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Abstract. The Deep Web is constituted by dynamically generated pages,
usually requested through a HTML form; it is notoriously difficult to
query and to search, as its pages are obviously non-indexable. More re-
cently, Deep Web data have been made accessible through RESTful ser-
vices that return information usually structured in JSON or XML format.
We propose techniques to make the Deep Web available in the Linked
Data Cloud, and we study algorithms for processing queries, posed in
a transparent way on the Linked Data, on the underlying Deep Web
sources. The tool we developed mainly focuses on exposing RESTful
services as Linked Data datasets thus allowing a smoother semantic in-
tegration of different structured information sources in a global data-
and knowledge-space.

1 Introduction

Slowly but steadily, the Web has moved from a huge collection of unstructured
textual documents to a gigantic repository of structured data. At a first stage,
the original static Web pages have been replaced by dynamic ones fed by infor-
mation coming from Deep web data sources which cannot be directly queried.
Then we assisted to the flourishing of new services that expose structured data
by exploiting standard Web technologies thus making possible their composition
for the creation of new integrated applications (mash-ups [10]) and knowledge
spaces. Among the various technological proposals and approaches for data pub-
lication on the Web which survived to the present days, the two most relevant
ones are for sure: RESTful services [5] and Linked Data (LD) [2]. The former is
a very agile way of exposing data in a request/response way over HTTP and has
been widely adopted by programmers thanks to its easiness of implementation.
Data are usually returned in XML or JSON documents after the invocation of a
service. Among the issues related to pure a RESTful approach we may mention:

– no explicit semantics attached to the returned data1;

1 Actually, with JSON-LD this issue could be solved but this format is not widely
adopted yet.



– lack of a unique query language to invoke services. Each service exposes its
own API which can considerably differ from each other even when they refer
to the same knowledge domain;

– manual integration of different data sources.

On the other side, the Linked Data (LD) approach bases on the idea that data
can be delivered on the Web together with their explicit semantics by means of
common vocabularies. Following the Linked Data principles2, datasets should be
accessible through a SPARQL endpoint. Moreover, by using federated queries3

an agent is able to automatically integrate data coming from different sources
thus creating a data space at a Web scale. Unfortunately, also the Linked Data
approach comes with its drawbacks:

– the effort in setting up a SPARQL endpoint is felt more difficult than a
RESTful approach from service providers. Nowadays, it is much easier to
find a JSON-based service than a LD-based one.

– programmers are more used to JSON services than to SPARQL endpoints;
– service providers are usually not interested in exposing all the data they have

but only a small portion.

Based on the above points we can see that while from the practical point of
view the champion is the RESTful approach, if we look at the knowledge point
of view Linked Data represents a much better alternative. This was the leading
observation that inspired us in the development of PoLDo. With PoLDo we can
expose an already existing RESTful service, even a third-party one, as a SPARQL
endpoint thus making it part of the Linked Data cloud. Thanks to a configurable
query planner, PoLDo is able to break down a SPARQL query into a sequence of
RESTful service invocations. Starting from the retrieved data it then builds the
answer to the original SPARQL query.

The remainder of this paper is structured as follows. In the next section we
report on some relevant related work on accessing the Deep Web while in Section
3 we describe PoLDo together with an explanatory example. Conclusion closes
the paper.

2 Related Work

The term Deep Web (sometimes also called Hidden Web) [9,8,3,4] refers to the
data content that is created dynamically as the result of a specific search on the
web. For example, when we query a Yellow Pages website, the generated output
is the result of a query posed on an underlying database, and cannot be indexed
by a search engine. In this respect, the Deep Web content resides outside web
pages, and is only accessible through interaction with the web site – typically
via HTML forms.

2 https://www.w3.org/DesignIssues/LinkedData.html
3 https://www.w3.org/TR/sparql11-federated-query/



As an example of Deep Web source, the whitepages.com website presents a
form where, when searching by name, the last name is a required field. In order
to look for a person named Joseph Noto, living in New Jersey, we would fill
the form which in relational terms, corresponds to issuing a SQL query to the
underling database. Therefore, a Deep Web source can be naturally modeled as a
relational table (or a set of relational tables) where not all queries are allowed; in
fact, access limitations exist on such relations. In particular, they can be queried
only according to so-called access patterns, each of which enforces the selection
on some of the attributes (which corresponds to filling the corresponding field
in the form with a value). It is believed that the size of the Deep Web is several
orders of magnitude larger [7] than that of the so-called Surface Web, i.e., the
web that is accessible and indexable by search engines. The information stored in
the Deep Web is invaluable, but at the same time hard to collect automatically
on a reasonably large scale.

Two main approaches for accessing the Deep Web exist [8]. In the vertical
data integration approach, each Deep Web site is a data source, and sources are
integrated and unified by a global schema representing the domain of interest.
Normally, in this approach one deals with a relatively small number of sources,
storing data related to a single domain of interest. In the Surfacing approach,
instead, answers are pre-computed from Deep Web sources by posing suitable
queries, and then the results are indexed as normal static pages in a search en-
gine. Accessing the Deep Web requires a variety of techniques and tools from
several areas of computer science. In this paper we survey some of the most
relevant approaches to querying and searching the Deep Web. One important
problem in accessing the Deep Web is the automatic understanding of the se-
mantics of the so-called query interfaces, that is, the forms that provide access to
Deep Web sources. Several approaches have been developed, based on heuristics
or learning from samples; some techniques involve domain-specific knowledge en-
coded in ontological rules. Processing structured query over Deep Web sources
is the key problem in the integration of such sources. Interestingly, when Deep
Web sources are modeled, as mentioned, as relations with access patterns (i.e.,
having certain attributes that are necessarily to be selected in order to query
the source), answering a simple conjunctive (select-project-join) query on such
sources may require, in the worst case, the evaluation of a recursive Datalog
query. This raises the issue of reducing the number of accesses to sources while
answering a query.

The problem of answering a query over sources with access patterns falls into
the setting of vertical data integration, where a limited number of Deep Web
sources, whose interface is known (having been possibly understood automati-
cally), are queried in a structured way. But if we want to search via keyword
search the Deep Web together with the ordinary, “shallow” Web, we cannot rely
on a set of known sources, and therefore we have to adopt the surfacing approach.
Surfacing the Deep Web poses several challenges because it is not easy to get
a good coverage of the content of a source while at the same time limiting the
number of sampling accesses on it. Keyword search on relational databases has



Fig. 1. A high level view for the architecture of PoLDo

been traditionally studied in several works in the literature (see e.g., [1,6]). It is
interesting to consider keyword search also on Deep Web sources, in the context
of vertical Deep Web integration. In this case, a suitable notion of answer to
keyword queries is needed.

3 PoLDo

The high level architecture of PoLDo is represented in Fig. 1. The engine is
responsible of getting the SPARQL query and breaking it down to a sequence of
RESTful calls to a remote service. The transformation is made possible thanks
to a mapping file that maps Linked Data URIs to the elements of the signature
of the remote call. While querying the remote service, PoLDo feeds an RDF local
triple store (Jena Fuseki in its current implementation) which is in charge of
processing the actual SPARQL query. More in details, we have:

PoLDo engine It receives the SPARQL query and extracts all the constants from
the graph template in the WHERE clause. Then, by using the algorithm in
[3], it uses the constants to query the external service and to get the data
that will be used to create a local RDF representation of the data space.
Thanks to the information encoded in the PoLDo mapping file, the engine is
able to feed a local repository of RDF triples.

Jena Fuseki The triple store is used to save a LD version of the data which
are incrementally retrieved from the RESTful service. The availability of a
third-party triple store makes PoLDo able to support the full specification of
SPARQL query language. Furthermore, it is able to return the data in all
the formats supported by Jena Fuseki.

PoLDo mapping file This file contains information about how to map the URIs
of the SPARQL query to inputs and outputs of the service. Moreover, it also
describes the entities represented by inputs and outputs as well as their
mutual relations.



3.1 PoLDo mapping language

PoLDo mapping file allows the designer to create a link between URIs contained
in the SPARQL queries processed by the engine and, at the same time, to en-
rich their semantics by explicitly adding information about the corresponding
OWL class or property that can be defined also in an external vocabulary (e.g.
DBpedia). Mapping rules can also be created to describe RDF triples containing
information on how to relate values of an input parameter with the outputs of
the service invocation. All the rules contained in the PoLDo mapping file are, in
turn, represented as RDF triples which refers to a corresponding RDF-S ontol-
ogy. The main element of the PoLDo ontology is the class poldo:Service (see
Fig. 2). It describes each service in terms of its base URL (poldo:hasUrl), the

Fig. 2. The class poldo:Service in the PoLDo mapping ontology.

HTTP method GET or POST (poldo:hasMethod), the language of the answer
to the service call, e.g. XML or JSON (poldo:hasLanguage) and its inputs and
outputs (poldo:hasInput and poldo:hasOutput). The ontological description
of poldo:Input and poldo:Output are represented respectively in Fig. 3 and
Fig. 4. As we can see, both inputs and outputs of a services can be mapped
as instances of a class or as a property. Indeed, especially when the type of
the corresponding value is different from a string, we may have cases when the
parameter is better represented by a property rather than the subject or ob-
ject of a triple. We may think at a geographical service returning places based
on their coordinates. In this case, coordinates are better mapped to the prop-
erties geo:lat and geo:long of the Basic Geo vocabulary4. The modeling of
poldo:Input and poldo:Output classes try to catch all possible cases in the
description of the inputs and outputs of a service. For instance, the parame-
ter poldo:hasFixedValue is used when we need a key to access the RESTful
service. As for poldo:Output we just highlight that it possible to model the

4 https://www.w3.org/2003/01/geo/



Fig. 3. The class poldo:Input in the PoLDo mapping ontology.

Fig. 4. The class poldo:Output in the PoLDo mapping ontology.

situation when the service returns a single value or a list of values by means of
the poldo:hasStructure and rdf:li statements.

3.2 PoLDo engine

The main component of PoLDo is its query planner implemented in the PoLDo

engine module. It uses the algorithm presented in [3] to iteratively query the
RESTful services and build a local cache containing the RDF version of the
data whose transformation follows the rules available in the PoLDo mapping file.

For a better understanding of the overall approach, we now describe how
PoLDo engine works by means of an example. Suppose we have two services
related to music events in a city as in the following.

service input output
http://example.com/api/returnSinger city title, singer
http://example.com/api/returnPlace singer city, country



Given a city, the first service returns the title of the events in that city together
with the performing artist. The second service returns the birth place of an
artist. The corresponding mapping file will then contain the following triples:

1 :returnArtist a poldo:Service ;

2 poldo:hasURL ’’http://example.com/api/returnSinger’’ ;

3 poldo:hasLanguage ’’JSON’’ ;

4 poldo:hasMethod ’’GET’’ ;

5 poldo:hasInput :city ;

6 poldo:hasOutput :title ;

7 poldo:hasOutput :singer .

...

8 :returnPlace a poldo:Service ;

9 poldo:hasURL ’’http://example.com/api/returnPlace’’ ;

10 poldo:hasLanguage ’’JSON’’ ;

11 poldo:hasMethod ’’GET’’ ;

12 poldo:hasInput :singer ;

13 poldo:hasOutput :city ;

14 poldo:hasOutput :country ;

...

15 :singer a dbo:Person .

16 :title a dbo:Event .

17 :city a dbo:Place .

18 :country a dbo:Country .

19 :singer dbo:birthPalce :city, :country .

20 :title dbo:artist :singer;

Now suppose we want to know the name of singers born in a specific city. The
corresponding SPARQL query is then:

SELECT ?singer

WHERE {

?singer dbo:birthPlace ?city .

?city rdfs:label ’’modena’’ .

?singer a dbo:Person .

?city a dbo:Place .

}

LIMIT 1

The only entry points PoLDo engine has to query the services are constant symbols,
in our case modena whose corresponding entity is declared to be a dbo:Place in the
SPARQL query. By looking at the mapping file, the engine discovers it can query the
service :returnArtist. Then, by using the outputs (constants) of the first service,
the engine may query :returnPlace and, if lucky, it can get that one of the artists
returned by :returnArtist was born in modena. If this is not the case, the engine uses
the constants returned by :returnPlace to query again :returnArtist thus continuing
its search of the answer for the original SPARQL query. It is worth noticing that while
iteratively querying the services, PoLDo builds RDF triples by creating fresh entities
corresponding to the arriving constants and by enriching and connecting them thanks
to the rules states in rows 15-20 of the above mapping file. All the triples are saved in
the triple store which is then natively queried by means of the original SPARQL query.



PoLDo engine stops querying the original services in the following cases: (i) the answer
to the query is found; (ii) there are no more fresh constants and then the answer to
the original query can not be found; (iii) the execution time exceeds a timeout set by
the designer.

4 Conclusion

In this paper we presented PoLDo, that acts as a middleware between a RESTful service
and SPARQL endpoint. By means of PoLDo we are allowed to expose the Deep Web
data available via RESTful services as Linked Data that can be easily integrated in the
so called Linked Data Cloud. The tool we developed adopts algorithms and techniques
coming from the Deep Web literature to make possible the composition of services
at a data level. Via a mapping file, PoLDo is able to interpret a SPARQL query in
terms of a sequence of remote calls to external services and to translate the returned
data in a temporary RDF graph which is locally stored in a triple store. The approach
we developed is for sure a step forward the creation of a global, semantics-enabled,
integrated, gigantic data graph as in the original view of the Semantic Web.
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