
Trusted Volunteer Computing

Michele Ianni1 and Elio Masciari2

1 DIMES, Università della Calabria mianni@dimes.unical.it
2 ICAR CNR elio.masciari@icar.cnr.it

Abstract. Technology becomes more and more advanced everyday, both

from the software and from the hardware perspective. Brand new devices,

more powerful and capable of the generation preceding them, are steadily

released. Everybody owns laptops, smartphones and many other devices

with great compute capabilities, able to easily solve problems a few years

ago considered almost impossible. These devices are, however, most of

the time underused, resulting in an incredible waste of computational

resources. The needs of professional people and scientists are evolving

too, alongside the advances of technology. In many fields, from financial

and biomedical simulation to insurance predictions, from 3D rendering

to mathematical computations etc huge compute capabilities are still

required. Despite the always growing presence of powerful devices and

their increasingly cheap prices, in many situations using only our own

devices is not enough. The contrast between underused devices and needs

of computational resources led to the birth of a new approach: volunteer

computing. This approach brings a user to be part of a network, sharing

his idle CPU (or GPU) cycles in order to solve a subtask of a problem

thus contributing, along with many other users, to the solution of a big-

ger task. In a very large number of cases, however, volunteer computing

needs to tackle some serious security concerns. Many tasks, in fact, deal

with sensitive information whose disclosure, even in a minimal part, must

be avoided. For this reason still many problems are usually not handled

by collaborative networks, since it is not possible, in many cases, to hide

confidential data from inputs of every subtask. In this paper we present

a way to solve the problem described. Through the use of trusted com-

puting we are able to manage complex problems in a distributed network

of volunteer computing devices without the risks related to the spread

of sensitive data.

1 Introduction

Nowadays we are constantly surrounded by an always growing number of so

called smart devices [18]. Everything we use seems to need great compute ca-

pabilities and Internet connection to work properly. Many everyday life objects,

from fridges to cars, from light bulbs to toasters are integrating computers and

providing functionality that several years ago where almost unthinkable. We are



facing a new era, the era of Internet of Things [15], everything is always con-

nected thus accessible from everywhere. The object that best represents this

revolution is the smartphone. Everybody owns at least one of them, they are

always connected and capable to perform tasks with remarkable performances.

The hardware vendors are unceasingly releasing new generations every season,

with new devices that easily overwhelm their predecessors, both for compute

capabilities and new functionality added. The industry of personal computers

follows an analogous rhythm, releasing more and more powerful devices with in-

credible constancy. These devices are becoming affordable and everybody, due to

the hard rules imposed by our consumer society, have an induced need not only

to buy them, but even upgrading to newer models as soon as the pressure related

to the menace of losing their social position becomes unbearable. However this

then begs the question: do we really need all those compute capabilities? Or at

least, do we need them continuously? The answer is pretty obvious: our devices

are, most of the time, underused. The average user does not take advantage of

all the power embedded in his devices and the waste of resources is huge. On the

other side there exist a lot of people who really need a huge amount of compute

capabilities, that goes far beyond the considerable power of a brand new laptop.

Computer scientists, 3D artists, financial analysts to cite a few, most of the time

are involved in problems that require a lot of time to be solved and they are

forced to spend time and money to obtain results. From this contrast between

compute resources need and waste a new paradigm has born: volunteer com-

puting. It is a type of distributed computing in which a user is part of a larger

network. He donates idle CPU (or GPU) cycles, or even storage sometimes, in

order to contribute to one or more ”projects”. Volunteer computing frameworks

usually have a master/slave structure. When a problem (called job) have to be

solved, one server is responsible of splitting the job in subtasks which are dis-

tributed across the nodes of the network (the volunteer computers). A client

application runs on the volunteer’s computer and receives the subtask from the

remote server. After completing the assigned subtask the result is sent back to

the server who merges the partial results to provide a solution for the initial

job. In many cases the system keeps track of the volunteers work in order to

implement a reward policy. Volunteer computing is a well known paradigm that

spans across many different application areas. The first volunteer computing

project was the Great Internet Mersenne Prime Search [23], which was started

in January 1996. From that date many other projects arose [20, 19, 1, 9]. A

special mention, due to the several hundred thousand volunteers involved, goes

to SETI@home project [7], whose purpose is to analyze radio signals, searching

for signs of extraterrestrial intelligence, and Folding@home [17] which aims to

determine the mechanisms of protein folding, a subject of significant academic

interest with major implications for medical research into many types of dis-

ease. One of the biggest steps in volunteer computing history has been made in

2002 with the born of BOINC [4], the Berkeley Open Infrastructure for Network



Computing. It is a project, founded at University of California, Berkeley Space

Sciences Laboratory, whose aim is to provide a complete middleware system for

volunteer computing. BOINC includes everything needed to start a project using

volunteer computing, from the client application to the server software.

Although it is easy, thanks to the middleware available, to start a new project,

volunteer computing is still not expressing its full potential. This is because

this computing paradigm is based on the distribution of problem inputs among

users and there is a serious problem related to data distribution: privacy. Many

projects perfectly suitable for volunteer computing: from financial simulations

to insurance predictions, from health databases scraping or biomedical modeling

to marketing analysis and so forth most of the time deal with sensitive infor-

mation that must remain secret. In many cases the sensitive data is so tightly

connected to the rest of the information that is impossible to hide the former

without altering significantly the result of the computation. Most of the times it

is not possible to distribute even a small subset (the input for a subtask) of the

data, because sensitive information can be inferred by its observation or because

the solution of the subtask itself cannot be computed without the rest of the

dataset.

Example: In our past experience with distributed computing we faced the prob-

lem of distributed rendering. In order to solve the rendering equation a ray trac-

ing algorithm (or variants of it) is used [13]. The algorithm correctly computes

the value of luminosity of every pixel in the scene by taking into account all

the objects and lights that can affect the color of the given pixel. In distributed

rendering, even if the rendering of a single tile (a subset of the entire scene) is

requested to a volunteer, he needs to know all the information present in the en-

tire scene (objects, lights) in order to solve the rendering problem for the pixels

in the tile. It is easy to figure many cases in which the scene to be rendered must

be kept secret, we just need to think about the work of architects, engineers,

graphics, 3D artists and so on.

All these security concerns are crucially narrowing the potential of volunteer

computing. The current middleware projects, in fact, are not suitable to deal

properly with sensitive data. Our contribution in this paper is to introduce the

use of trusted computing to extend the power of volunteer computing by mak-

ing possible to deal with sensitive data in a safe way. The proposed solution

described in this paper is related to the use of Intel R© Software Guard Exten-

sions [3], but the same concepts are applicable for other environments (e.g. ARM

TrustZone [2]) with slight modifications on which we are currently working on.

2 Intel R© Software Guard Extensions

It is very common to deal with software applications that need to work with

sensitive data. Operating system’s security policy based on permissions are of-

ten not enough to protect secrets. Despite they prevent a user from accessing



other user’s files they cannot avoid the access to the sensitive information to

processes running with higher privileges, including the operating system itself

and a plethora of various types of malicious software. To protect the secret data

even in the presence of privileged malware, Intel R© designed Software Guard Ex-

tensions (SGX): a security technology introduced in autumn 2015 in their CPUs

based on the Skylake x86 microarchitecture. SGX is a set of CPU instructions

that permit the allocation of private regions of usermode address space, called

enclaves by leveraging trusted hardware. These regions are protected from pro-

cesses running even at higher privilege levels and provide confidentiality and

integrity [12]. Several protection are guaranteed by Intel R© SGX:

– Enclave memory is encrypted and cannot be read or written from outside

even by processes with high privileges and independently by the CPU mode.

The encryption key, stored in an inaccessible region within the CPU, is

changed every power cycle.

– The only way to enter in an enclave is through a dedicated instruction, there

is no other way to jump inside an enclave.

– Enclaves cannot be debugged by software or hardware debuggers.

– Data within enclaves can only by accessed by code in the same enclave.

One of the main drawbacks of this technology is that the applications run-

ning in SGX enclaves are severely restricted compared to normal programs. The

Trusted Computing Base (TCB) of SGX is minimal, it consists of the CPU (hard-

ware logic, microcode, registers, cache memory) and the software components

used for attestation (see section 4). More in detail the operating system is not

part of the TCB, this means that is not possible to use kernel services or system

calls directly. This is because the operating system is untrusted and a syscall

involves the transfer of control flow from trusted code running in an enclave to

untrusted OS code. The latter could be a malicious kernel exposing crafted sys-

tem calls capable of compromising the security of the enclave. As a workaround

SGX includes instructions, called OCALLs, that offer the opportunity to tem-

porarily exit the enclave and calling untrusted code to perform general purpose

operations like system calls, I/O etc. Several studies (Graphene [14], SCONE [8],

Haven [10], Panoply [22]) have been released on this topic and many of them

aim at overcoming the burden of switching from enclaves to untrusted OS. The

solutions proposed in those projects are based on a syscall forwarding mecha-

nism that handle the calls to system services inside the enclave and execute them

outside taking care of switch between two different context and the transfer of

the data needed to perform the operation requested. This allows the shielded

execution, within a SGX enclave, of unmodified legacy applications written for

traditional operating systems. In our paper we are assuming that, if required by

the algorithm that runs inside the enclave and handles the sensitive data, one

of this syscall forwarding mechanism is implemented and we can run arbitrary

code within the enclave.



3 Trusted volunteer computing system architecture

The proposed architecture is based on a Client-Server model. The clients of the

system are all the users sharing their compute capabilities in the network. Their

work is coordinated by one or more servers which are in charge of splitting the

task to be executed in subtasks and distributing them among the clients. Usually

in volunteer computing networks the server is responsible of many other actions:

collecting the results from the clients and merging them to obtain the result of

the main task, verifying the correctness of the results provided, enforcing client

management policies based on several factors, such that performances or relia-

bility, of the volunteer devices, just to cite a few. All these server duties are well

known topics fully covered in literature [21, 6, 5].

The volunteers of the network, who wish to share their computational resources,

can achieve this goal by using a client application on their devices. We focus

our attention on protecting the client application, since they tend to run on

platforms that may not have the same degree of control and security as servers.

Nevertheless, the techniques described here can also be applied in order to pro-

tect assets on the server.

The client application consists of two different parts: a trusted and an untrusted

module. The trusted part of the application runs within the SGX enclave and

handles the sensitive data. It is kept as small as possible, it is composed only

by the algorithms which need to deal directly with the secret assets. The un-

trusted part of the application is made up of all the rest: graphical user interface,

libraries and all the functionality needed to communicate with the rest of the

network performing tasks such as signaling presence in the network, handling

connections, managing the amount and the type of the resources shared with

the volunteer network. The trusted and untrusted components of the client ap-

plication communicate to each other through well-defined entry-points. These

are designed to ensure that no secrets are allowed to leak out from the enclave.

The integrity and confidentiality of the data inside the enclave is guaranteed by

the the hardware/software protections of SGX.

The subtasks to be resolved are sent by the remote server to the client appli-

cation. The sensitive data is encrypted (see section 4) and is forwarded by the

untrusted part of the client application to the trusted part. After the completion

of the subtask the results, encrypted, are sent back to the remote server which

merges them with the other results coming from other clients to finally get the

result of the main task.

4 Provisioning and attestation issues

Since our goal is to provide a way to deal with sensitive information in volun-

teer computing networks, we need to tackle some security issues related to the



transfer of this data between server and client. Our threat model is based on the

assumption that every client on the network is untrusted, thus we need to provide

a way to secure the communication among all the parties involved. The SGX

enclave must have the assurance of communicating with a legit remote server

and vice versa (this process is called attestation). They also need to establish a

secure channel to talk each other and to transfer the sensitive data (provisioning

phase). To address the issues described we make use of the services provided by

Intel R© SGX [3, 16]. On the client machine is running, in fact, the SGX Platform

Software (PSW) that includes also a Quoting Enclave containing an asymmetric

attestation key representing the SGX TCB.

In response to the first request of connection from a client application to the re-

mote server the latter will send to the client an attestation request containing a

nonce for liveness purposes. This request aim at verifying that the software runs

on a legit SGX enclave as well as ensuring the validity of the enclave and collect-

ing information about the identity of software being attested. It is the untrusted

part of the client, as explained in section 3 that handles the connection with

the remote server. This part of the application receives the attestation request

and forwards it to the trusted part, running inside the enclave. At this point

the trusted part sends a local attestation to the Quoting Enclave through the

untrusted part. The local attestation consists of a report structure along with

a manifest that include the nonce and a temporary public key CP that is used

later by the remote server. The Quoting Enclave creates a remote-attestation

by verifying, and signing (with the asymmetric attestation key) the local one.

The result of this process is called Quote and is sent (always through the un-

trusted part) to the remote server. A verification server is used by the remote

server to verify the received Quote. To avoid some privacy concerns related to

this scheme [24] Intel R© adopts an extension called Intel R© Enhanced Privacy ID

(EPID) [11]. EPID signatures are anonymous and thanks to a group signature

scheme, nobody can uniquely identify the platform where the application is run-

ning by looking at objects signed by the application itself. At the end of the

attestation process the remote server is sure to communicate with a legit secure

enclave. The entire client application running alongside the secure enclave is now

part of the volunteer computing network and it is ready to share its computa-

tional resources to solve the subtasks provided by the remote server. It is still

mandatory, however, to ensure that the communication between client and server

is conducted through a secure channel and is necessary to create this channel

along the remote attestation process to avoid the provisioning of sensitive data

to not attested enclaves. To create this channel the temporary public key CP ,

created by the trusted enclave and delivered to the server inside the Quote is

used. The remote server generates an encryption key E, encrypts it with CP and

sends the result of this operation to the application. Only the trusted part of

the client, running within the enclave, knows the private key associated with CP

and can obtain the encryption key E. The sensitive data, as well as the results of



the subtasks, can be encrypted using E, permitting the secure communication

between the client and the remote server.

5 Conclusions and future work

In this paper we described a new way to further enhance the power of volun-

teer computing networks. By the leverage of Intel R© Software Guard Extension

we provided a way to build trusted volunteer computing systems without the

problems related to the spread of secret information. Using the system proposed

it is possible to use computational resources of untrusted devices for solving

tasks that deal with sensitive data. As a future development of the approach

described we are working on extending these ideas to other Trusted Execution

Environments (e.g. ARM TrustZone), since they are integrated in most of the

new smartphones.

References

[1] Albert D Alexandrov et al. “Superweb: Towards a global web-based par-

allel computing infrastructure”. In: Parallel Processing Symposium, 1997.

Proceedings., 11th International. IEEE. 1997, pp. 100–106.

[2] Tiago Alves, Don Felton, et al. “Trustzone: Integrated hardware and soft-

ware security”. In: ARM white paper 3.4 (2004), pp. 18–24.

[3] Ittai Anati et al. “Innovative technology for CPU based attestation and

sealing”. In: Proceedings of the 2nd international workshop on hardware

and architectural support for security and privacy. Vol. 13. 2013.

[4] David P Anderson. “Boinc: A system for public-resource computing and

storage”. In: Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-

national Workshop on. IEEE. 2004, pp. 4–10.

[5] David P Anderson, Carl Christensen, and Bruce Allen. “Designing a run-

time system for volunteer computing”. In: SC 2006 Conference, Proceed-

ings of the ACM/IEEE. IEEE. 2006, pp. 33–33.

[6] David P Anderson, Eric Korpela, and Rom Walton. “High-performance

task distribution for volunteer computing”. In: e-Science and Grid Com-

puting, 2005. First International Conference on. IEEE. 2005, 8–pp.

[7] David P Anderson et al. “SETI@ home: an experiment in public-resource

computing”. In: Communications of the ACM 45.11 (2002), pp. 56–61.

[8] Sergei Arnautov et al. “SCONE: Secure linux containers with Intel SGX”.

In: 12th USENIX Symp. Operating Systems Design and Implementation.

2016.

[9] Arash Baratloo et al. “Charlotte: Metacomputing on the web”. In: Future

Generation Computer Systems 15.5 (1999), pp. 559–570.



[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding appli-

cations from an untrusted cloud with haven”. In: ACM Transactions on

Computer Systems (TOCS) 33.3 (2015), p. 8.

[11] Ernie Brickell and Jiangtao Li. “Enhanced privacy ID from bilinear pairing

for hardware authentication and attestation”. In: International Journal of

Information Privacy, Security and Integrity 2 1.1 (2011), pp. 3–33.

[12] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR

Cryptology ePrint Archive 2016 (2016), p. 86.

[13] Andrew S Glassner. An introduction to ray tracing. Elsevier, 1989.

[14] Graphene Library OS for Intel SGX. https://github.com/oscarlab/

graphene/wiki/Introduction-to-Intel-SGX-Support. Accessed: 2017-

03-12.

[15] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architec-

tural elements, and future directions”. In: Future generation computer sys-

tems 29.7 (2013), pp. 1645–1660.

[16] Simon Johnson et al. “Intel software guard extensions: EPID provisioning

and attestation services”. In: White Paper (2016).

[17] Stefan M Larson et al. “Folding@ Home and Genome@ Home: Using dis-

tributed computing to tackle previously intractable problems in computa-

tional biology”. In: arXiv preprint arXiv:0901.0866 (2009).

[18] Stefan Poslad. Ubiquitous computing: smart devices, environments and in-

teractions. John Wiley & Sons, 2011.

[19] Ori Regev and Noam Nisan. “The popcorn market. online markets for com-

putational resources”. In: Decision Support Systems 28.1 (2000), pp. 177–

189.

[20] Luis FG Sarmenta. “Bayanihan: Web-based volunteer computing using

Java”. In: International Conference on Worldwide Computing and Its Ap-

plications. Springer. 1998, pp. 444–461.

[21] Luis FG Sarmenta. “Volunteer computing”. PhD thesis. Massachusetts

Institute of Technology, 2001.

[22] Shweta Shinde et al. “Panoply: Low-TCB Linux Applications With SGX

Enclaves”. In: 24th Annual Network and Distributed System Security Sym-

posium, NDSS 2017, San Diego, California, USA, February 26-March 1,

2017. 2017.

[23] George Woltman, Scott Kurowski, et al. “The great internet mersenne

prime search”. In: Online],(1997, March 23) available http://www. mersenne.

org (2004).

[24] Working Document on Trusted Computing Platforms and in particular on

the work done by the Trusting Computing Group (TCG group). Article 29

Data Protection Working Party. European Commission, Brussels, 2004.

https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support
https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support

	Trusted Volunteer Computing

