incomplete (unknown) informa-
tion, in the following we give a very-short description of
Answer Sets Programming (ASP), which is identified with
other names like Stable Logic Programming or Stable Model
Semantics [22] and A-Prolog. Its formal language and some
more notation are introduced from the literature as follows.
Definition 1 (ASP Language, LASP). In the following
LASP is a language of propositional logic with sym-
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bols: a0, a1, . . . ; connectives: “,” (conjunction) and meta-
connective “;”; disjunction ∨, also denoted as |; ←
(and its counterpart, →); ¬ (default negation or weak
negation, also denoted with the word not); “∼” (strong
negation, equally denoted as “−”). The propositional
symbols are also called atoms or atomic propositions.
A literal is an atom or a strong-negated atom. A rule ρ is
an ordered pair H(ρ)←B(ρ), where H(ρ) is a possibly-
empty finite set of literals in disjunction and B(ρ) a
possibly-empty finite set of literals (or default-negated
literals) in conjunction.

The meaning we give the propositional constants is the
same meaning than having an empty set in either compo-
nent of a rule. Finally, a logic program (or just program) is a
possibly empty finite set of rules, also known as knowledge
base.

With the notation just introduced in Definition 1, one
may construct program clauses of several forms that are well
known in the literature, such as Extended Logic Program
(ELP), Extended Disjunctive Logic Program (EDLP), etc.

Informally, the semantics of such programs consists of
reducing the general rules to rules without default negation
“¬”, because the latter are universally well understood. For
page limitation, we just skip the formal definition of such
reduct, which can be easily found in the literature.

Formally, we say that a program is inconsistent if and
only if it has no answer sets, and consistent otherwise.

Definition 2 (EDLP). An extended disjunctive logic program is
a set of rules of form

`1 ∨ `2 ∨ . . . ∨ `l← `l+1, . . . , `m,¬`m+1, . . . ,¬`n (1)

where `i is a literal and 0 ≤ l ≤ m ≤ n.

Naturally, an extended logic program (or ELP hereafter) is
a finite set of rules of form (1) with l = 1; while an integrity
constraint (also known in the literature as strong constraint)
is a rule of form (1) with l = 0; while a fact is a rule of the
same form with l = m = n. In particular, given a set of
literals A, for a literal ` ∈ A, the complementary literal is ∼`
and vice versa; for a setM of literals, ∼M = {∼` | ` ∈M},
and LitM denotes the set M∪ ∼M; finally, a signature LK
is a finite set of literals occurring in a knowledge base, K.
Additionally, given a set of literalsM⊆ A, the complement
setM = A \M.

The well-known semantics of an EDLP consists of re-
ducing general rules to rules without default negation “¬”
because the latter can be interpreted in classical logic by
means of the well-known Herbrand models. In particular, the
reduced rules with no default negation Mon of a rule of the
form (1) is

`1 ∨ `2 ∨ . . . ∨ `l← `l+1, . . . , `m (2)

where `i are literals and 0 ≤ l ≤ m. This kind of rules is
known in the literature as monotonic counterpart or positive
program. Additionally, the monotonic counterpart of a set of
rules is the set of the monotonic counterparts of its rules.

Now let us introduce the meaning of programs with both
monotonic and nonmonotonic counterparts.

Suppose a finite ground programK, consisting of clauses
of form (1). For any set S ⊆ LK, the answer-sets reduct KS
corresponds to

KS = {`1 ∨ `2 ∨ . . . ∨ `l← `l+1, . . . , `m : (3)
{`m+1, . . . , `n} ∩ S = ∅}

Stating S as a set of literals rather than atoms, makes one of
the differences with Stable-models semantics.

Next, the meaning of a monotonic counterpart corre-
sponds to its minimal classical model as follows.
Definition 3 (Minimal Closure, Cn(K)). Let K be a positive

extended disjunctive program and LK the signature (set of
all ground literals) from K. The set Cn(K) denotes the
minimal subset of LK where,

1) for each ground clause p0∨p1∨· · ·∨pl← q1, . . . , qm
inK, q1, . . . , qn ∈ S implies pi ∈ S for some 0 ≤ i ≤
l; and for each ground clause of the form

⊥← q1, . . . , qm (4)

{q1, . . . , qm} * S .
2) If S contains a pair of complementary literals, then
S = LK.

Note that item (2) in Definition 3 extends Stable Models by
giving a meaning to strong negation.

Finally, an answer set of a given program K is a minimal
closure of its reduct as following stated.
Definition 4 (Answer Set). Suppose K is a EDLP and S a

set of literals. Then, S is an answer set of K if and only if
S = Cn(KS).

Notice that all stable models can be viewed as minimal
Herbrand models of a set of first-order sentences, but not the
converse. Additionally, S is a consistent answer set of a given
program K if it does not contain a complementary pair of
literals.

Although we have introduced ASP as propositional
(ground) programs, fixed non-ground ASP-programs of arbi-
trary arity are also considered in the same way than [13]
do. Accordingly, non-ground ASP-programs with variables
or constants as arguments can be seen as a simplified ex-
pressions of larger ground (propositional) ones without
variables, where each ground program K is a set of its ground
rules ρ ∈ K. In addition, a ground rule is the set obtained
by all possible substitutions of variables in ρ by constants
occurring in K [13].

In general, ASP is the necessary background and main
foundation that is common to all the approaches here pre-
sented. Yet another framework employed by a few of the
approaches to update knowledge in ASP is called General-
ized Answer Sets.

This is the basic background to understand the follow-
ing approaches to update knowledge represented in ASP
programs. So, let us begin with the different proposals.

3 EITER’S TEAM

To the best of our knowledge, [17] achieved the most com-
plete survey of most known semantics for updates of logic
programs, by gathering relevant postulates and principles
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from the literature. Their approach first appeared in [14]
with a vast study of well-known and well-accepted postu-
lates and properties, and later refined [17] and extended to
be a main component in more general problems like agents
[18] or preferences. They also implemented a solver2 that is
the main engine of an experimental graphical front end we
have implemented3.

In [17] they formulate a natural definition for updating
logic program sequences on a restricted Answer Sets lan-
guage by rejecting rules under a causal rejection principle.
The principle is due to [9] that later, however, turned out
to be counterintuitive. See [8], [18], [32]. The problem comes
up from a strong dependency upon the syntax of programs,
first noted by [18], [33], [37], and is further discussed in
Section 4. In particular, the formula under which they, [17],
[18], analyze and describe update properties is as follows.

Given an update sequence (K1,K2, . . . ,Kn), with 2 ≤
n, over a set of atoms A, assume Aα as an extension of
A by new pair-wise unique atoms rej(ρ) and αi, for each
rule ρ occurring in K; each atom α ∈ A, and 1 ≤ i ≤ n.
An injective naming function Name(·, ·) is also assumed,
which assigns to each rule ρ in a programKi a unique name,
Name(ρ,Ki), provided that Name(ρ,Ki) 6= Name(ρ′,Kj)
whenever i 6= j. Finally, for a literal `, they use `i to denote
the result of replacing an atomic formula α of ` by αi.

The intuitive idea of rej(ρ) is that of an atom that blocks
(rejects or inhibits) a related rule ρ when the former is true,
provided that there is another more recent rule ρ′ with
conflicting information.

Then [17] define the intended answer sets of an update
sequence (K1,K2, . . . ,Kn) in terms of the answer sets of
K/ = (K1 / · · · / Kn). In other words, the models are back
expressed in the original alphabet by the intersection of
them and the original atoms:

Definition 5 ( [17]). Given an update sequence,

(K1,K2, . . . ,Kn)

over a set of atoms A, then S ⊆ LitA is an update answer
set of (K1,K2, . . . ,Kn) if and only if S = S ′∩A for some
answer set S ′ of K/ = (K1 / · · · / Kn). The collection of
all the update answer sets of (K1,K2, . . . ,Kn) is denoted
by U(K1,K2, . . . ,Kn).

In addition to the declarative version, this semantics is
also supported by a solver available both for downloading
and running online4, which is yet another valuable asset
worth considering when comparing the approach with oth-
ers.

Let us present the following example, inspired in [17], to
illustrate their approach. Later we will reuse it with other
approaches:

Example 1. Suppose we have the following simple-but-
illustrative two sets of system requirements (translated

2. Available at http://www.kr.tuwien.ac.at/staff/giuliana/project.
html#Download.

3. The graphical online front end to [18] command-line solver can be
found at: http://logic-lab.sourceforge.net/upd.html.

4. We have installed an online version, which also provides a graphic-
oriented interface on the server itself—http://logic-lab.sourceforge.
net/upd.html. Obviously, no download or installation is necessary to
run the latter version.

into ASP), 〈K1,K2 〉, representing the initial and current
knowledge of an intelligent greenhouse, which acts au-
tonomously under specific circumstances, where

K1 = {notify←night ,notwSystem

night

wPlants←wSystem

wSystem}
K2 = {∼wSystem← blackout

blackout}

Program K1 might represent the following configura-
tion:

• Notify when it’s night and there isn’t evidence of the
water system working.

• It’s night now.
• Water the plants when the water system is working.
• The system is working now.

The unique model of such requirements is

{night ,wPlants,wSystem}.

Now suppose that the systems engineer needs to incor-
porate a new rule that states to not water plants when the
ground is flood: ∼wPlants← gFlood . By their definition,
the transformed update program K/ = (K1 / · · · / Kn)
consists of the following rules—amongst the rest of the
rules that we skip for page constraints:

· · ·wSystem1←not rej(ρ4).
∼wSystem2← blackout ,not rej(ρ5) · · ·

· · · rej(ρ4)←notwSystem2 · · ·
notify1←notify2. notify←notify1 · · ·

wSystem1←wSystem2. wSystem←wSystem1 · · ·
∼wSystem2←∼wSystem3. ∼wSystem←∼wSystem2

blackout2← blackout3. blackout← blackout2

whose unique answer set is
{notify1,night ,night1, rej(ρ4),∼wSystem2, blackout ,
blackout2,notify ,∼wSystem} and its update answer set
is just: {night , blackout ,notify ,∼wSystem}.
Let us complete Example 1, which is one of the major

disadvantages the framework exhibits [35]:
Observation 1 (Continued Example 1). Now let us consider

Example 1 again and perform a second update to the
sequence with program K3 = {∼blackout}. Accordingly,
the new answer set of the resulting update program is
{wSystem1,wSystem,night1,night ,wPlants1,wPlants,
rej(ρ6),∼blackout3,∼blackout}.

As a result, by Definition 5 the corresponding update an-
swer sets are
U(K1,K2) = {night , blackout ,notify ,∼wSystem} and
U(K1,K2,K3) = {wSystem,night ,wPlants,∼blackout}.
However, this result does not coincide with common intu-
ition, just because one of the possible models contradicts the
latest fact (∼blackout) stating that it is no longer happening!
On the other hand, the second model says that system
is working, back again for no obvious reason, which is
counterintuitive too.

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://logic-lab.sourceforge.net/upd.html
http://logic-lab.sourceforge.net/upd.html
http://logic-lab.sourceforge.net/upd.html
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Despite the satisfactory deep nice analysis they realize
of known postulates and principles from the literature and
their available solver, yet another major disadvantage of
[17]’s approach has to do with syntactic and semantic con-
tents, as illustrated by the following example inspired from
[8] and modified by [37] that may produce counterintuitive
models:

Observation 2.
Suppose an agent who believes that when it is day it is
not night and vice versa, and that there are stars when it
is night and when there are no clouds. Finally, that at the
current moment it is a fact that there are no stars. This
simple story may be coded5 into a logic program K1 as
follows:

K1 = {(day←notnight), (night← not day)

(stars←night ,not cloudy), ∼stars}

whose unique answer set is {day ,∼stars}. Later, the
agent acquires new information stating that stars and
constls6 are the same thing, as coded in K2. As soon as
the agent updates K1 with program

K2 = {(stars← constls), (constls← stars)}

the augmented alphabet of the two programs contains only
one new extra atom with respect to K1: constls . As the
model of K2 is obviously the empty answer set, constls
is considered synonym of stars by means of K2, and
thus the update should not change the original beliefs.
However, the update yields an extra answer set in some
of the existing update semantics based on the causal
rejection principle see [8], [9], [17]: {stars, constls,night},
which does not coincide with common intuition.
The reason is that, although stars can not be true, intro-
ducing constls gives another possibility for stars to be
true. Thus, the additional answer set is derived [37].
In general, these supplementary rules in the update are
a conservative extension [31] to K1: the original language
is extended and all answer sets ought to be extensions
of the old answer sets. In this specific situation, constls
should be true if and only if stars is true.

So, Observation 2 means that the proposed semantics is
inappropriate to model the corresponding kind of problems.

Finally, updating knowledge through a sequence of logic
programs does not seem to be natural in our opinion. For
instance, consider Observation 1 again and try to perform
a new update. Although the authors might have had other
goals and intentions, their current approach does not allow
to do that (i.e. you would have to “initialize” the sequence
and append the new update to it.

To recap, [17] were very good at gathering relevant pos-
tulates and principles from the literature and at analysing
them in terms of their proposal. Their approach, however,
suffers from a few disadvantages for our interests owing to
its reliance on the causal rejection principle (see [9]) and to its
sequence-based approach.

5. Notice that there are other ways to represent the story. The problem
is, however, what to do in this particular situation, when the agent’s
original knowledge base runs across a redundant piece of information.

6. i.e. constellations.

4 DYLP AND OTHER EARLY PROPOSALS

One of the earliest approaches to update logic programs
through transformations appeared in the late 90’s from [9],
[10] that was extended to an interesting language called
LUPS, by [11], to specify explicit updates in programs on a
semantics that they called Dynamic Logic Programming or
DyLP [9]. Some years later, though, [8] refined the latter,
whom over the previous periods formulated a principle of
rejection, also known as causal rejection principle [8], [9], [17]
and [7].

Informally, the called refined principle of rejection consists
in rejecting rules of previous and upcoming programs in an
update sequence, whenever there are other conflicting rules
at the current state.

To begin with, [8] motivation comes from a simple exam-
ple to what they themselves called a tautology (a rule from
which they expect no models):7

not p←not p (5)

One may verify that the rule alone produces no models
in their semantics8—i.e. just the empty model, ∅, which
actually contains all non-positive (default-negated) atoms—
and updating knowledge with this rule should have no
effect, and that is why they introduced the refined principle
of rejection.

Additionally, [8] explain in a footnote what tautology
means: A rule of the form `←B with ` ∈ B, where `
is an atom (or a default-negated atom) and the body of
a rule, respectively. Although the authors might have had
other goals for their approach, this high dependency on
syntax will prove to be one of their major disadvantages as
a semantics for updates in our opinion, as explained along
this paper.

Before introducing their proper definitions for their se-
mantics, a special notation is necessary, which can be ob-
tained from the literature and from [8].

Intuitively, a refined interpretation of a DyLP program
is a dynamic stable model if the following happens. The
least model of the positive program, which results from the
difference of the rejected rules and the union of the default
assumptions, is the same than the union of the interpretation
and the default-negated literals that do not appear in the
latter.

Definition 6 introduces the model of the transformed pro-
gram from the original dynamic logic program. The intuition
behind Rej(·, ·) is the set of rules that conflict (./) with
both current and previous ones in the sequence. Moreover,
Def(·, ·) consists of the positive “default-negated” atoms
that do not appear in the intended model.

Formally, two rules, ρ1, ρ2, are in conflict, denoted as
ρ1 ./ ρ2, if and only if H(ρ1) = notB(ρ2).

7. Note that the kind of rule in (5) is invalid in LASP, and it also
illustrates why strong negation “∼” should not be a simple replacement
to “not” in the head. Take for example, the program {∼p← not p}
whose unique answer set differs from the empty set: {∼p}.

8. The details are easily available in the literature, like [9].
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Definition 6 (Dynamic Stable Model, [8]). Let P be a
dynamic logic program andM an interpretation.M is a
dynamic stable model of P if and only if9

Rej(P,M) =

{ρ | ρ ∈ Ki,∃ρ′ ∈ Kj , i ≤ j, ρ ./ ρ′,M |= B(ρ′)};
Def(P,M) =

{not a | @ρ ∈ ρ(P), H(ρ) = a,M |= B(ρ)};
M = least(ρ(P) \ Rej(P,M) ∪ Def(P,M))}.

This approach has had several implementations, includ-
ing one for the original version before the so-called refined
principle, and another for the principle itself. Additionally,
LUPS is also implemented, which we consider a major asset,
and the following list shows their respective locations:

• http://centria.di.fct.unl.pt/∼jja/updates
• http://centria.di.fct.unl.pt/∼banti/

FedericoBantiHomepage/refdlp.htm

Now let us analyze an example inspired by [35], origi-
nally proposed by [9].
Observation 3. The above framework has missing informa-

tion. Let us code the story introduced in Example 1 and
Observation 1 as follows: P = K1 ⊕R K2 ⊕R K3, where:

K1 = {(notify←notwSystem), (wPlants←wSystem),

(wSystem)},
K2 = {(blackout), (notwSystem← blackout)},

K3 = {not blackout}.

M = {wSystem,wPlants} is a refined dynamic stable
model of the update sequence, since the unique rejected
rule is blackout and the unique default is not notify ,
where the least model is

{wPlants,wSystem,not blackout ,not notify} =M.

In a similar example [35] argue, however, that the
resulting model is counterintuitive, because after the
first update, the refined dynamic stable model was
{blackout ,notify} and thus there is no reason to believe
that once the power is restored, the system should be
working back again! A similar counterintuitive result is
given in Observation 1.

In addition to that, there is still a simple example, first
suggested by [17], that still causes counterintuitive results
in this DyLP-semantics.
Observation 4. Suppose an initial knowledge base K0 =
{(c← r), (r)} updated with K1 = {not r←not c}.
Firstly, the initial generalized stable model of K0 is
{c, r}, and one would expect no further changes af-
ter the update because, according to [17], such an up-
date should be irrelevant to the known fact r and
the derived c. However, the update P = K0 ⊕R K1

has the extra model M = {not c,not r} because
M = {not c,not r}; Rej(P,M) = {r}; Def(P,M) =

9. Notice that it seems they have missed the “ ” and have typed
“not a” rather than “not a” in (6) from the original paper in [8].
Moreover, (6) should be a set of rules, rather than a set of literals, to be
sound with the equality in (6)! In the rest of the section, it is assumed
the former, as the authors do.

{not c}; and least[(K0∪K1)\Rej(P,M)∪Def(P,M)] =
{not c,not r} =M.

Although [9] were some of the first researchers to for-
mulate and implement a semantics for updates through
program transformations, they still have quite a few dis-
advantages like the ones pointed out in this section: Firstly,
for the particular syntax and semantics of their transformed
generalized logic programs, which is a different variant of
Stable-Models Semantics, or in other words, a non-standard
concept of ASP [17]; secondly, for their causal rejection prin-
ciple that produces the mentioned counterintuitive results. Fi-
nally, their sequence-of-knowledge-bases approach is in our
opinion counterintuitive, as we have already commented at
the end of Section 3.

5 MINIMAL CHANGES

In [34], [35] they propose three types of updates through
program transformation, to which they call inconsistency
removal, view updates and theory updates. Each of them cor-
respond to a special case of updates and revision in the
literature.

For page and comparison reasons, this paper is focused
on theory updates, rather than other special cases such as
making an inconsistent program consistent or differentiat-
ing between variant and invariant knowledge. As a result, this
section does not include other types of belief changes, which
are easily available in the literature.

Once the extended abductive program is normalized,
its interpretations shall correspond to transformed update
programs that consist of the rules of the original theory that
don’t belong to the normalized abductive set, merged with a
new set of update rules, as specified in [35].

Next, this transformation of update rules takes part of a
new transformation called update program of the normal-
ized extended abductive program that is an intermediate
EDLP. This intermediate program specification is as follows,
where P is an EDLP over A, and Aα a set of abducibles,
such that A ∩Aα = ∅:
Definition 7 (Update Program, [35]). Given an abductive

program 〈P,Aα 〉, its update program, UP , is defined as
an EDLP such that UP = (P \ Aα) ∪ UR.
Then the models of an update program denote the deletion

of facts or rules from the original program in the pair.
Definition 8 (U-minimal Answer Sets, [35]). An answer set S

of UP is called U-minimal (U-MAS) if there is no answer
set S ′ of UP such that S ′ ∩ UA ⊂ S ∩ UA.

As a result, there is one or more new corresponding
updated programs to the U-MAS.

5.1 Discussion
This abduction framework proves to have nice properties
of a syntactical minimal change of rules in the original non-
monotonic theory—Theory Updates Definition in [35]—by
means of consistent interpretations of hypothetical changes.
With this framework, [35] can perform particular kinds of
updates and maintenance of knowledge-bases consistency,
and can also present a vast analysis of disadvantages in
other comparable approaches.

http://centria.di.fct.unl.pt/~jja/updates
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm
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In general, [35]’s first goal is to provide an update seman-
tics to compute their extended abduction. Secondly, they
also characterize updates through the extended abduction,
as they themselves state it. Consequently, the approach lacks
of a proper analysis of more principles and postulates from
the literature of program transformation or belief change.
Additionally, they characterize different kinds of updates
with their extended abduction, claiming that they can pro-
vide an algebra of rules deletion, besides the addition of
them, to explain observations.

Let us recapitulate [35]’s approach in a few words. They
construct their update program out of the normal abductive
form of an extended abductive program 〈P ∪Q,P \Q 〉 whose
models are U-MAS’s interpreted from an update program.
Last, the interpretations correspond to one (or more) new
programs representing knowledge bases, derived from the
addition and/or deletion of facts that the U-MAS’s describe
in turn.

In [35] they propose an example as an argument against
other approaches—like [9], [17]—that brings back previous
knowledge of the original theory. That is to say, their in-
terpretation is that a TV in their example10 turns itself on
again and it is possible to watch it as well with no reason to
do so: {tvon,watchtv ,∼blackout}, which does not coincide
with their intuition. This is similar to our conclusions in
Observation 1, where the system is working back again
upon no justification. However, this argument seems to be
too strong to generalize that all update semantics should
behave accordingly, because [35] are differentiating fluents
and actions in a language that does not have such an explicit
difference.

Finally, there is a simple example that might represent
another disadvantage of this approach.

Observation 5. Suppose the initial knowledge base K = ∅
updated by a simple fact K1 = {x}. Following [35]’s
framework, the answer sets of its update program is
empty: UP = (∅ \ {x}) ∪ UR, where UR is clearly
empty because the extended abductive program from the
update pair has no abducibles: Aα = ∅ \ {x}.

Moreover, although the authors present a deep analysis
of their proposal and although it seems to be robust-enough
for agent’s changing environment, there is a lack of further
and more general properties and a lack of a solver, which
make it hard to compare with other alternate approaches.
[42] pointed out that this approach is classified into a syntax-
based semantics. As a result, it has no general semantic
foundation that justifies its updates [42], and by interpreting
the resulting knowledge bases with a given semantics might
interfere with the ASP semantics that performs the update
operation. It is clear that they justify their updates with
an extended abductive framework, which is still a specific
problem and then leaves the mentioned absence of update
characterisation.

Finally, a minor disadvantage is that the approach is un-
defined to update a knowledge base with an inconsistency.
[35] state that such a kind of update “makes no sense”,
which clearly does not mean that an agent or whoever
is updating the knowledge base will never come across

10. See [35] for further details.

an originally inconsistent observation. Nevertheless, they do
consider cases where an initial knowledge base is originally
inconsistent, and they identify such case as inconsistency
removal. This method consists in updating an inconsistency
knowledge base with an empty update.

6 ZHANG’S

An interesting proposal for updates through program trans-
formation comes from [42], where the author identifies three
types of problems to solve in an update process: elimination
of contradictory information, conflict resolution and syntactic
representation.

Additionally, one of the applications from [12] is an
interesting language that is specialized in updates of agent’s
policies and defined at the top of ASP. In [12], they specify
such policies in terms of clauses with a predefined semi-
imperative syntactical structure, as well as an initial planning
approach.

However, owing to a specialisation the work has on
policies, the programmer is restricted and obliged to use
reserved words like “always”, “implied by”, “with absence”,
etc. which, besides constraining the domain to specific appli-
cations, it reduces the language and has potentially different
meanings in the meta-language. Nevertheless, they already
have a fully fledged system, as they themselves mention it
[12].

6.1 General View

In [42] he characterizes program-transformation updates
in terms of three main objectives: contradiction elimination,
conflict resolution and syntactic representation. The first topic
is one of the most obvious in semantics for updates, which
should be real by preserving a minimal-change principle and a
proper justification. On the other hand, conflict resolution has
to do with potential future contradictions an update might
yield. That is because of the introduction of two kinds of
negations in logic programs—strong and default negation.
Finally, once the process meets the two main goals, the
author argues that a proper semantics should also preserve
as many as possible of the original rules from the updating
knowledge base.

In order to realize these three goals, [41] performs pro-
gram update transformation by means of a called prioritized
logic program. In an intuitive way, this kind of program
consists in preferring the latest update to the original knowl-
edge base including non-contradictory but conflicting rules.
His approach definitions and plenty of examples are easily
accessible in the literature, from which we also recommend
[3].

A mandatory test is the example in Observation 2, which
produces counterintuitive results in many of the existing
semantics for updates. This is not the case for Zhang’s
semantics, whose expected answer set is just what intuition
would tell us: {day ,∼stars}.

Despite this approach is well behaved, though, one of the
counter-intuitive examples to [42]’s approach has to do with
solving conflicts between rules, where most of the current
semantics differ, as first pointed out by [17]:
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Observation 6. Suppose an initial knowledge base K0 =
{p←not q} being updated by K1 = {q←not p}. Its
simple-fact update specification corresponds to

UPLP(SK0 ,K1) = (K∗,N , <),

where

Initial Knowledge:

i0 : p

Inertial Rules:

i1 : newp← p,not∼newp
i2 : ∼newp←∼p,notnewp
i3 : newq← q,not∼newq
i4 : ∼newq←∼q,notnewq

Update Rule

u1 : newq←notnewp

Preferences

N(i1) < N(u1) N(i2) < N(u1)

N(i3) < N(u1) N(i4) < N(u1)

As a result, its unique answer set SPLP(UPLP(SK0
,K1)) =

{p} and none of its <-relations are used. Next, the
minimal subset of K0 that is coherent with its answer
set is just K(K0,K1) = K0. Then, the update specification
of K0 and K1 is UPLP(K0,K1) = (K1 ∪ K(K0,K1),N , <),
where

(t : p←¬q), (u : q←¬p), (u < t).

Finally, its unique reduct q←not p comes from

(K1 ∪ K(K0,K1)) \ {t}

defeating rule t. Therefore, the conclusion of such an
update is just {q}, what we would not expect.

Last, besides not satisfying some of the principles al-
ready pointed out, one of the major drawbacks of this
approach is being limited to only one update to a knowledge
base. Namely, it is undefined for update sequences and for
successive updates, which does not seem to lead to immediate
practical use. Although [42] also suggests an extension to
one of his earliest approaches in [40] to deal with mul-
tiple updates, his proposal still makes the same strong
assumptions when deciding between multiple models, as
in Observation 6.

7 CONCLUSIONS

This work is a critique of current and past proposals for
update semantics, as an attempt to classify them and to
bring out new challenges. This Part I starts with a set of
early proposals. All of them update and revise knowledge
by means of program transformations in ASP or similar
semantics. They run from a wide range from simple-fact
one-step updates of logic programs, up to unlimited updates
either in a sequence or by an iterative process. Some of these
works present a vast collection of postulates and principles

for correct knowledge-base changes, and/or implementa-
tion. However, nearly all the proposals here introduced
still present drawbacks either for being limited to only one
update, or for relying on syntactical principles to change
the original logic program that leads to counterintuitive re-
sults. Nearly all of the issues here pointed out have been
surpassed by current approaches, like [5], where they have
found nice properties and applications— [1], [4]. On the
other hand, for practical and commercial reasons, the pro-
posals here presented are often called semantics for updates,
although there are implicit operations in some of them that
may suggest a different classification, say semantics for belief
revisions.
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Fomento Editorial, Benemérita Universidad Autónoma de Puebla,
2012.

[6] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On
the logic of theory change: Partial meet contraction and revision
functions. The Journal of Symbolic Logic, 50(2):510–530, June 1985.
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