
Detection of Catchphrases and Precedence in Legal Documents
Yogesh H. Kulkarni

Consultant, RightSteps Consultancy,
Pune, India.

yogeshkulkarni@yahoo.com

Rishabh Patil
Engineer, RightSteps Consultancy,

Pune, India.
rishabh@rightstepsconsultancy.com

Srinivasan Shridharan
Founder, RightSteps Consultancy,

Pune, India.
srini@rightstepsconsultancy.com

ABSTRACT
“Common Law System” practiced in India refers to statute as well
as precedent to form judgments. As number of cases are increasing
rapidly, automation becomes highly desirable. This paper presents
two such systems viz. Automatic Catchphrase Detection and Au-
tomatic Precedence Detection.

Automatic Catchphrase Detection: One of the key require-
ments of such information retrieval system is to pre-populate data-
base of prior cases with catchphrases for better indexing and faster,
relevant retrieval. This paper proposes an automatic catchphrases
prediction for cases for the same. The problem catchphrase detec-
tion has been modeled as “custom named entity recognition (NER)
using conditional randomfields (CRF)”. CRF is trainedwith pairs of
prior cases and their respective catchphrases, the gold standards.
The model is, then used to predict catch-phases of unseen legal
texts. End of the first section demonstrates efficacy of the proposed
system using practical data-set.

Automatic Precedence Detection: Due to thousands of past
cases it becomes tedious and error-prone to find relevant prece-
dent, manually. An automatic precedent retrieval system is the
need of the hour. One of the key requirements of such informa-
tion system is to find cases which could be “similar” to the case in
hand. The “similarity” used in this paper is about citations. The
problem is of predicting prior cases which could potentially be
cited by a particular case text. This paper proposes such associa-
tion system using mixed approaches. It employs rule-based Regu-
lar Expressions based on references to statute and Articles. It finds
cosine similarity between cases using vectors generated by popular
word embedding called doc2vec. It also leverages topic modeling
by finding matches between cases based on the number of com-
mon topic words. End of the second section demonstrates efficacy
of the proposed system by generating cite-able documents from
test data-set.

CCS CONCEPTS
• Information systems→Probabilistic retrievalmodels;Doc-
ument topic models; • Computing methodologies → Infor-
mation extraction;

KEYWORDS
Information Retrieval, Conditional Random Fields, Named Entity
Recognition, Regular Expressions, Word Embedding, Topic Model-
ing, Legal, Word2Vec, Legal, Text Mining, Natural Language Pro-
cessing.

1 INTRODUCTION
Indian judicial system, like many in the other parts of the world, is
based on whats called “Common Law System” in which both, writ-
ten law (called “statutes”) and prior cases (called “precedent”) are
given equal importance while forming the judgment. Such system
brings uniformity of the legal decisions across similar situations.

Court cases, judgments, legal texts are typically long and un-
structured,making it hard to query relevant information from them,
unless someone goes through them manually and vigilantly. Look-
ing at the volume of legal text to be processed, it is desirable to
have automatic system that detect key concepts, catchphrases in
the legal texts.

With number of cases increasing day by day, it has become
humanly impossible to search relevant past cases for a particular
topic. Automatic Precedent Retrieval System (APRS) is the need of
the hour. As more and more cases are coming in the digital form,
text mining has found immense importance for developing APRS.

This paper is divided into two sections. The first dealing with
the task of Automatic Catchphrase Detection and the second one
of Automatic Precedence Detection.

2 AUTOMATIC CATCHPHRASE DETECTION
The aim of this section is to propose automatic catchphrase detection-
prediction system for legal text. It uses training data comprising
of pairs of text and respective catchphrases, the gold standard, pre-
pared manually by legal experts. The proposed system builds prob-
abilistic model based on this training data, which, in turn, can pre-
dict the catchphrases in the unseen legal texts.

The contributions made in this system are as follows:

(1) A novel method to prepare training data needed for CRF.
(2) Feature engineering for better results with CRF

The section has been structured as follows: in the following sec-
tion 3.1 the catchphrases detection task has been described in de-
tails, as definition of the problem. In section 3.2, structure of the
training data has been explained. Next, the proposed system is elab-
orated in Section 3.3. It describes preparation of CRF training data-
set and feature engineering adapted for this custom named entity
recognition (NER) methodology. Section 4 discusses the findings
drawn from this work.

2.1 Task Definition
Catchphrases are short phrases from within the text of the document.
Catchphrases can be extracted by selecting certain portions from the
text of the document[2]. The data-set provided consists of legal texts
and their respective catchphrases, along with test documents for
which the catchphrase needs to be extracted-predicted.

2.2 Data-set
Fire-2017 [2] dataset contains following directories:

(1) Train_docs : contains 100 case statements, case_ < i >
_statement .txt where i = 0 → 99. Sample document looks
like “R.P. Sethi, J. 1. Aggrieved by the determination of an-
nual . . . ultimate result.”.

(2) Train_catches: contains the gold standard catchwords for
each of these 100 case statements, case_ < i > _catchwords .txt
where i = 0 → 99. Sample document looks like “Absence,
Access, Accident, Account, . . .Vehicle, Vehicles”.

(3) Test_docs: contains 300 test case statements, similar to Train_docs,
case_ < i > _statement .txt where i = 100→ 399.

2.3 System Description
2.3.1 Preprocessing. Each of the training statements were tok-

enized into a list. Their Parts-of-Speech (POS) tags were generated
using python nltk [1] library. Another sequence of customNER tag-
ging was made by referring to token list and given catchphrases.
B-LEGAL and I-LEGAL tags were employed for Begin and Inter-
mediate of the catchphrases respectively and O for other tokens.
So training data file looked like:

in IN O
the DT O
year NN O
1987 CD O
and CC O
that IN O
property NN B-LEGAL
had VBD O
extensive JJ O
national JJ B-LEGAL
highway NN I-LEGAL
frontage NN O

Table 1: Training data with primary features

There are 3 columns for each token.

(1) The word itself (e.g. property);
(2) POS associated with the word (e.g. NN);
(3) Custom NER tag (e.g. B-LEGAL);

Each test statement was also tokenized into a list and its POS tags
were generated using nltk [1], so testing data file looked like:

appeals NN
the NNS
high DT
court JJ
accepted NN
the VBD
view DT

Table 2: Testing data with primary feature

There are 2 columns for each token.

(1) The word itself (e.g. appeals);
(2) POS associated with the word (e.g. NN);

2.3.2 Modeling. The problemof detecting catchphraseswasmod-
eled as customized NER. POS and custom NER tagging performed
during pre-processing stage were used to form secondary features.
These were used in building CRF model. CRF++ [5] toolkit was
used. Salient secondary features developed were:

(1) Unigrams:
(a) Previous 3 tokens, current token and next 3 tokens
(b) Previous 3 POS tags, current POS tag and next 3 POS tags

(2) Bigram tokens

CRF model was generated using:

crf_learn template_file train_file model_file

The generatedmodel file was then used to predict from test data:

crf_test −v1 −m model_file test_files

With −v1 option the highest probability is shown as:

Rockwell NNP B B/0.992465
International NNP I I/0.979089
Corp. NNP I I/0.954883
Table 3: Sample results with probabilities

2.3.3 Results. The CRF++ model was used to predict custom
NER tags from the given testing data as:

case_102_statement notification:0.990733,tax:0.7341635
case_103_statement prevention of corruption:0.9988746666666667
case_104_statement natural justice:0.7491485,appeal:0.708494
case_105_statement seniority:0.997623,legislation:0.994512,appointing

Table 4: Submission file

There far less catchphrase words compared to total number of
words in the documents. Thus, accuracy is not a good metrics to
measure the performance of this prediction. “Precision” and “Re-
call” values on the testing data-set came out to be as follows:

Mean Average Precision Overall Recall
0.47923074 0.2476876075

Table 5: Results conveyed by FIRE[2]

3 AUTOMATIC PRECEDENCE DETECTION
Automatic Precedent Retrieval System (APRS) is desirable in such
situation. One of the key functionality necessary in APRS is to find
“similar” cases so that they can be cited or referred from the case
being built. The notion of “similarity” has various connotations. In
the context of the given problem, it is said to be the documents
which share citations. In other words, the task is to find such prior
cases which are potentially cite-able from the case in hand.

Legal texts are typically lengthy and unstructured in nature. It is
challenging to find similarity score among two texts by just count-
ing words or their frequency distributions or such preliminary sta-
tistical measures. Need to embed higher level constructs such as

2

word embedding to introduce semantic similarity as well as higher
level clusters given by Topic Modeling.

The aim of this section is to propose automatic cite-able texts
detection-prediction system for legal texts. It is unsupervised (no
labeled training data) technique comprising of Regular Expressions,
Word2Vec and Topic Modeling. All being employed to give similar-
ity score based on different aspects of the texts. Final rank is arrived
at using weighted sum of the individual scores.

The contributions made in this system are as follows:
(1) Detecting statute andArticles based on Regular Expressions.
(2) Proposing cosine similarity between texts based on vector

generated by Word Embedding (word2vec/doc2vec).
(3) Proposing Document-Topics-Words distribution for all texts

and then scoring similarity based on common topic-words.
The section has been structured as follows: in the following sec-

tion 3.1 the precedence detection task has been described in details,
as definition of the problem. In section 3.2, structure of the training
data has been explained. Next, the proposed system is elaborated
in section 3.3. It describes ranking method based on weighted-sum
of scores from individual methods. Section 4 discusses the findings
drawn from this work.

3.1 Task Definition
Legal cases typically cite statute, Articles and previous cases rele-
vant to them. Thus, it is necessary to form association or similarity
between documents based on citations, so that it can be leveraged
for Precedent retrieval. Given sets of current and prior cases, the
task is: For each document in the first set, the participants are to form
a list of documents from the second set in a way that the cited prior
cases are ranked higher than the other (not cited) documents.[2]

3.2 Data-set
Fire-2017 [2] data-set contains following directories:

(1) Current cases: A set of cases for which the prior cases have
to be retrieved, current_case<i > .txt where i = 0001 →
0200. Sample document looks like “**Judgment** IN THE
SUPREME COURT OF INDIA.. . . ”.

(2) Prior cases: contains prior cases that were actually cited in
the case decision along with other (not cited) documents,
prior_case_ < i > .txt where i = 0001 → 2000. Sample
document looks like “ 551; AIR 1996 SC 463; 1995 (6) SCC
315; 1995 (7) JT 225; 1995 (5) SCALE 690 (11 October 1995)
JEEVAN REDDY, B.P. (J) JEEVAN REDDY, . . . the assessee.
No costs”.

3.3 System Description
The proposedAPRS solution uses the following 3 distinct approaches
to determine similarity. The final similarity score is computed as a
weighed average of the scores generated by these 3 approaches.

3.3.1 Regular Expressions based. Cases refer to statue in the
form of legal Articles, such as Article 270, 370, etc. Such refer-
ences can be extracted using Regular Expressions. In this system,
patterns like r ' article (\ d+)' are used for both, current as well
as prior cases. For a current case, all the prior cases are collected
which have same Articles.

3.3.2 Topic Modeling based. Basic premise of this approach is
that if most of the topics extracted from documents match then
they are similar or cite-able. In this system, Document-Topics-Words
distribution is generated by Latent Dirichlet Allocation (LDA) algo-
rithm in gensim library[4]. Score of similarity is calculated based
on ratio of matching topic-words to the total.

3.3.3 Doc2Vec Similarity based. Word2vec has emerged one of
the most popular vectorization based on semantic similarity [3].
Process to generate document vectors (based on word2vec) was:

(1) Got every case as cleaned text, split it to form list of word-
s/tokens, for both, current and prior cases.

(2) Created gensim TaggedDocument for each case text, giving
filename as tag.

(3) AMap of tag to the content i.e. word-list for each cases were
generated and saved for reuse.

(4) LDA model was built and saved. It was used to generate
document vectors for both current and prior cases.

A similarity matrix was generated where current cases are rows
and prior cases as columns with values as cosine similarity be-
tween document vectors of the current-prior case pair (row-column).
The values act as score for this particular approach.

3.3.4 Results. Each current-prior case pair has a final score based
on weighted sum of scores from individual approaches mentioned
above. Due to lack of labeled training data, the weights were de-
cided heuristically. The resultswere presented as sorted list of prior
case for each current case, and looked as follows:

Current case Prior case Rank Score
current_case_0001 prior_case_0780 0 1.783
current_case_0001 prior_case_1256 1 1.743
current_case_0001 prior_case_0838 2 1.727
. . .
current_case_0116 prior_case_1533 0 1.003
current_case_0116 prior_case_0411 1 0.929
current_case_0116 prior_case_1600 2 0.877
. . .

Table 6: Submission file

Results on the test cases were evaluated by Fire-2017[2] and con-
veyed as below:

Mean Average Precision Mean Reciprocal Rank
0.2017 0.45

Table 7: Results conveyed by FIRE[2]

4 CONCLUSIONS
This paper has been divided into two parts, elaborating two differ-
ent tasks for legal documents.

The first was of Catchphrase detection which started with a
brief overview of Automatic Catchphrases Prediction System to
extract catchphrases from legal texts. Accuracy was impacted as
some of the training samples had very few catchphrases. Various
approaches/tool-kits were tried but it was found that the problem
of catchphrase detection needs to be modeled as sequential proba-
bilistic labeling problem rather than a simple linear classification

3

problem. CRF algorithm was chosen with primary features as POS
and custom NER tags and numerous secondary features represent-
ing the context. As a future work, if sufficient gold standard data
is available, one can explore more sophisticated techniques such
as Long Short Term Memory networks (LSTM), where custom fea-
tures need not be provided but get generated internally.

In the second part, a brief overview of Automatic Citation Pre-
diction System was presented to discover cite-able prior cases. It
was found that the problem of citation detection needs to be mod-
eled as a mixed approach, employing rule based, machine learning
and deep learning based approaches rather than a simple cosine
similarity of tf-idf (term frequency inverse document frequency)
approach. Weighted sum of scores by individual approaches was
done. A threshold cut-off was decided to prune out irrelevant cite-
able prior cases. Current cases and their predicted cite-able prior
cases were presented along with corresponding ranking scores.

VITAE
YogeshH.Kulkarniworks asData Science Consultant and Trainer.
Profile: https://www.linkedin.com/in/yogeshkulkarni/
RishabhPatilworks asData Engineer. His profile is at https://www.
linkedin.com/in/rishabh-patil-256a25124/.
Srinivasan Shridharan is Data Scientist and entrepreneur. Pro-
file: https://www.linkedin.com/in/srinivasan-shridharan-08a86a6/.

ACKNOWLEDGMENTS
Wish to thank Ankur Parikh, a keen researcher of Deep Learning
and NLP, for discussions.

REFERENCES
[1] Edward Loper Bird, Steven and Ewan Klein. 2009. Natural Language Toolkit. (Sep

2009). http://www.nltk.org/
[2] IRSI. 2017. Forum for Information Retrieval Evaluation. Information Re-

trival Society of India. (Dec 2017). https://sites.google.com/view/fire2017irled/
track-description

[3] Chris McCormick. 2016. Word2Vec Tutorial - The Skip-Gram Model. (Apr 2016).
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

[4] Radim Rehurek. 2017. Gensim: Topic Modeling for humans. (Sep 2017). https:
//radimrehurek.com/gensim/

[5] Taku. 2017. CRF++: Yet Another CRF toolkit. (Sep 2017). https://taku910.github.
io/crfpp/

4

http://www.nltk.org/
https://sites.google.com/view/fire2017irled/track-description
https://sites.google.com/view/fire2017irled/track-description
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://taku910.github.io/crfpp/
https://taku910.github.io/crfpp/

	Abstract
	1 Introduction
	2 Automatic Catchphrase Detection
	2.1 Task Definition
	2.2 Data-set
	2.3 System Description

	3 Automatic Precedence Detection
	3.1 Task Definition
	3.2 Data-set
	3.3 System Description

	4 Conclusions
	Acknowledgments
	References

