
A genetic algorithm to discover relaxed
functional dependencies from data

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese

University of Salerno, Department of Computer Science,
via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy

{lcaruccio,deufemia,gpolese}@unisa.it

Abstract. Approximate functional dependencies are used in many emerg-
ing application domains, such as the identification of data inconsistencies
or patterns of semantically related data, query rewriting, and so forth.
They can approximate the canonical definition of functional dependency
(fd) by relaxing on the data comparison (i.e., by considering data similar-
ity rather than equality), on the extent (i.e., by admitting the possibility
that the dependency holds on a subset of data), or both. Approximate
fds are difficult to be identified at design time like it happens with fds.
In this paper, we propose a genetic algorithm to discover approximate
fds from data. An empirical evaluation demonstrates the effectiveness of
the algorithm.

Keywords: Functional Dependency, Genetic Algorithm, Discovery from
data

1 Introduction

In the last decades, functional dependencies have been extended to deal with
new problems, such as data cleansing [2], record matching [9], query rewriting
upon schema evolutions [6], or to express constraints for complex data types,
such as multimedia [7]. To this end, the canonical definition of fd has been
extended either by using approximate paradigms rather than equality to compare
attribute values, or by admitting subsets of data on which the fd does not hold.
In the literature such extensions are referred to as relaxations, and these new
dependencies are indicated with the term relaxed functional dependencies (rfds)
[3]. The relaxation degree is expressed by means of thresholds, indicating either
the required similarity degree for the rfd to hold, or the minimum percentage
of data on which the rfd must hold.

While fds were originally specified at database design time, as properties
of a schema that should hold on every instance of it, in order to reduce the
designer effort and to dynamically adapt the rfds to the evolution of the appli-
cation domain, it is necessary to automatically discover them from data. This is
made possible also thanks to the availability of big data collections, and to the
contributions of several research areas, such as machine learning and knowledge
discovery [18].



Most of the discovery algorithms described in the literature are intended for
fds [23], whereas few rfd definitions are equipped with algorithms for discov-
ering them from data [18]. In this paper, we propose a genetic algorithm (GA)
to identify a broad class of rfds, including both relaxation criteria. In general,
GAs are efficient for global searches in large search spaces, for which determinis-
tic methods are not suitable. They perform operations inspired to natural species
evolutions, such as natural selection, crossover, and mutation. In particular, by
using these operations, the proposed algorithm iteratively generates new candi-
date rfds, but only a subset of them, determined by means of a fitness function,
survives to the evolution process. The fitness function exploits the support and
confidence quality measures, mainly used for evaluating association rules. An
empirical evaluation demonstrates the effectiveness of the algorithm.

The paper is organized as follows. Section 2 reviews the rfd discovery algo-
rithms existing in the literature. Section 3 provides some background definitions
about rfds and formulates the problem of rfd discovery. Section 4 presents
the proposed genetic algorithm named GA-rfd for discovering rfds from data,
whose performance are reported in Section 5. Finally, summary and concluding
remarks are included in Section 6.

2 Related Work

In the literature there are two main categories of methods to automatically
discover fds from data, namely top-down and bottom-up methods. The formers
exploit an attribute lattice to generate candidate fds, which are successively
tested to verify their validity. The whole process is made efficient by exploiting
valid fds to prune the search space for new candidate fds. Examples of top-
down approaches include the algorithms TANE [14], FD Mine [27], FUN [21],
and DFD [1]. On the other hand, bottom-up methods derive candidate fds
from two attribute subsets, namely agree-sets and difference-sets, which are built
by comparing the values of attributes for all possible combinations of pairs of
tuples. Examples of bottom-up approaches include the algorithms DepMiner [19],
FastFD [26], and FDep [11]. Recently, an hybrid algorithm has been proposed
in order to obtain better performance in all cases [24].

Although a recent survey listed thirdy-four different types of rfds [3], very
few of them are equipped with algorithms for discovering them from data [18].
These are reviewed in the following.

Approximate functional dependencies (afds) are fds holding for ‘most’ rather
than ‘all’ the tuples of a relation r [16]. The amount of tuples satisfying the afds
can be calculated by means of several measures [12], among which the g3 error
measure is the most frequently used [16]. The latter represents the minimum
fraction of tuples that must be removed from a relation instance r in order to
make a candidate afd valid. Most approaches for afd discovery use a small
portion of tuples (sampling) s ⊂ r to decide whether an afd holds on r [16]. The
method proposed in [15] exploits the error measure of super keys to determine
the approximate satisfaction of afds.



Like afds, conditional functional dependencies (cfds) are fds holding for
a subset of tuples, but in this case the subset is identified by specifying condi-
tions [2]. Among the approaches for discoverying cfds from data, the algorithm
proposed in [8] exploits an attribute lattice derived from partitions of attribute
values, in order to generate candidate cfds. Alternatively, the greedy algorithm
proposed in [13] tries to derive cfds by finding close-to-optimal tableau, where
the closeness is measured by means of support and confidence. In [10] the au-
thors adapt three algorithms used for fd discovery, namely FD Miner, TANE,
and FastFD, to the discovery of cfd.

Matching dependencies (mds) are rfdc defined in terms of similarity pred-
icates to accommodate errors, and different representations in unreliable data
sources [9]. They have been mainly proposed for object identification. The most
recent algorithm for md discovery evaluates the utility of candidate mds for a
given database instance, determining the corresponding similarity threshold pat-
tern. The utility is measured by means of support and confidence mds, whereas
thresholds are determined by analyzing the statistical distribution of data.

Differential dependencies (dds) are rfdc based on differential constraints on
attribute values [25]. Among the algorithms proposed for their discovery, the
one proposed in [25] exploits reduction algorithms, which detect dds by first
fixing the RHS differential function for each attribute in r, and then finding the
set of differential functions that left-reduce the LHS. The performances of the
algorithm are improved by means of pruning strategies based on the subsump-
tion order of differential functions, implication of dds, and instance exclusion.
Another approach for dd discovery tries to reduce the problem search space
by assuming a user-specified distance threshold as upper limit for the distance
intervals of LHS [17]. The algorithm is based on a distance-based subspace clus-
tering model, and exploits pruning strategies to efficiently discover dds when
high threshold values are specified.

As opposed to these discovery algorithms, which focus each on a specific rfd,
the discovery algorithm proposed in [5] aims to identify the entire class of rfds
[3] relaxing on the tuple comparison method. In particular, the approach relies
on lattice-based algorithms conceived for fd discovery, which are feeded with
similar subsets of tuples derived from previously computed differential matrices.

The algorithm proposed in this paper further extends the class of discovered
rfds, by also including those relaxing on the extent.

3 Discovery Relaxed Functional Dependencies from Data

3.1 Relaxed Functional Dependencies

Before defining rfds we need to introduce the concept of similarity constraint,
which expresses the similarity of two values on a specific domain, and it is rep-
resented through a function φ. In particular, given two attributes A and B on a
domain D, φ(A,B) evaluates the similarity of A and B. As an example, φ can
be defined in terms of a similarity metric ≈, like for instance the edit distance,
such that a≈b is true if a and b are “close” enough w.r.t. a predefined threshold.



Given a relational schema R defined over a fixed set of attributes, and R1 =
(A1, . . . ,Ak) and R2 = (B1, . . . ,Bm) two relation schemas of R, an rfd ϕ on R
is denoted by

Dc1 ×Dc2 ∶ (X1,X2)Φ1

Ψ≥εÐÐ→ (Y1, Y2)Φ2 (1)

where

– Dc1×Dc2 = {(t1, t2) ∈ dom(R1)×dom(R2) ∣ (
k

⋀
i=1
c1i(t1[Ai]))⋀ (

m

⋀
j=1

c2j(t2[Bj]))}

where c1 = (c11 , . . . , c1k) and c2 = (c21 , . . . , c2m), with c1i and c2j predicates
on dom(Ai) and dom(Bj), respectively, that filter the tuples on which ϕ
applies;

– X1, Y1 ⊆ attr(R1), and X2, Y2 ⊆ attr(R2), with X1 ∩Y1 = ∅ and X2 ∩Y2 = ∅;
– Φ1 (Φ2, resp.) is a set of constraints φ[X1,X2] (φ[Y1, Y2], resp.) on attributes
X1 and X2 (Y1 and Y2, resp.). For any pair of tuples (t1, t2)∈ Dc1 ×Dc2 , the
constraint φ[X1,X2] (φ[Y1, Y2], resp.) indicates true, if the similarity of t1
and t2 on attributes X1 and X2 (Y1 and Y2, resp.) agrees with the constraint
specified by φ[X1,X2] (φ[Y1, Y2], resp.).

– Ψ is a coverage measure defined on Dc1 ×Dc2 , which quantifies the satisfiabil-
ity degree of ϕ on r, and can be defined as a function Ψ ∶ dom(X)×dom(Y )→
R measuring the amount of tuples in r violating or satisfying ϕ.

– ε is a threshold indicating the lower bound (or upper bound in case the
comparison operator is ≤) for the result of the coverage measure.

Given r1 ⊆ Dc1 and r2 ⊆ Dc2 two relation instances on (R1,R2), (r1, r2)
satisfies the rfd ϕ, denoted by (r1, r2) ⊧ ϕ, if and only if: ∀ (t1, t2) ∈ (r1, r2), if
φ[X1,X2] indicates true for each constraint φ ∈ Φ1, then almost always φ[Y1, Y2]
indicates true for each constraint φ ∈ Φ2. Here, almost always means that
Ψ(πX1

(r1)πX2(r2), πY1(r1)πY2(r2)) ≥ ε.
For rfds defined on single relation schemas (i.e., R1 = R2), if X1 = X2 and

Y1 = Y2, then we will simplify the rfd notation given in (1) by using Dc, X,
and Y to refer to the Cartesian product Dc1 × Dc2 , and to the pairs (X, X)
and (Y , Y ), respectively. Moreover, if the rfd has to be satisfied by all tuples
in r, then the symbol Ψerr(0) is shown on the arrow. Such coverage measure
corresponds to the expression ψ(X,Y ) = 0, where ψ(X,Y ) measures the number
of tuples violating the rfd. As an example, the canonical fd can also be written

as: Dtrue ∶ Xeq

Ψerr(0)ÐÐÐÐ→ Yeq, where true is a sequence of tautologies, hence
Dtrue = dom(R1), whereas eq is the equality constraint.

As an example, in a database of body measures it is likely to have a simi-
lar shoe size for people having a similar height. Thus, the following rfd might

hold Dtrue ∶ Height
≈

Ψerr(0)ÐÐÐÐ→ Shoe Size≈, where ≈ is a differential function. On
the other hand, there might be exceptions to this dependencies, since few peo-
ple might have close heights but more different shoe sizes. This can be modeled
by introducing a different coverage measure into the rfd, making it approximate

Dtrue ∶ Height
≈

ψ(Height,ShoeSize)≤0.02ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Shoe Sizeeq, where ψ(Height, ShoeSize)
≤ 0.02 indicates that at most for 2% of tuples the rfd does not hold.



3.2 The RFD discovery problem

Given a relation r, the discovery of rfds is the problem of finding a minimal
cover set of valid rfds that hold in r. This problem introduces further complexity
to the already complex task of fd discovery from data, due to the significantly
larger search space, which derives from the several similarity/distance functions
that may be defined over each attribute [17]. Consequently, it is necessary to
devise tractable algorithms capable of extracting rfds with meaningful similarity
constraints.

In this paper, we analyze the problem of rfd discovery from data given a set
of thresholds for both attribute comparison and coverage measure. Although this
reduces the overall complexity of the problem, it still remains more complex than
the fds discovery one. In fact, as said in Section 3.1, an rfd X → Y holds on a
relation r iff whenever the distance between two tuples t1 and t2 in r is below
a threshold value αA on each attribute A belonging to X, then their distance is
below a threshold value αB on each attribute B belonging to Y , with a degree of
certainty greater than a threshold value ε. For this reason, we have to analyze the
similarity between portions of tuple pairs rather than their equality. This does
not permit to exploit the equivalence classes of attribute values, usually used
for fd discovery. Indeed, an attribute value might be similar to other attribute
values that are not similar to each other.

4 Identifying Relaxed Functional Dependencies with a
Genetic Algorithm

The proposed algorithm discovers rfds by comparing tuples pairwise, based on
the similarity of subsets of their attributes. In particular, pairs of tuples with a
similarity higher than a threshold are represented with the value 1, and 0 oth-
erwise. In this way, we reduce the rfd discovery problem to a search one, which
is solved through a GA. The latter implements a simulation in which a popu-
lation of candidate solutions to an optimization problem evolves towards better
solutions. The process usually starts from a population of randomly generated
individuals (Initialization), which evolves by stochastically selecting multiple in-
dividuals from the current population (based on a fitness function), and modified
(recombined and possibly randomly mutated) to form a new population. The al-
gorithm terminates when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached for the population. In
the first case, a satisfactory solution may or may not have been reached.

4.1 GA-RFD

In this section, we explain the GA to discover rfds, which is named GA-rfd. In
particular, in the following we first explain how the discovery problem has been
encoded for GA processing, then we define the fitness function to evaluate the
satisfactory degree of individuals, and finally, we present the GA-rfd algorithm.



Encoding. Given the thresholds for attribute comparison and coverage measure,
the problem of rfd discovery reduces to find all possible dependencies X → Y
satisfying the following rule: tuples that are similar on the LHS must correspond
to those that are similar on the RHS. Such a rule must hold for almost all set
of tuples that are similar on the LHS attributes, according to the threshold
specified for the coverage measure.

In order to accomplish this with a GA, the dataset has to be modeled in a way
that highlights similarity between tuple pairs. For this reason, in the proposed
methodology we transform an input dataset in terms of a difference dataset. The
latter contains the input dataset attributes as columns, the input dataset tuple
pairs as rows, and the similarity between tuple pairs as values. In particular,
given an attribute Xi and a tuple pair (t1, t2), the difference dataset will have
the value 1 if t1[Xi] is similar to t2[Xi] according to the threshold associated
to Xi, and the value 0 otherwise.

Example 1. Let us consider the sample dataset shown in Table 1a, and the
similarity thresholds: 1 for the attributes Height and Shoe Size, and 10 for the
attribute Weight. By using the absolute difference as a distance function, we can
derive the difference dataset shown in Table 1b.

Table 1 A dataset of body measures.

Tuple ID Height Weight Shoe size

1 175 70 40
2 175 75 39
3 175 69 40
4 176 71 40
5 178 81 41
6 169 73 37
7 170 62 39

(a) A sample dataset.

Pair ID Height Weight Shoe Size

(1,2) 1 1 1
(1,3) 1 1 1
(1,4) 1 1 1
(1,5) 0 0 1
(1,6) 0 1 0
(1,7) 0 1 1
(2,3) 1 1 1
(2,4) 1 1 1
(2,5) 0 1 0
(2,6) 0 1 0
(2,7) 0 0 1
(3,4) 1 1 1
(3,5) 0 0 1
(3,6) 0 1 0
(3,7) 0 1 1
(4,5) 0 1 1
(4,6) 0 1 0
(4,7) 0 1 1
(5,6) 0 1 0
(5,7) 0 0 0
(6,7) 1 0 0

(b) The difference dataset.

In order to construct individuals in the population we use an array of integers
representing the attribute indices in the difference dataset. In particular, each
item i of the array corresponds to a specific attribute Xi in the dataset. In
particular, since all the rfds can be reduced w.l.o.g. to a format with a single
attribute on the RHS, each individual of size k will represent a candidate rfd,
where the k − 1 attributes on the LHS correspond to the first k − 1 items in the
array, and the last one corresponds to the attribute on the RHS. It is worth to



notice that the algorithm can be iterated with several values for k in order to
consider rfds with different sizes on the LHS.

Example 2. The individual [3,1] for the dataset in Table 1a will represent
the candidate rfd: Shoe Size → Height.
Fitness Function. In order to discover rfds we exploit the concepts of support
and confidence commonly used in the context of association rule mining. In
particular, several studies have demonstrated the relationship existing between
fds and association rules [14]. Formally, let X and Y be two sets of items, the
support of a set X, denoted with sup(X), represents the ratio of the transactions
in the dataset containing X, whereas the confidence represents the ratio sup(X∪
Y )/sup(X).

In our context, sup(X) represents the ratio of tuple pairs that are similar on
all attributes in X. In this way, we can use the confidence as the fitness function

to determine if a candidate rfd X → Y is valid: conf(X → Y ) = supp(X∪Y )
supp(X)

.

This fitness function returns 1 if and only if whenever tuple pairs are similar on
attributes in X, then they are similar also on Y . In order to validate a candidate
rfd the proposed algorithm associates the threshold specified for the coverage
measure to the fitness function.

Example 3. If we consider the individual [3,1] of Example 2, representing
the candidate rfd: Shoe Size → Height, the associated support and confidence
are: sup(Shoe Size) = 13

21
, sup({Shoe Size,Height}) = 6

21
, conf(Shoe Size →

Height) = 6
21
× 21

13
= 6

13
= 0.46. This candidate rfd will not be considered as valid,

unless the coverage threshold specified in input is less than 0.46.

Algorithm 1 The general GA-rfd algorithm

1: procedure GA-RFD(difference dataset D, extent threshold β, int maxgen, int
pop size, int k, double p1, double p2)

2: Set pop, final pop, new pop
3: int gen ← 0
4: final pop ← initialize(pop size, k, numCols(D))
5: while gen ≤ maxgen do
6: if (allOf(final pop, β)) then
7: break
8: end if
9: new pop ← select(final pop, β)

10: pop ← ∅
11: pop ← crossover(new pop, k, p1)
12: pop ← mutate(pop, k, numCols(D), p2)
13: final pop ← new pop ∪ pop
14: g ← g + 1
15: end while
16: return final pop
17: end procedure

Algorithm. The pseudo-code of the main procedure of GA-rfd is shown in Al-
gorithm 1. It first produces the initial population through the initialize pro-
cedure, and then, within a cycle, it selects only the individuals that reach the
fitness function objective (select procedure), makes crossover on selected in-
dividuals according to a fixed probability p1 (crossover procedure), mutates
some of them according to a fixed probability p2 (mutate procedure). The new



population is evaluated in the next iteration of the cycle. GA-rfd terminates if
and only if either the population is composed of individuals, each one represent-
ing a valid rfd according to the β-threshold for the coverage measure, which
determines the fitness objective; or the number of iterations exceeds the specified
maximum number.

The initialize procedure shown in Algorithm 2 creates a set of individuals
representing the initial population, according to the size pop size specified as
input. The used random values are ranged in the number of columns of the
dataset, since each individual element will represent a column index.

The select procedure shown in Algorithm 3 analyzes the individuals of
the population pop and constructs a new population (selected pop) by including
individuals with a probability related to the fitness function objective β.

Algorithm 2 The initialize procedure

1: procedure initialize(int pop size, int k, int numCols)
2: Set pop
3: for i ≤ pop size do
4: List x
5: for j ≤ k do
6: add randInt(1,numCols) to x
7: end for
8: add x to pop
9: end for

10: return pop
11: end procedure

Algorithm 3 The select procedure

1: procedure select(Set pop, double β)
2: Set selected pop→ {}
3: double fitness, confidence
4: for each c ∈ pop do
5: confidence = supp(c.{X∪Y })

supp(c.X)

6: if confidence ≥ β then
7: fitness = 1
8: else
9: fitness = confidence/β

10: end if
11: if rand() < fitness then
12: selected pop = selected pop ∪ {c}
13: end if
14: end for
15: return selected pop
16: end procedure

The crossover procedure shown in Algorithm 4 creates a new population of
individuals (new pop) by crossing individual pairs. We use a one-point crossover
to recombine individuals; the crosspoint is selected randomly. In this procedure
we use the function swap, which changes a sublist of two individuals by swapping
one to each other.

The mutate procedure shown in Algorithm 5 creates a new population of
individuals (new pop) by mutating one value in each individual. The individual
element that has to be changed (gene) and the new value (new gene) are selected
randomly. In this procedure we use the function swapV alue, which changes a



value in a individual by swapping it with the new value. The mutate procedure
permits to detect candidate rfds that do not directly depend on the initial
population. It has associated a low probability, which limits the randomness of
the whole methodology.

Algorithm 4 The crossover procedure

1: procedure crossover(Set pop, int k, double p)
2: Set new pop→ {}
3: int crosspoint
4: for each c1,c2 ∈ pop with c1 ≠ c2 do
5: if rand() < p then
6: crosspoint = randInt(1,k)
7: for i ≤ crosspoint do
8: swap(c1,c2, i)
9: end for

10: add c1 to new pop
11: add c2 to new pop
12: end if
13: end for
14: return new pop
15: end procedure

Algorithm 5 The mutate procedure

1: procedure crossover(Set pop, int k, int numCols, double p)
2: Set new pop
3: int gene, new gene
4: for each c ∈ pop do
5: if rand() < p then
6: gene = randInt(1,k)
7: new gene = randInt(1,numCols)
8: swapValue(c, gene, new gene)
9: end if

10: add c to new pop
11: end for
12: return new pop
13: end procedure

5 Empirical Evaluation

In this section we describe the performed empirical evaluation to verify the
effectiveness of the proposed GA-rfd algorithm. In particular, we first evaluate
the performance of the algorithm when used to discover fds, then we evaluated
the rfd discovery performance.

The evaluation has been performed on a version of GA-rfd implemented
in the Python language, and on a machine with an AMD Opteron (TM) CPU,
8 GB RAM, and Linux Ubuntu 16.10 OS. Moreover, we used two real-world
datasets, also employed for evaluating several fd discovery algorithms [22], and
the sample dataset introduced in Example 1. The probability parameters for the
crossover and mutate procedures have been set to 0.85 and 0.3, respectively.
Evaluation by discovering FDs. This experiment compares the performances of
GA-rfd with those of the fd discovery algorithms with the aim of evaluating
the effectiveness of GA-rfd with respect to well-known results, as in the case of



iris and bridges datasets [23]. Here, we do not evaluate the time performances,
since fd and rfd discovery problems are not comparable. In order to reduce the
problem to discover canonical fds we assigned the value 0 to all tuple comparison
thresholds and the value 1 to the coverage threshold. Table 2 reports the fds
discovered on the analyzed datasets. For the iris and bridge datasets GA-rfd
achieves the same results obtained by other fd discovery algorithms [23].

Table 2 Results obtained by GA-rfd algorithm to discovery fds.

Dataset #Columns #Rows Size(KB) #FDs

sample-dataset 3 7 1 2
iris 5 150 5 4
bridges 13 108 6 142

Evaluation by discovering RFDs. In order to verify the effectiveness of GA-rfd,
we dirtied some values in the datasets used in the previous experiment with the
aim of verifying whether the number of canonical fds also changes. In other
words, we simulated the presence of dirtiness in data, and analyzed GA-rfd
overtakes errors in dependency discovery. For this reason, we evaluated how
the number of rfds changes by varying either the tuple comparison thresholds
or the coverage measure threshold. It is worth to notice that, we have used
this methodology in order to highlight the usefulness of the proposed algorithm
w.r.t. the results shown in Table 2. In fact, in real contexts we use GA-rfd with
different thresholds, those indicating similar tuples, and the one specifying the
satisfiability degree.

Table 3 reports for each dataset: (i) the number of errors introduced in the
dataset, (ii) the number fds of discovered on the dataset with dirty data, (iii)
the number of discovered rfds by associating a threshold ≤1 to one attribute in
order to manage similarities in the value comparison1, (iv) the number of rfds
discovered with a coverage threshold of 0.9.

Table 3 Results obtained by using a threshold 1 on the comparison of attribute
values, and the results obtained using a coverage threshold of 0.9.

Datasets n. errors FDs
RFDs RFDs

by relaxing on by relaxing on
tuple comparison extent

sample-dataset2 1 1 2 1
iris2 2 3 4 3
bridges2 2 144 143 254

We can observe that the errors introduced in sample-dataset2 and iris2 have
reduced the number of discovered fds. On the contrary, for bridge2 such a num-
ber increases, since a minimal fd φ1 has been violated by errors and three new
fds, whose LHS has more attributes than LHS(φ1), have been discovered. The
relaxation on attribute comparison has allowed to capture the errors introduced
in the datasets. However, for bridge2 a new dependency has been discovered

1In particular, we have associated the threshold 1 to the first attribute in the sample-
dataset2, and to the fifth attribute in both iris2 and bridges2. The other attributes have
associated threshold 0.



beyond those reported in 2. Regarding the relaxation of tuple coverage, for
sample-dataset2 the threshold is too narrow to capture the introduced error;
for iris2 we obtained less but more general dependencies than those reported in
2; for bridge2 many more dependencies were discovered, due to the fact that the
introduced errors is not significant compared to the size of the dataset, and to
the number of dependencies holding in it, as reported in 2.

6 Conclusion and Future Work

In this paper we have proposed GA-rfd, a GA for discovering rfds from data.
It analyzes tuple pairs similarity through a difference dataset, and validates rfds
by calculating the confidence on each candidate rfd. A preliminary evaluation
of the algorithm has been carried out to assess the effectiveness of the approach.

In the future, we would like to further improve this approach in order to
automatically discover the rfds and the threshold ranges of validity, without re-
questing their specification to the user. Furthermore, we would like to investigate
the discovery of GA-rfd in the context of user interaction logs, especially in web
applications, aiming to mine user intent [4]. To this end, mashup repositories are
a further interesting application domain, since they are precious sources of data
concerning mashup component usage, which can be useful to opportunely advise
the development of new mashups [20].

References

1. Abedjan, Z., Schulze, P., Naumann, F.: DFD: Efficient functional dependency dis-
covery. In: Proceedings of the 23rd ACM International Conference on Information
and Knowledge Management. pp. 949–958. CIKM ’14 (2014)

2. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: Proceedings of the 25th International
Conference on Data Engineering. pp. 746–755. ICDE ’07 (2007)

3. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies – A survey
of approaches. IEEE TKDE 28(1), 147–165 (2016)

4. Caruccio, L., Deufemia, V., Polese, G.: Understanding user intent on the web
through interaction mining. Journal of Visual Languages & Computing 31, Part
B, 230 – 236 (2015)

5. Caruccio, L., Deufemia, V., Polese, G.: On the discovery of relaxed functional
dependencies. In: Proceedings of the 20th International Database Engineering &
Applications Symposium. pp. 53–61. IDEAS ’16 (2016)

6. Caruccio, L., Polese, G., Tortora, G.: Synchronization of queries and views upon
schema evolutions: A survey. ACM Transactions on Database Systems (TODS)
41(2), 9 (2016)

7. Chang, S.K., Deufemia, V., Polese, G., Vacca, M.: A normalization framework for
multimedia databases. IEEE TKDE 19(12), 1666–1679 (2007)

8. Chiang, F., Miller, R.J.: Discovering data quality rules. Proceedings of the VLDB
Endowment 1(1), 1166–1177 (2008)

9. Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for record matching.
The VLDB Journal 20, 495–520 (2011)



10. Fan, W., Geerts, F., Lakshmanan, L.V.S., Xiong, M.: Discovering conditional func-
tional dependencies. In: Proceedings of the 25th International Conference on Data
Engineering, ICDE’09. pp. 1231–1234 (2009)

11. Flach, P.A., Savnik, I.: Database dependency discovery: A machine learning ap-
proach. AI Commun. 12(3), 139–160 (1999)

12. Giannella, C., Robertson, E.: On approximation measures for functional depen-
dencies. Inform. Syst. 29(6), 483–507 (2004)

13. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal
tableaux for conditional functional dependencies. Proceedings of the VLDB En-
dowment 1(1), 376–390 (2008)

14. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. The Computer
Journal 42(2), 100–111 (1999)

15. King, R., Oil, J.: Discovery of functional and approximate functional dependencies
in relational databases. J. Applied Math. and Decision Sciences 7(1), 49–59 (2003)

16. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theor. Comput. Sci. 149(1), 129–149 (1995)

17. Kwashie, S., Liu, J., Li, J., Ye, F.: Mining differential dependencies: A subspace
clustering approach. In: Wang, H., Sharaf, M.A. (eds.) Proceedings of Australasian
Database Conference. pp. 50–61. ADC ’14 (2014)

18. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data - A review.
IEEE Transactions on Knowledge and Data Engineering 24(2), 251–264 (2012)

19. Lopes, S., Petit, J.M., Lakhal, L.: Efficient discovery of functional dependencies
and armstrong relations. In: Proceedings of the 7th International Conference on
Extending Database Technology. pp. 350–364. EDBT ’00 (2000)

20. Mario Andrés Paredes-Valverde, Giner Alor-Hernández, A.R.G.R.V.G.E.J.D.: A
systematic review of tools, languages, and methodologies for mashup development.
Software Practice & Experience 45(13), 365397 (2015)

21. Novelli, N., Cicchetti, R.: Fun: An efficient algorithm for mining functional and
embedded dependencies. In: Proceedings of 8th International Conference Database
Theory, pp. 189–203. ICDT ’01 (2001)

22. Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling
with Metanome. Proceedings of the VLDB Endowment 8(12), 1860–1863 (2015)

23. Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.P., Schönberg,
M., Zwiener, J., Naumann, F.: Functional dependency discovery: An experimental
evaluation of seven algorithms. Proceedings of the VLDB Endowment 8(10), 1082–
1093 (2015)

24. Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency dis-
covery. In: Proceedings of the 2016 International Conference on Management of
Data. pp. 821–833. ACM (2016)

25. Song, S., Chen, L.: Differential dependencies: Reasoning and discovery. ACM
Transactions on Database Systems 36, 16 (2011)

26. Wyss, C., Giannella, C., Robertson, E.: FastFDs: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances. In: Procs of
Intl Conf. on Data Warehousing and Knowl. Disc. pp. 101–110. DaWaK ’01 (2001)

27. Yao, H., Hamilton, H.J., Butz, C.J.: FD Mine: Discovering functional dependencies
in a database using equivalences. In: Proceedings of IEEE International Conference
on Data Mining. pp. 729–732. ICDM ’02 (2002)


	Lecture Notes in Computer Science
	Introduction
	Related Work
	Discovery Relaxed Functional Dependencies from Data
	Relaxed Functional Dependencies
	The RFD discovery problem

	Identifying Relaxed Functional Dependencies with a Genetic Algorithm
	GA-RFD

	Empirical Evaluation
	Conclusion and Future Work


