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Abstract. Researchers have long recognized the value trapped in natural lan-
guage publications and have continued to advance the development of ontologies 
that can help unleash this value.  Among these advances are efforts to apply NLP 
techniques to streamline the labor-intensive process of scientific literature cura-
tion, which encodes relevant information in a form that is accessible to both hu-
mans and computers.  In this paper, we report on our initial efforts to improve 
ontology alignment within the context of scientific literature curation by exploit-
ing value within a large corpus of annotated PubMed abstracts.  We employ an 
ensemble learning approach to augment a collection of publicly available ontol-
ogy matching systems with a matching technique that leverages the word embed-
dings learned from this corpus in order to more successfully match the concepts 
of two disease ontologies (MeSH and OMIM).  Our experiments show that word 
embedding-based similarity scores do contribute value beyond traditional match-
ing systems.  Our results show that the performance of an ensemble trained on a 
small number of manually reviewed mappings is improved by their inclusion. 
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1 Introduction 

Technological advancements have given rise to an explosion in the rate that biomedical 
data is generated.  The incredible volume of data now far exceeds the ability of re-
searchers to capitalize on it.  This is due, in large part, to the vagaries of the natural 
languages in which that data is published for consumption by human readers.  The wide 
variety of lexical forms employed in the research literature present persistent challenges 
for both humans and computers in finding, assessing, and assimilating relevant data. 

The research community has long recognized the value trapped in natural language 
publications and has continued to advance the development of ontologies that can mit-
igate the challenges posed by natural language.  Today, ontologies are a critical foun-
dation for emerging technologies that seek to better inform and accelerate biomedical 
research.  Notable among recent advances are efforts to apply Natural Language Pro-
cessing (NLP) techniques to streamlining the labor-intensive processes of biocuration 
and systematic scientific reviews. 
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Biocuration involves the interpretation, representation, and integration of infor-
mation relevant to biology into a form that is accessible to both humans and computers.  
This process results in databases or knowledgebases (e.g., UniProt [1], NCBI Database 
Resources [2], and the Rat Genome Database (RGD) [3]) that assimilate the scientific 
literature as well as large data sets.  Biocuration efforts range in both approach and 
scope, but they are increasingly supported by automated tools that facilitate information 
triage and tagging [4, 5]. 

Similar to biocuration is the systematic review: a literature review that gathers and 
analyzes research literature according to a structured methodology and guided by one 
or more specific research questions.  The aim of systematic review is to produce an 
exhaustive summary of current literature relevant to those research questions.  Some-
times a systematic review is simply an instance of a biocuration effort without sufficient 
resources to codify the collected knowledge [6].  As with biocuration, there are increas-
ing efforts to employ natural language processing and other artificial intelligence meth-
ods to streamline an expert-driven process that is otherwise very labor intensive [7-10]. 

Biocuration and systematic review processes (whether manual or automated) are 
complicated by the applicability of overlapping ontologies that cover a breadth of mul-
tispecies knowledge that ranges across biological scales from molecules to populations.  
Ultimately, the exploitation of numerous (but well-aligned) ontologies will provide a 
comprehensive landscape of biomedical knowledge that will speed the identification of 
new hypotheses and avenues of investigation. 

In this paper, we report on our initial efforts to improve ontology alignment within 
the context of scientific literature curation.  More specifically, we describe an ensemble 
learning approach that augments a collection of ontology matching systems with word 
embeddings generated from an annotated corpus of relevant scientific literature. 

The rest of this paper is organized as follows: In the next section, we provide back-
ground and discuss related work.  In Sections 3 and 4 we describe our experiments, 
research hypothesis, and results.  Finally, in Section 5, we summarize our conclusions 
and plans for future work, including extensions that support learning from work-cen-
tered user interactions.  

2 Background and Related Work 

The best-performing ontology matching tools all rely on collections of complementary 
matchers in order to compensate for context-specific weaknesses of each contrib-
uting/competing heuristic.  The challenge of matcher selection and evidence combina-
tion has been addressed in a variety of ways ranging from ad hoc rules and manual 
settings [11] to ensemble learning methods [12, 13] that utilize machine learning to 
select and weight contributing matchers.  Methods, such as “mapping gain” measure-
ment, are applicable to the related challenge of selecting appropriate background 
knowledge sources [14].   

Background knowledge sources play an important role in the performance of ontol-
ogy matching tools.  While string distance measures and taxonomic structure compari-
son form the backbone of most tools for ontology matching, it is also widely recognized 
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that ontologies constructed by independent experts can differ significantly in both or-
ganization and lexical features.  In these situations, researchers commonly seek to 
bridge the gap by drawing on various sources of background knowledge, such as: other 
ontologies, thesauri, lexical databases, online encyclopedias, and text corpora [11, 14].  
These knowledge sources can then be used to implement matching functions that ac-
count for spelling variations and synonyms, and that also support some measure of se-
mantic comparison [15].   

One approach to measuring semantic similarity of elements is to employ WordNet 
similarity [16].  However, WordNet offers little coverage of concepts found in real-
world ontologies.  Another approach is to learn word embeddings directly from text 
corpora.  Word embeddings are distributed word representations that are trained 
through deep neural networks. Each dimension of the embeddings represents a latent 
feature of the word, often capturing useful syntactic and semantic properties [17]. 

Word embeddings have proved to be useful at improving the performance of a wide 
range of Natural Language Processing (NLP) tasks [18].  Zhang et al. [15] showed that 
word embeddings learned over Wikipedia can improve the effectiveness of matcher 
ensembles applied to OAEI benchmark, conference track, and real-world ontologies.   

Our own work is similar to that of Zhang et al. [15] but is differentiated in two pri-
mary ways.  First, we learn word embeddings from a corpus of annotated scientific 
literature related to the ontologies to be aligned, rather than from Wikipedia.  Second, 
we employ ensemble learning to integrate open source ontology matchers with our 
word embedding based matcher. 

3 Experimental Setup 

Our research centers on the hypothesis that the information gleaned from the word em-
beddings learned from a relevant, annotated corpus would improve matching results 
within a learned ensemble of existing open source ontology matchers.  We tested this 
hypothesis with systematic experiments using the datasets and techniques described in 
the following. 

3.1 Datasets 

To evaluate our ensemble matching system, we used two ontologies of disease vocab-
ularies: the subset of the Online Mendelian Inheritance in Man (OMIM) disease vocab-
ulary, a flat list of disease terms covering genetic disorders; and the ‘Diseases’ branch 
of the National Library of Medicine’s Medical Subject Headings (MeSH).  A third vo-
cabulary, the Comparative Toxicogenomics Database’s (CTD) ‘merged disease vocab-
ulary’ (MEDIC) [19] serves as a reference alignment between OMIM and MeSH.  We 
chose these datasets primarily because there exists a corpus of PubMed titles and ab-
stracts where disease mentions are annotated with the corresponding MEDIC identifi-
ers—such a corpus is needed to train the model from which we train the underlying 
neural network for our word embedding matcher.  In particular, PubTator (a Web-based 
tool for accelerating manual literature curation) provides an archive of the computer 
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annotation results for the entire collection of PubMed articles in PubTator1.  This com-
puter-annotated corpus is generated using the DNorm tool for disease named entity 
recognition [20].  

The data files for our ontologies were collected at the end of 2015 for the MeSH, 
OMIM, and MEDIC disease vocabularies.  The ontology for the MeSH ‘Diseases’ 
branch includes 11,344 concepts.  The ontology of OMIM genetic disorders includes 
8,064 concepts.  The MEDIC reference alignment identifies 3,435 direct mappings be-
tween MeSH and OMIM concepts.  Lastly, the entire PubTator corpus contains 
14,412,044 documents.   

3.2 Word Embedding Matcher (Word2vec) 

Our word embedding matcher uses the similarity scores, as learned by the Word2vec 
component of the Deeplearning4j library [21], as the confidence for a match between a 
given pair of ontology concepts.  Word2vec is a two-layer neural net that processes 
text, taking a text corpus as input and outputting a set of feature vectors for words in 
the corpus.  The vectors used to represent words are called neural word embeddings 
and represent a word with numbers based on other neighboring words within the input 
corpus (see Table 1).  Given a large enough corpus, Word2vec can make highly accu-
rate guesses about a particular word’s meaning—without human intervention—based 
solely on numerical representations of word features, such as the context of individual 
words.  Word embedding similarity scores are calculated as the cosine similarity of the 
vectors for a pair of concepts in the MeSH and OMIM ontologies.   

Table 1. Examples of neural word embedding vectors learned from the PubTator corpus. 

bone marrow, (bmt), solid-organ, disseminated, allogeneic, … 

blood pressure, rate, hypotension, arterial, concentration, … 

heart rate, cardiac, re-infarction, pressure, o2, arterial, … 

liver renal, hepatic, failure, acute, function, chronic, … 

Before training the Word2vec model, we preprocess the PubTator corpus so that the 
annotated phrases for each PubMed document (title and abstract) are replaced by a 
unique single-token identifier for the corresponding MeSH or OMIM concept.  This is 
necessary because Word2vec learns similarity vectors based on individual words/to-
kens (and not multi-word phrases).  The unique identifier allows us to look up similarity 
scores for a given pair of concepts from the trained word embedding model.  We used 
Deeplearning4j’s suggested configuration: a word window size of 10 for calculating 
within-sentence word context and the skip-gram technique for predicting the target con-
text, which produces more accurate results on large datasets. 

                                                             
1 https://ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/tutorial/index.html#DownloadFTP 
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Training the Word2vec model for more than 14 million documents is very time con-
suming (on the order of weeks). Once the model is built, however, extracting the simi-
larity score for a given pair of terms is fast.  The training time can be reduced by dis-
tributing the processing with, for example, an Apache Spark cluster. 

3.3 Ontology Matching Systems 

In addition to the word embedding matcher, we also utilized a number of publicly avail-
able ontology matching systems.  These matchers are used both alone and as part of a 
learned ensemble to evaluate the relative impact of the addition of our word embedding 
matcher.  These systems have all participated in past Ontology Alignment Evaluation 
Initiative (OAEI) campaigns. 

LogMap. LogMap [22] is a scalable ontology matching system that utilizes highly op-
timized data structures to index the input ontologies (both lexically and structurally) to 
compute an initial set of anchor mappings with corresponding confidence values.  
These anchors are then used in an iterative process of mapping repair and mapping 
discovery to uncover new mappings. 

AgreementMakerLight (AML). AML is an ontology matching framework based on 
AgreementMaker [23], one of the leading ontology matching systems.  However, 
whereas AgreementMaker is memory-intensive and was not designed to match ontolo-
gies with more than a few thousand concepts, AML is a lightweight system developed 
with a focus on computational efficiency and is specialized on the biomedical domain 
but applicable to any ontologies. 

Generic Ontology Matching and Mapping Management (GOMMA). GOMMA 
provides a comprehensive and scalable infrastructure to manage large life science on-
tologies, but as a generic tool it can be used to match ontologies from other domains 
[24]. GOMMA preprocesses all information relevant for matching ontology concepts 
(e.g., name, synonyms, comments) and uses maximal string similarity to generate 
matches before aggregating the mappings, filtering out any mappings below a certain 
threshold, and applying constraints to improve the consistency of mappings. 

(not) Yet Another Matcher (YAM++). The underlying idea of the YAM++ system is 
that the complexity and, therefore, the cost of the ontology matching algorithms can be 
reduced by using indexing data structures to avoid exhaustive pair-wise comparisons 
[25]. YAM++ preprocesses the input ontologies to calculate the information content of 
each word to determine the weights of labels.  Candidate mappings are passed to a 
process that uses machine learning to combine several different string-based compari-
sons to compare the labels/synonyms of entities.  Those results are then passed to a 
structural matcher, which looks at related entities to find more mappings, before com-
bining and filtering the results. 
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Falcon-AO. Falcon-AO is a prominent component of the Falcon infrastructure for Se-
mantic Web applications [26]. For our datasets, Falcon-AO primarily uses partition-
based block matching (PBM), which first divides each ontology into blocks that have a 
high degree of cohesiveness; then, mappings are discovered by matching similar 
blocks. The similarity between blocks is a function of the number of “anchors” (align-
ments with high similarity based on string comparison techniques) that they share. 

3.4 Ensemble Learning 

We utilize machine learning techniques to determine the weights and confidence level 
thresholds for each ensemble configuration, allowing for the systematic learning of 
rules for estimating the correctness of a correspondence based on the output of the dif-
ferent techniques.  Our experiments were conducted with the Weka Toolkit [27], using 
the Weka implementation of the REPTree classifier, a fast decision tree learner which 
builds a tree using information gain as the splitting criterion and then prunes it using 
reduced error pruning.  Our feature vectors comprise the individual mapping confidence 
scores for each technique being evaluated as well as a single meta-level feature—aver-
age matcher confidence.  The inclusion of this meta-level feature is based on the find-
ings of Eckert et al. [12] in which it was found that the most significant feature was not 
the confidence scores themselves, but the fraction of matchers that found a correspond-
ence.  All experiments were conducted with the default Weka classifier settings, mak-
ing our experiments more easily reproducible.  

Dealing with imbalanced data. Each individual matcher can generate mappings with 
a range of confidence scores between 0.0 and 1.0 and, unsurprisingly, a large number 
of incorrect mappings appear at low confidence levels.  This introduces a problem dur-
ing classifier training known as class imbalance—a large difference in the number of 
positive and negative instances used to train a classifier (i.e., correct vs. incorrect map-
pings), which may result in a classifier that is biased towards this majority class.  At 
the extreme, this can lead to a classifier with high accuracy that has actually learned to 
always choose the majority class (i.e., that the mapping is incorrect).  In order to ac-
count for this when training the classifier, we use a common resampling approach in 
which the training instance are sampled to provide an even distribution of correct and 
incorrect training instances.  We achieve this by using the Resample filter of the Weka 
framework for sampling without replacement, and biasing towards a uniform class dis-
tribution (i.e., an even split between positive and negative instances). 

4 Results 

Here we describe the results of our experiments to evaluate the performance of our 
Word2vec-based word embedding matcher.  We analyze the performance of the word 
embedding matcher both in isolation and by measuring its contribution when combined 
with one or more existing ontology matching systems, showing that this novel tech-
nique adds value that is not identified by standard ontology matching systems. 
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For the evaluation of each particular classifier configuration, we follow a technique 
meant to mimic a practical training process for each classifier within the context of 
scientific literature curation.  More specifically, we limit the training of each classifier 
to a small subset of the mappings produced by the corresponding matchers.  We split 
the training collection into n folds, with each fold consisting of approximately 362 in-
stances, and train a separate classifier on each of the n individual folds.  This is meant 
to simulate the process of training the classifier with a small number of manually re-
viewed mappings.  362 was chosen as the approximate fixed size for each fold so that 
the smallest training collection (YAM++ by itself; 3,628 mappings) would have 10 
folds for training.  Every evaluation uses the same test collection, consisting of the 
union of all of the potential mappings generated by each of the matching systems (in-
cluding Word2vec).  This allows for a more accurate comparison of the evaluation re-
sults across different classifier configurations.  We report the average and standard de-
viation of the traditional precision, recall, and F-measure metrics across each of the n 
folds for each classifier configuration. 

4.1 Word Embedding Similarity Scores 

We first analyzed the similarity scores produced by the Word2vec technique, which are 
the cosine similarity of the vectors for each pair of concepts in the MeSH and OMIM 
ontologies.  For comparison, we built two word embedding models for the PubTator 
corpus: one with the standard configuration and one providing a list of stop words, 
which Word2vec ignores during training.  The chart in Fig. 1 shows the raw counts of 
the correct and incorrect mappings for both of these models.   

 
Fig. 1. The raw number of correct and incorrect mappings by Word2vec similarity score for 

two word embedding models, trained with and without stop words ignored. 

The results from both models are very similar, with the global distribution of simi-
larity scores (both correct and incorrect) following a normal distribution.  The 
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Word2vec model that ignores stop words finds slightly more correct mappings when at 
lower values for the similarity score threshold (i.e., below 0.9).  It is understandable 
that ignoring stop words makes little difference if the window size is sufficient, since 
the Word2vec model automatically accounts for the information gain afforded by spe-
cific context words (which should be near zero for stop words).  In both models, the 
number of incorrect mappings increases drastically as the similarity score threshold 
decreases, with the number of correct and incorrect mappings being roughly equal with 
a similarity score threshold of 0.85. 

For our experiments, we use similarity scores of at least 0.69.  This threshold was 
chosen so that the number of mappings would be at least twice the size of the larger of 
the two ontologies (the MeSH ontology contains 11,344 concepts) because a concept 
in the MeSH ontology may map to more than one concept in the smaller OMIM ontol-
ogy (8,064 concepts), but not the other way around.  By comparison, the number of 
potential mappings generated by the other ontology matching systems ranges from 
3,628 to 7,145.  Classifiers trained from the Word2vec similarity scores alone do not 
perform particularly well (Table 2).  Surprisingly, precision was high and recall was 
low, which is the reverse of what we had expected.  For our remaining reported exper-
imental results, we use the model with stop words ignored, representing 25,610 total 
instances (5.6% of which are correct mappings). 

Table 2. The average and standard deviation of the F-measure and corresponding precision and 
recall statistics for each Word2vec word embedding model alone. 

 Precision F-measure Recall 
Word2vec 0.623 ±0.278 0.281 ±0.111 0.190 ±0.082 
Word2vec;  
Stop Words Ignored 0.618 ±0.234 0.301 ±0.099 0.208 ±0.078 

4.2 Ensemble Comparisons 

For our baseline, we first look at each ontology matching system alone, using our en-
semble approach to learn how to distinguish correct from incorrect mappings using only 
the confidence scores produced by each system (Table 3).   

The scores for each individual matching system vary widely, which is not particu-
larly surprising given the relatively small fixed-size folds that are used for training each 
classifier.  In the individual configuration, GOMMA and Falcon-AO perform the best 
on these datasets, with F-measures of 0.590 and 0.546, respectively.  Having identified 
the baseline values for each ontology matching system, we then included the similarity 
scores generated from our Word2vec word embedding matcher when training a new 
ensemble for each of the individual ontology matching systems (Table 3). 

When including the Word2vec similarity scores, we see improved F-measure scores 
across the board and, in general, the standard deviation for each statistic decreases. The 
most significant gains are to the recall of the LogMap and AML systems as well as in 
the precision of LogMap and YAM++.  Interestingly, the recall for YAM++ drops when 
adding Word2vec similarity scores. 
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Table 3. The average and standard deviation of the F-measure and corresponding precision and 
recall statistics for each ontology matching system alone and the difference when combined 

with the Word2vec word embedding matcher. 

 Precision F-measure Recall 
LogMap 0.304 ±0.270 0.260 ±0.269 0.293 ±0.345 
Δ LogMap with Word2vec +0.243 ±0.179 +0.344 ±0.121 +0.477 ±0.226 
AML 0.471 ±0.200 0.436 ±0.165 0.530 ±0.148 
Δ AML with Word2vec +0.131 ±0.123 +0.203 ±0.038 +0.217 ±0.159 
GOMMA 0.460 ±0.158 0.590 ±0.202 0.821 ±0.282 
Δ GOMMA with Word2vec +0.084 ±0.172 +0.038 ±0.124 +0.025 ±0.239 
Falcon-AO 0.500 ±0.122 0.546 ±0.113 0.658 ±0.087 
Δ Falcon-AO with Word2vec +0.039 ±0.179 +0.025 ±0.142 +0.023 ±0.217 
YAM++ 0.340 ±0.242 0.331 ±0.158 0.705 ±0.288 
Δ YAM++ with Word2vec +0.236 ±0.106 +0.249 ±0.083 -0.084 ±0.145 

Finally, we combined all of the ontology matching systems together to compare the 
results both with and without Word2vec, as shown in Table 4.  The F-measure for the 
model trained using the results from all of the ontology matching systems (without 
Word2vec) improves over the classifiers trained on the results of each system alone 
(even if the improvement is only marginal, as in the case of GOMMA).  The only eval-
uation statistics to decrease in the full ensemble configuration are the recall for 
GOMMA and for YAM++. 

Table 4. The average and standard deviation of the F-measure and corresponding precision and 
recall statistics for all of the ontology matching systems combined and when combined with the 

Word2vec word embedding matcher. 

 Precision F-measure Recall 
ALL without Word2vec 0.593 ±0.023 0.593 ±0.061 0.683 ±0.165 
Δ ALL with Word2vec +0.053 ±0.151 +0.040 ±0.082 +0.083 ±0.213 

Word2Vec contributes value beyond the traditional matching systems: including the 
Word2vec similarity scores when training the ensemble model boosts recall, precision, 
and F-measure (the standard deviation across each training fold also increases).  

Interestingly, when comparing the performance of the full ensemble classifier (with 
Word2vec) against the individual matchers each paired with Word2vec, we see that the 
F-measure for both AML and GOMMA does not change significantly when including 
the other systems.  This would seem to indicate that neither GOMMA nor AML, when 
combined with Word2vec, are further improved by adding any of the additional match-
ing systems. However, note that GOMMA produces the highest recall of any combina-
tion evaluated (0.846 ±0.239), whereas the full ensemble and AML (each including 
Word2vec) appear to be more balanced as illustrated by their lower recall and higher 
precision scores.  
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5 Conclusions and Future Work 

In this paper, we have described an ensemble learning approach that augments a col-
lection of ontology matching systems with word embeddings generated from an anno-
tated corpus of relevant scientific literature.  We have shown that, within this ensemble 
approach to ontology matching, the information within word embeddings does contrib-
ute to learning an improved model for identifying correct alignments between two on-
tologies, beyond what state-of-the-art ontology matching systems identify—both indi-
vidually and in combination.  More specifically, the best overall performance (by F-
measure) was found in the combination of word embedding-derived similarity scores 
with either the full ensemble containing all of the matching systems under evaluation 
or the individual AML and GOMMA matching system.  However, each of those con-
figurations differed in precision and recall and, therefore, the needs of any particular 
use case will inform the best configuration for each individual situation. 

There are also several items that remain to be answered by future work as well as by 
our own ongoing research.  First, we are currently analyzing the PubTator corpus to 
extract a list of multi-word expressions—using a novel technique for extracting salient 
variable-length phrases from large text corpora [28]—which we will use in a similar 
approach to preprocess the corpus and, prior to training the word embedding model, 
remove all text that is not among the top expressions in the corpus.  We also see oppor-
tunities to improve upon our ensemble learning approach by providing additional meta-
level features when training our ensemble model, such as binary matcher voting, global 
ontology features, and concept-specific lexical features used by Eckert et al. [12]. 

Repeating our experiments with different ontologies and/or in a different domain 
would help to corroborate our results. Training the relevant Word2vec model, however, 
requires identifying a sufficiently large domain-relevant corpus that is also annotated 
with concepts from those ontologies.  Given a domain-relevant corpus, it may be pos-
sible to use an automated system to automatically detect and annotate concept labels in 
text, as was done by the DNorm disease tagger for the PubTator corpus.   

There is also an opportunity to significantly reduce the processing time needed to 
train a Word2vec model from a given corpus.  We briefly explored using Deeplearn-
ing4j’s support for the Apache Spark cluster-computing framework, but we were una-
ble to fully implement the functionality due to time limitations.  With Spark, Deeplearn-
ing4j can distribute the processing and train models in parallel for individual shards of 
the large corpus before iteratively averaging the parameters into a central model. 

Lastly, in specific regard to manual biocuration and systematic review processes, we 
see an opportunity to exploit additional sources of evidence beyond the resulting anno-
tated corpus.  More specifically, it may be possible to collect incremental pieces of 
feedback from work-centered interfaces over the course of a user’s normal interaction 
during biocuration and annotation tasks—for example, while searching for or disam-
biguating specific concepts for annotating a particular text mention or reference—that 
can be utilized to further improve ontology matching processes.   
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