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Abstract. The problem of computing the certain answer to a conjunc-
tive query over a relational instance subject to primary key constraints
is a classical hard problem in database research. On the theoretical side,
we present a decomposition and pruning strategy that reduces, in poly-
nomial time, the original problem to a collection of smaller problems of
the same sort that can be solved independently. From a practical per-
spective, we discuss an experiment on large data sets that shows the
effectiveness of the overall technique and its implementation in ASP.

1 Introduction

Integrity constraints provide means for ensuring that database evolution does
not result in a loss of consistency or in a discrepancy with the intended model of
the application domain. A relational database that do not satisfy some of these
constraints is said to be inconsistent. In practice it is not unusual that one has
to deal with inconsistent data [5], and when a conjunctive query (CQ) is posed
to an inconsistent database, a natural problem arises that can be formulated as:
How to deal with inconsistencies to answer the input query in a consistent way?
This is a classical problem in database research and different approaches have
been proposed in the literature. One possibility is to clean the database [7] and
work on one of the possible coherent states; another possibility is to be tolerant
of inconsistencies by leaving intact the database and computing answers that
are “consistent with the integrity constraints” [2].

In this paper, we adopt the second approach – which has been proposed
by [2] under the name of consistent query answering (CQA) – and focus on the
relevant class of primary key constraints. Formally, in our setting: (1) a database
D is inconsistent if there are at least two tuples of the same relation that agree
on their primary key; (2) a repair of D is any maximal consistent subset of D;
and (3) a tuple t of constants is in the consistent answer to a CQ q over D
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if and only if, for each repair R of D, tuple t is in the (classical) answer to q
over R. Intuitively, the original database is (virtually) repaired by applying a
minimal number of corrections (deletion of tuples with the same primary key),
while the consistent answer collects the tuples that can be retrieved in every
repaired instance.

CQA under primary keys is coNP-complete in data complexity [3], when both
the relational schema and the query are considered fixed. Due to its complex na-
ture, traditional RDBMs are inadequate to solve the problem alone via SQL
without focusing on restricted classes of CQs [2, 8, 14, 15, 11]. Actually, in the
unrestricted case, CQA has been traditionally dealt with logic programming [3,
4, 9, 12]. However, it has been argued [10] that the practical applicability of logic-
based approaches is restricted to data sets of moderate size. Only recently, an
approach based on Binary Integer Programming [10] has revealed good perfor-
mances on large databases (featuring up to one million tuples per relation) with
primary key violations.

In this paper, we show that logic programming can still be effectively used
for computing consistent answers over large relational databases. We describe
a decomposition strategy that reduces (in polynomial time) the computation of
the consistent answer to a CQ over a database subject to primary key constraints
into a collection of smaller problems of the same sort. At the core of the strategy
is a cascade pruning mechanism that dramatically reduces the number of key
violations that have to be handled to answer the query. Moreover, we implement
the new strategy using Answer Set Programming (ASP) [6], and we prove empir-
ically the effectiveness of our ASP-based approach on existing benchmarks from
the database world. The experiment empirically demonstrate that our approach
is efficient on large data sets, and can even perform better than state-of-the-art
methods.

2 The Framework

We are given two disjoint countably infinite sets of terms denoted by C and V
and called constants and variables, respectively. We denote by X sequences of
variables X1, . . . , Xn, and by t sequences of terms t1, . . . , tn. We also denote by
[n] the set {1, . . . , n}, for any n > 1.

A (relational) schema is a triple 〈R, α, κ〉 where R is a finite set of relation
symbols (or predicates), α : R → N is a function associating an arity to each
predicate, and κ : R → 2N is a function that associates, to each r ∈ R, a
nonempty set of positions from [α(r)], which represents the primary key of r.
Moreover, for each relation symbol r ∈ R and for each position i ∈ [α(r)], r[i]
denotes the i-th attribute of r. Throughout, let Σ = 〈R, α, κ〉 denote a relational
schema. An atom (over Σ) is an expression of the form r(t1, . . . , tn), where r ∈ R,
and n = α(r). An atom is called a fact if all of its terms are constants of C.
Conjunctions of atoms are often identified with the sets of their atoms. For a
set A of atoms, the variables occurring in A are denoted by var(A). A database
D (over Σ) is a finite set of facts over Σ. Given an atom r(t) ∈ D, we denote



by t̂ the sequence t|κ(r). We say that D is inconsistent (w.r.t. Σ) if it contains

two different atoms of the form r(t1) and r(t2) such that t̂1 = t̂2. Otherwise,
it is consistent. A repair R of D (w.r.t. Σ) is any maximal consistent subset
of D. The set of all the repairs of D is denoted by rep(D,Σ). A substitution
is a mapping µ : C ∪ V → C ∪ V which is the identity on C. Given a set A
of atoms, µ(A) = {r(µ(t1), . . . , µ(tn)) : r(t1, . . . , tn) ∈ A}. The restriction of µ
to a set S ⊆ C ∪ V, is denoted by µ|S . A conjunctive query (CQ) q (over Σ)
is an expression of the form ∃Yϕ(X,Y), where X ∪Y are variables of V, and
ϕ is a conjunction of atoms (possibly with constants) over Σ. To highlight the
free variables of q, we often write q(X) instead of q. If X is empty, then q is
called a Boolean conjunctive query (BCQ). Assuming that X is the sequence
X1, . . . , Xn, the answer to q over a database D, denoted q(D), is the set of
all n-tuples 〈t1, . . . , tn〉 ∈ Cn for which there exists a substitution µ such that
µ(ϕ(X,Y)) ⊆ D and µ(Xi) = ti, for each i ∈ [n]. A BCQ is true in D, denoted
D |= q, if 〈〉 ∈ q(D). The consistent answer to a CQ q(X) over a database D
(w.r.t. Σ), denoted ans(q,D,Σ), is the set of tuples

⋂
R∈rep(D,Σ) q(R). Clearly,

ans(q,D,Σ) ⊆ q(D) holds. A BCQ q is consistently true in a database D (w.r.t.
Σ), denoted D |=Σ q, if 〈〉 ∈ ans(q,D,Σ).

3 Dealing with Large Datasets

We present a strategy suitable for computing the consistent answer to a CQ over
an inconsistent database subject to primary key constraints. The new strategy
reduces in polynomial time that problem to a collection of smaller ones of the
same sort. Given a database D over a schema Σ, and a BCQ q, we identify a set
F1, . . . , Fk of pairwise disjoint subsets of D, called fragments, such that: D |=Σ q
iff there is i ∈ [k] such that Fi |=Σ q. At the core of our strategy we have: (1) a
cascade pruning mechanism to reduce the number of “crucial” inconsistencies,
and (2) a technique to identify a suitable set of fragments from any (possibly
unpruned) database. For the sake of presentation, we start with principle (2).
(Proofs are given in [13].)

Given a database D, a key component K of D is any maximal subset of
D such that if r1(t1) and r2(t2) are in K, then both r1 = r2 and t̂1 = t̂2
hold. Namely, K collects only atoms that agree on their primary key. Hence,
the set of all key components of D, denoted by comp(D,Σ), forms a partition
of D. If a key component is a singleton, then it is called safe; otherwise it is
conflicting. Let comp(D,Σ) = {K1, . . . ,Kn}. It can be verified that rep(D,Σ) =
{{a1, . . . , an} : a1 ∈ K1, . . . , an ∈ Kn}. Let us now fix throughout this section
a BCQ q over Σ. For a repair R ∈ rep(D,Σ), if q is true in R, then there
is a substitution µ such that µ(q) ⊆ R. But since R ⊆ D, it also holds that
µ(q) ⊆ D. Hence, sub(q,D) = {µ|var(q) : µ is a substitution and µ(q) ⊆ D} is
an overestimation of the substitutions that map q to the repairs of D.

Inspired by the well-known notions of conflict-hypergraph and conflict-join
graph, we now introduce the notion of conflict-join hypergraph. Given a database
D, the conflict-join hypergraph of D (w.r.t. q and Σ) is denoted by HD =
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Fig. 1. Conflict-join hypergraph.

〈D,E〉, where D are the vertices, and E are the hyperedges partitioned in Eq =
{µ(q) : µ ∈ sub(q,D)} and Eκ = {K : K ∈ comp(D,Σ)}. A bunch B of
vertices of HD is any minimal nonempty subset of D such that, for each e ∈ E,
either e ⊆ B or e ∩ B = ∅ holds. Intuitively, every edge of HD collects the
atoms in a key component of D or the atoms in µ(q), for some µ ∈ sub(q,D).
Moreover, each bunch collects the vertices of some connected component of HD.
An example follows to fix these preliminary notions.

Example 1. Consider the schema Σ = 〈R, α, κ〉, where R = {r1, r2}, α(r1) =
α(r2) = 2, and κ(r1) = κ(r2) = {1}. Consider also the database D = {r1(1, 2),
r1(1, 3), r2(4, 1), r2(5, 1), r2(5, 2)}, and the BCQ q = r1(X,Y ), r2(Z,X). The
conflicting components of D are K1 = {r1(1, 2), r1(1, 3)} and K3 = {r2(5, 1),
r2(5, 2)}, while its safe component is K2 = {r2(4, 1)}. The repairs of D are R1 =
{r1(1, 2), r2(4, 1), r2(5, 1)}, R2 = {r1(1, 2), r2(4, 1), r2(5, 2)}, R3 = {r1(1, 3),
r2(4, 1), r2(5, 1)}, and R4 = {r1(1, 3), r2(4, 1), r2(5, 2)}. Moreover, sub(q,D)
contains the substitutions: µ1 = {X 7→ 1, Y 7→ 2, Z 7→ 4}, µ2 = {X 7→ 1, Y 7→
3, Z 7→ 4}, µ3 = {X 7→ 1, Y 7→ 2, Z 7→ 5}, and µ4 = {X 7→ 1, Y 7→ 3, Z 7→ 5}.
The conflict-join hypergraph HD = 〈D,E〉 is as in Figure 1. Solid (resp., dashed)
edges form the set Eκ (resp., Eq). Since µ1 maps q to R1 and R2, and µ2 maps q
to R3 and R4, we conclude that D |=Σ q. Finally, D is the only bunch of HD. ut

In Example 1 we observe that K3 can be safely ignored in the evaluation of
q. In fact, even if both µ3(q) and µ4(q) contain an atom of K3, µ1 and µ2 are
sufficient to prove that q is consistently true. This might suggest to focus only
on the set F = K1 ∪ K2, and on its repairs {r1(1, 2), r2(4, 1)} and {r1(1, 3),
r2(4, 1)}. Also, since F |=Σ q, F represents the “small” fragment of D that we
need to evaluate q. The practical advantage of considering F instead of D should
be already clear: (1) the repairs of F are smaller than the repairs of D; and (2) F
has less repairs than D. We are now ready to introduce the notion of fragment.
Consider a database D. For any set C ⊆ comp(D,Σ) of key components of D,
we say that the set F =

⋃
K∈C K is a (well-defined) fragment of D. According to

this notion, the set F = K1∪K2 in Example 1 is a fragment of D. The following
theorem, states a useful property that holds for any fragment.

Theorem 1. Consider a database D, and two fragments F1 ⊆ F2 of D. If
F1 |=Σ q, then F2 |=Σ q.

Note that D is indeed a fragment of itself. Hence, if q is consistently true,
then there is always the fragment F = D such that F |=Σ q. But now the



question is: How can we identify a convenient set of fragments of D? The naive
way would be to use as fragments the bunches of HD. Soundness is guaranteed
by Theorem 1. Regarding completeness, we rely on the following result.

Theorem 2. Consider a database D. If D |=Σ q, then there is a bunch B of
HD such that B |=Σ q.

By combining Theorems 1 and 2 we are able to reduce, in polynomial time,
the original problem into a collection of smaller ones of the same sort. How-
ever, this technique alone is not sufficient to deal with large data sets. Indeed,
it involves the entire database by considering all the bunches of the conflict-join
hypergraph. We now introduce an algorithm that can realize that K3 is “redun-
dant” in Example 1. Formally, a key component K of a database D is redundant
(w.r.t. q) if for each fragment F of D, F |=Σ q implies F \K |=Σ q. In practice,
a key component is redundant independently from the fact that some other key
component is redundant or not. More formally, given a database D and a set C
of redundant components of D, it holds that D |=Σ q iff

(
D \

⋃
K∈C K

)
|=Σ q.

Therefore, if we can identify all the redundant components of D, then after re-
moving from D all these components, what remains is either: (1) a nonempty set
of (minimal) bunches, each of which entails consistently q whenever D |=Σ q; or
(2) the empty set, whenever D 6|=Σ q. More formally: given a database D, each
key component of D is redundant iff D 6|=Σ q.

However, assuming that ptime 6= np, any algorithm for the identification of
all the redundant components of D cannot be polynomial because, otherwise, we
would have a polynomial procedure for solving the original problem. Our goal is
therefore to identify sufficient conditions to design a pruning mechanism that de-
tects in polynomial time as many redundant conflicting components as possible.
To give an intuition of our pruning mechanism, we look again at Example 1. Ac-
tually, K3 is redundant because it contains an atom, namely r2(5, 2), that is not
involved in any substitution (see Figure 1). Assume now that this is the criterion
that we use to identify redundant components. Since we know that D |=Σ q iff
D \ K3 |=Σ q, this means that we can now forget about D and consider only
D′ = K1 ∪K2. But once we focus on sub(q,D′), we realize that it contains only
µ1 and µ2. Then, a smaller number of substitutions in sub(q,D′) w.r.t. those
in sub(q,D) motivates us to reapply our criterion. Indeed, there could also be
some atom in D′ not involved in any of the substitutions of sub(q,D′). This
is not the case in our example since the atoms in D′ are covered by µ1(q) or
µ2(q). However, in general, in one or more steps, we can identify more and more
redundant components. We can now state the main result of this section.

Theorem 3. Consider some conflict-join hypergraph HD = 〈D,E〉, and a key
component K of D. If K \

⋃
e∈Eq

e 6= ∅, then K is redundant.

As discussed just before Theorem 3, an indirect effect of removing a redun-
dant component K from D is that all the substitutions in the set S = {µ ∈
sub(q,D) : µ(q) ∩K 6= ∅} can be in a sense ignored. In fact, sub(q,D \K) =
sub(q,D) \ S. Whenever a substitution can be safely ignored, we say that it is



unfounded. Let us formalize this new notion. Consider a database D. A substi-
tution µ of sub(q,D) is unfounded if: for each fragment F of D, F |=Σ q implies
that, for each repair R ∈ rep(F,Σ), there exists a substitution µ′ ∈ sub(q,R)
different from µ such that µ′(q) ⊆ R. We now show how to detect as many
unfounded substitutions as possible.

Theorem 4. Consider a database D, and some µ ∈ sub(q,D). If there exists a
redundant component K of D such that µ(q) ∩K 6= ∅, then µ is unfounded.

Clearly, Theorem 4 alone is not helpful since it relies on the identification
of redundant components. However, if combined with Theorem 3, it forms the
desired cascade pruning mechanism. For example, both substitutions µ3 and µ4

in Example 1 are unfounded, since K3 is redundant.

4 Experimental Evaluation

Benchmark Setup. The assessment of our approach was done using a benchmark
employed in [10] for testing CQA systems on large inconsistent databases. It
comprises 40 instances of a database schema with 10 tables, organized in four
families of 10 instances each of which contains tables of size varying from 100k
to 1M tuples; also it includes 21 queries of different structural features split into
three groups depending on whether CQA complexity is coNP-complete (queries
Q1, · · · , Q7), PTIME but not FO-rewritable [14] (queries Q8, · · · , Q14), and FO-
rewritable (queries Q15, · · · , Q21). We compare our approach, named Pruning ,
with two alternative ASP-based approaches. In particular, we considered one of
the first encoding of CQA in ASP that was introduced in [4], and an optimized
technique that was introduced more recently in [12]; these are named BB and
MRT , respectively. BB and MRT can handle a larger class of integrity constrains
than Pruning , and only MRT features specific optimization that apply also to
primary key violations handling. We constructed the three alternative encodings
for all 21 queries of the benchmark, and we run them on the ASP solver WASP
2.0 [1], configured with the iterative coherence testing algorithm.

Analysis of the results. Concerning the capability of providing an answer to a
query within the time limit of 600 seconds, we report that Pruning was able to
answer the queries in all the 840 runs in the benchmark with an average time
of 14.6s. MRT , and BB solved only 778, and 768 instances within 600 seconds,
with an average of 80.5s and 52.3s, respectively.

The scalability of Pruning is studied in detail for each query in Figures 2(d-
f), each plotting the average execution times per group of queries of the same
theoretical complexity. It is worth noting that Pruning scales almost linearly in
all queries, and independently from the complexity class of the query. This is
because Pruning can identify and deal efficiently with the conflicting fragments.

We now analyze the performance of Pruning from the perspective of a mea-
sure called overhead, which was employed in [10] for measuring the performance
of CQA systems. Given a query Q the overhead is given by

tcqa
tplain

, where tcqa
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Fig. 2. Scalability and overhead of consistent query answering with Pruning encoding.

is time needed for computing the consistent answer of Q, and tplain is the time
needed for a plain execution of Q where the violation of integrity constraints are
ignored. Note that the overhead measure is independent of the hardware and the
software employed, since it relates the computation of CQA to the execution of a
plain query on the same system. Thus it allows for a direct comparison of Pruning
with other methods having known overheads. Following what was done in [10] (a
comparison with [10] can be found in [13]), we computed the average overhead
measured varying the database size for each query, and we report the results by
grouping queries per complexity class in Figures 2(a-c). The overheads of Prun-
ing is always below 2.1, and the majority of queries has overheads of around 1.5.
The behavior is basically ideal for query Q5 and Q4 (overhead is about 1). The
state of the art approach described in [10] has overheads that range between 5
and 2.8 on the very same dataset. Thus, our approach allows to obtain a very ef-
fective implementation of CQA in ASP with an overhead that is often more than
two times smaller than the one of state-of-the-art approaches. We complemented
this analysis by measuring also the overhead of Pruning w.r.t. the computation
of safe answers, which provide an underestimate of consistent answers that can
be computed efficiently (in polynomial time) by means of stratified ASP pro-
grams. We report that the computation of the consistent answer with Pruning
requires only at most 1.5 times more in average than computing the safe answer.
This further outlines that Pruning is able to maintain reasonable the impact of
the hard-to-evaluate component of CQA. Finally, we have analyzed the impact
of our technique in the various solving steps of the evaluation. We report that



for Pruning the solver analyzes a few non-factual rules (below 1% in average),
whereas MRT and BB have 5% and 63% of non-factual rules, respectively. Since
the hard part of the computation is performed by the solver on non-factual rules,
this also outlines the benefits of the pruning technique.

5 Conclusion

Logic programming approaches to CQA were recently considered not competi-
tive [10] on large databases affected by primary key violations. In this paper, we
overview a strategy that dramatically reduces the primary key violations to be
handled to answer the query. The strategy is encoded naturally in ASP, and an
experiment on benchmarks already employed in the literature demonstrates that
our ASP-based approach is efficient on large datasets, and performs better than
state-of-the-art methods in terms of overhead. As far as future work is concerned,
we plan to extend the Pruning method for handling inclusion dependencies, and
other tractable classes of tuple-generating dependencies.
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