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Abstract. The YAM-BIO ontology alignment system is an extension
of YAM++ but dedicated to aligning biomedical ontologies. YAM++
has successfully participated in several editions of the Ontology Align-
ment Evaluation Initiative (OAEI) between 2011 and 2013, but this is
the first participation of YAM-BIO. The biomedical extension includes a
new component that uses existing mappings between multiple biomedi-
cal ontologies as background knowledge. In this short system paper, we
present YAM-BIO’s workflow and the results obtained in the Anatomy
and Large Biomedical Ontologies tracks of the OAEI 2017 campaign.

1 Presentation of the YAM-BIO system

1.1 State, purpose, general statement

YAM-BIO may be seen as an extension of YAM++ [5] that uses existing map-
pings between multiple biomedical ontologies as background knowledge to en-
hance the matching results. The latest version of YAM++, which we reused in
YAM-BIO, obtained excellent results in multiple Ontology Alignment Evaluation
Initiative (OAEI) campaigns, especially in 2013 [11]. YAM++ did not partici-
pate more since then. Four years on from the last participation, our objective
this year was to establish a comparison between the potential performance of
a bio-customized YAM++, and state-of-the-art systems in matching biomedical
ontologies.

Over last OAEI campaigns, state-of-the-art systems such as AML [7] and
LogMapBio [9] used specialized background knowledge to improve their re-
sults. More generally, the use of background knowledge –or indirect matching
techniques– as recently allowed to obtain better results. YAM-BIO is an equiv-
alent evolution of YAM++ in which we added a component that uses existing
mappings as background knowledge. With YAM-BIO, we participated this year
to the Anatomy and Large Biomedical Ontologies (Largebio) tracks.

1.2 YAM-BIO’s general alignment worklfow

As illustrated in Fig. 1, YAM-BIO’s workflow contains three main steps: First, to
compute direct matching between source and target ontologies using YAM++.
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Second, to compose relevant existing mappings in the background knowledge for
concepts not aligned during first step. Third, to compute union of the alignments
produced by the two previous steps.

Direct matching with YAM++: Annotations (labels, comments, etc.)
and structures of source and target ontologies are indexed as well as the context
of each entity that may be a concept or a property. Then, candidate mappings
with a low annotation similarity are pre-filtered. Other advanced lexical and
structural similarity measures are applied on the remaining candidate mappings,
before updating their similarity scores using the structure information of source
and target ontologies. Finally, a threshold is dynamically computed to select the
most relevant mapping candidates. For more details on each steps of the execu-
tion of YAM++, readers may refer to [5].

Indirect matching and union: During this step YAM-BIO finds map-
pings for the concepts that have not been matched during direct matching with
YAM++. First, background knowledge existing mappings are loaded in a list of
lists noted A as follows:
1. Identifiers of all concepts in the background knowledge are added to A. The

identifier of a given concept is the last part of its URI, for example the
identifier of the concept that has the URI http://mouse.owl#MA 0000031
is MA 0000031.

2. Each element x of A points to a list that contains identifiers of all concepts
matched to x in the background knowledge.

Then, for each source concept y that is not matched yet, YAM-BIO checks if
y’s identifier exists in A. If yes, YAM-BIO gets the corresponding list –pointed
by y– and for each element of this list, YAM-BIO verifies if itself points to a
list that contains a concept identifier from the target ontology. If so, YAM-BIO
derives a new mapping and adds it to the alignment produced previously by the
direct matching.

1.3 Adaptations made for the OAEI campaign

The existing mappings used as background knowledge have been extracted from
Uberon [10] and the Human Disease Ontology (DOID) [13]. These ontologies
contain several manually edited/curated cross references to other biomedical
ontologies that we may consider as mappings.

In addition, concept identifiers of the ontologies provided for the Largebio
track are not the original ones, but have been replaced by their standardized
preferred labels. For this reason, we have used the NCBO BioPortal’s REST
API [6] to replace concept identifiers within Uberon and DOID by their stan-
dardized preferred labels.

1.4 Availability

YAM++ has now a publicly accessible online prototype version [16] and is reg-
istered on Maven repositories: http://yamplusplus.lirmm.fr. YAM-BIO has not
been packaged yet to be reused by others. However, the alignment set produced
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Fig. 1. YAM-BIO’s general workflow

as well as the background knowledge file are available at the following link:
https://goo.gl/zNznNz

2 Results

2.1 Anatomy track

The Anatomy track consists of finding an alignment between the Adult Mouse
Anatomy [8] (2744 classes) and a subset of the National Cancer Institute (NCI)
Thesaurus [14] (3304 classes) describing human anatomy. Table 1 shows YAM-
BIO’s evaluation result and runtime on this track. YAM-BIO scored in second
position among the 12 systems that have participated in 2017 with almost the
same precision and a slightly lower recall comparing to the top ranked system.

Table 1. YAM-BIO’s Anatomy track results

Test set Precision Recall F-Score Time (s)

Anatomy 0.948 0.922 0.935 70

2.2 Large Biomedical Ontologies (Largebio) track

The Largebio track consists of respective finding alignments between the Foun-
dational Model of Anatomy (FMA) [12], SNOMED-CT [4], and the NCI The-
saurus. There are six tasks with different input ontology sizes: small fragment,
large fragment and whole ontologies. Table 2 shows YAM-BIO’s evaluation re-
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sults and runtime on those tasks. With the exception of the XMAP system4,
YAM-BIO is the top ranked system in Task 1 and Task 4 and obtained almost
the same results as the best system in Task 3 with an F-measure of 0.834 vs
0.835. In Task 2 and Task 6, YAM-BIO scored in second position with a better
recall than the best system and a lower precision. In Task 5, it shared third
position with LogMapBio. In terms of running time, YAM-BIO completed the
different tasks in acceptable time.

Table 2. YAM-BIO’s LargeBio track results

Test set Precision Recall F-Score Time (s)

Task 1: Small fragments FMA-NCI 0.968 0.896 0.931 56

Task 2: FMA Whole-NCI Whole 0.816 0.888 0.850 279

Task 3: Small fragments FMA-SNOMED 0.966 0.733 0.834 60

Task 4: FMA Whole-SNOMED Large fragment 0.887 0.728 0.800 468

Task 5: Small fragments SNOMED-NCI 0.899 0.677 0.772 2202

Task 6: SNOMED Large fragment-NCI Whole 0.827 0.698 0.757 490

3 Discussion

3.1 Comments on the results and ways of improvement

YAM-BIO scored second position in the Anatomy track and scored first or second
also in the Largebio track (except Task 5). As expected, using existing mappings
as background knowledge has improved YAM++ results in terms of recall and
consequently F-measure. Mapping compositions extracted from Uberon allowed
YAM-BIO to discover non trivial mappings, specifically in Anatomy track and
in Task 1 and Task 2 of Largebio track. Similarly, the composition of mappings
extracted from DOID allowed to increase the recall of Task 5 and Task 6. How-
ever, the incoherence analysis shows that YAM-BIO returns some incoherent
mappings. This may be explained by the fact that the mappings derived us-
ing background knowledge have been added to the final alignment without any
semantic verification.

In our current system, mappings derived using background knowledge are
not post-filtered and semantically verified as in YAM++. A simple union of the
direct and indirect alignments is performed to obtain the final alignment. In the
future, our goal would be to integrate the use of background knowledge directly
inside YAM++’s internal architecture which, we believe, will improve coherence
of the final results. More specifically, we will implement the approach proposed
in [1].

In addition, we are aware of the importance of the dynamic selection of
ontologies to use as background knowledge [15, 2]. Indeed, from the selected on-
tologies we may extract manual/automatic mappings as background knowledge.
For this reason, we will extend YAM-BIO to dynamically select a set of ontolo-

4 We note XMAP uses UMLS Metathesaurus as background knowledge, which is the
same from which Largebio reference alignments are extracted.
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gies from a given ontology library such as the NCBO BioPortal or Watson [3],
if we want to go beyond biomedicine.

3.2 Comments on the OAEI evaluation

When possible, we think it would be interesting to publish participants results
with and without use of specialized background knowledge. On one hand, this
will allow to better evaluate the influence of background knowledge in matching
quality and running time. On the other hand, this will allow a fair comparison
with systems that do not use background knowledge.

Some components are common in all ontology matching system architectures;
others do not always exist —such as background knowledge selection or semantic
verification. This makes the comparison of running time executions particularly
cumbersome and not always fair. According to us, it would be more appropriate
to evaluate execution times for each separate component. For example, YAM-
BIO used a predefined background knowledge while LogMapBio made a dynamic
selection from an online repository necessarily taking additional time. Splitting
running time by components will also help the community to identify less efficient
components to improve them, and most efficient ones to reuse them.

4 Conclusion

In 2017 YAM-BIO participated in two tracks: Anatomy and LargeBio. The re-
sults obtained in those tracks are very close to top ranked state-of-the-art sys-
tems, thanks to different content matching techniques implemented in YAM++
and to the use of background knowledge. Due to the high heterogeneity of on-
tologies, we believe that an advanced generic (i.e., not restricted to biomedicine)
module that selects and uses background knowledge should be implemented in
the internal architecture of YAM++ to improve its results. In the future, we will
work on such a module and hopefully participate in different OAEI tracks.
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