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Abstract. Datasets containing billions of geospatial resources are increasingly
being represented according to the Linked Data principles. Radon is an efficient
solution for the discovery of topological relations between such geospatial re-
sources according to the DE9-IM standard. Radon uses a sparse space tiling index
in combination with minimum bounding boxes to reduce the computation time of
topological relations. In this paper, we present the participation of Radon in the
OAEI 2017 campaign. The OAEI results show that Radon outperforms the other
state of the art significantly in most of the cases.

1 Presentation of the system

Radon is a time-efficient link discovery algorithm for topological relations between
geospatial resources, implemented within Limes [3].

Given two sets of RDF resources S and T and a relation R, the goal of link discovery
is to find the mapping M = {(s, t) ∈ S × T : R(s, t)}. Radon enables the time-efficient
discovery of all topological relations that can be defined in terms of the DE-9IM stan-
dard [1]. In order to achieve time-efficiency, two optimization techniques are utilized:
optimized sparse space tiling on the dataset level and Minimum Bounding Box (MBB)-
based filtering on the resource level.

In the following, we introduce the basic concepts needed to understand Radon be-
fore we outline the aforementioned optimization techniques. More detailed explana-
tions can be found in [5].

The Minimum Bounding Box (MBB) of a geometry g in n dimensions is the rectangular
box with the smallest measure (area, volume, or hypervolume in higher dimensions)
within which all points of g lie. Another term for MBB is envelope.

Space tiling is a technique for indexing spatial data, where n-dimensional affine spaces
are split into any number of hyperrectangles with edge lengths `i and granularity factors
∆i = (`i)−1 where i ∈ {1, . . . , n}. These hyperrectangles can then be addressed using
vectors from Nn, which allows for various optimizations.



1.1 Optimized Sparse Space Tiling

The goal of the optimized sparse space tiling is to generate an index I for mapping all
geometries s ∈ S , t ∈ T to sets of hyperrectangles. For the sake of clarity, the following
description focuses on the two-dimensional case. As a first step, we use a heuristic to
get good granularity factors for both latitude and longitude dimensions (∆ϕ, ∆λ). Then,
we apply space tiling, in which we map a geometry g to the set of hyperrectangles over
which its MBB spans. To implement this idea, we insert a reference to g into all those
hyperrectangles, that are realized as entries of a HashMap. To optimize (i.e. sparsify)
the generated index, we start by computing estimated total hypervolumes (eth) of the
datasets S and T . We first index the dataset with the smaller eth for each resource of
the other dataset. We then add only to I the subset of resources from the second dataset
which shares the same hyperrectangles from the first dataset resources contained in I.
Using this technique together with the HashMap implementation of the hyperrectangle
index significantly reduces the size of the generated data structure and consequently
also the time to traverse it.

1.2 MBB-based Filtering

After the optimized sparse space tiling step described above, we traverse the gener-
ated index, visiting one hyperrectangle at a time. As a consequence of our approach,
each generated hyperrectangle contains references to at least one geometry from each
dataset. For each pair (s, t) of geometries, where s ∈ S and t ∈ T , we then employ a
filtering step before actually triggering the potentially expensive (in cases of large ge-
ometries) computation that checks if the given relation holds. Let �(g) denote the MBB
of geometry g. The filtering step leverages the fact that ¬r(�(s),�(t)) ⇒ ¬r(s, t) holds
for every relation r, where one geometry has no interior or boundary points in the ex-
terior of the other geometry, i.e. s ⊆ t or t ⊆ s. For these relations, we can return false
and skip further computations, iff the geometries MBB’s do not satisfy the relation.

2 Adaptations made for the evaluation

No specific adaptations were made to the original Radon algorithm [5], we only provide
a Java SystemAdapter according to the campaign guidelines3. The final Radon Java
SystemAdapter source code is available online in the project website4.

3 Evaluation Results

Radon has been evaluated only in the Hobbit Link Discovery Track Task 2 (Spatial).
The basic idea behind this task was to measure how well the systems can identify DE-
9IM (Dimensionally Extended nine-Intersection Model) topological relations. The sup-
ported spatial relations were: Disjoint, Touches, Contains/Within, Covers/CoveredBy,

3 https://goo.gl/cWmZ5P
4 https://goo.gl/awkvvo
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Intersects, Crosses, Overlaps. The geospatial resources traces were represented in Well-
known text (WKT) format as LineStrings .

Given two sets of LineString geometries S and T and a DE-9IM topological re-
lation R, the participants were assigned the task of retrieving the mapping M = {(s, t) ∈
S×T : R(s, t)}. All the systems were tested against two datasets: (1) the sandbox dataset,
with a scale of 10 instances, and (2) the mainbox dataset with a scale of 2K instances.

The other participants to this task in addition to Radonwere AgreementMakerLight
(AML), OntoIdea, and Silk. The systems were judged on the basis of precision, recall,
F-Measure and run time. The final results are shown in Table 1 and Figures 1 and 2.
Note that we are only presenting the time performance and not precision, recall and
F-Measure, as all were equal to 1.0 except OntoIdea Touches and Overlaps which is
equal to 0.99.

From these results we can see that, while Radon performs in the middle field of
the the sandbox dataset, Radon outperforms the other participants on most relations for
the sandbox dataset. Notably, the optimization described in Section 1.2 speeds up the
relations Equals, Contains, Within, Covers and CoveredBy significantly in comparison
to the remaining relations. The differences in performance between Touches, Intersects,
where AML outperforms Radon, and Overlaps cannot be explained from an implemen-
tation point of view, as these three relations share the exact optimizations. However,
due to the datasets consisting exclusively of LineStrings, it is apparent that Touches
and Intersects are much more likely to hold between any two geometries than Overlaps.
Therefore, the benchmarks on these relations are the hardest in this task.

4 Conclusion

We priefly presented Radon, an approach for rapid discovery of topological relations
among geo-spatial resources. To achieve a high scalability, Radon combines space
tiling, minimum bounding box approximation and a sparse index. The presented evalu-
ation during the OAEI 2017 showed that, in addition to being complete and correct (i.e.
achieving an F-Measure of 1.0), Radon also outperforms the other participating systems
in most of the cases. In future work, we aim to apply the particle-swarm-optimization
load balancing approaches [6]. To improve the performance of Radon on high resolu-
tion datasets, i.e. datasets whose containing geometries consist of a large set of points,
we will optimize the computation of relation checks. In order to further reduce the
amount of computations, we will consider adaptive granularity factors, i.e. granularity
factors as functions of latitude and longitude. In addition, we aim to combine Radon
with the machine learning approaches already implemented in Limes such as the Wom-
bat [4] algorithm. Finally, we will consider the discovery of temporospatial relations,
by integrating the Aegle[2] algorithm with the Radon approach.
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Fig. 1. Runtime comparison for Sandbox dataset



Fig. 2. Runtime comparison for Mainbox dataset



Table 1. Hobbit link discovery task evaluation results for all participants. Note that we used — for
systems which were not participating in the specified sub-task and × for systems that exceeded
the time limit.

Relation System Sandbox Mainbox

Equals

AML 8157 10284
OntoIdea 1531 567169
Radon 2215 4680
Silk 4059 125967

Disjoint

AML 7173 ×

OntoIdea — —
Radon 1558 19214
Silk 3224 257877

Touches

AML 11207 20252
OntoIdea 4712 473430
Radon 2672 485765
Silk 4805 1777747

Contains

AML 9191 16966
OntoIdea 1489 223857
Radon 2228 6937
Silk 4160 83958

Within

AML 10186 12308
OntoIdea 4517 236506
Radon 2203 5036
Silk 4037 88758

Covers

AML 7177 11859
OntoIdea 1503 313298
Radon 2180 6772
Silk — —

CoveredBy

AML 8184 14703
OntoIdea 1467 304509
Radon 2132 4721
Silk — —

Intersects

AML 9269 66681
OntoIdea 1505 510938
Radon 2737 339742
Silk 3582 1718035

Crosses

AML 8224 19385
OntoIdea 1509 461693
Radon 2131 8490
Silk 3917 203763

Overlaps

AML 10223 194838
OntoIdea 1486 530752
Radon 2167 60801
Silk 4217 464382
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(project no. 01MD16014E).

References

1. E. Clementini, J. Sharma, and M. J. Egenhofer. Modelling topological spatial relations: Strate-
gies for query processing. Computers & graphics, 18(6):815–822, 1994.

2. K. Georgala, M. A. Sherif, and A.-C. N. Ngomo. An efficient approach for the generation
of allen relations. In Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI) 2016, The Hague, 29. August - 02. September 2016, 2016.

3. A.-C. Ngonga Ngomo and S. Auer. Limes - a time-efficient approach for large-scale link
discovery on the web of data. In Proceedings of IJCAI, 2011.

4. M. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. WOMBAT - A Generalization Approach
for Automatic Link Discovery. In 14th Extended Semantic Web Conference, Portorož, Slove-
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