
A Model for Fine-Grained Data Citation?

Susan Davidson1, Daniel Deutch2, Tova Milo2, and Gianmaria Silvello3

1 University of Pennsylvania, USA
susan@seas.upenn.edu

2 Tel Aviv University, Israel
{danielde,milo}@post.tau.ac.il

3 University of Padua, Italy
silvello@dei.unipd.it

Abstract. An increasing amount of information is being collected in
structured, evolving, curated databases, driving the question of how in-
formation extracted from such datasets via queries should be cited. Un-
like traditional research products which have a fixed granularity, data
citation is a challenge because the granularity varies. Different portions
of the database, with varying granularity, may have different citations.
Furthermore, there are an infinite number of queries over a database, so
we cannot hope to explicitly attach a citation to every possible result set
and/or query. We present the novel problem of automatically generat-
ing citations for general queries over a relational database, and explore
a solution based on citation views, each of which attaches a citation to
a view of the database. Citation views are then used to automatically
construct citations for general queries.

1 Introduction

Citation is essential to traditional scholarship. It helps identify the cited material
so that it can be retrieved, gives credit to the creator of the material, dates it, and
so on. In the context of printed materials, such as books and journals, citation
is well understood. However, the world is now digital, and an increasing amount
of information is being collected in structured and evolving curated databases,
driving database owners, publishers and standards groups to consider how such
data should be cited [6].

Unlike traditional publications which have a fixed granularity to which
citations can be attached – e.g. a conference proceedings, or a paper in a con-
ference proceedings – data citation is a challenge because the granularity varies.
For example, the content of a scientific database frequently represents the ef-
fort of a large number of members of the scientific community (some use cases
are presented in Section 2). Different portions of the database, with varying
granularity, are contributed and/or curated by different subgroups of these in-
dividuals. While a citation to the database as a whole is typically provided as a
traditional publication, whose author list includes the owners and developers of

? This is an extended abstract of [5]. Please refer to the original paper for more details.



the resource, there is a growing belief that contributors/curators should be ac-
knowledged when their data is extracted and used. That is, when the database
is queried and a result set returned, the citation (i.e. a textual snippet to be
used as a reference) for that data should include information about the contrib-
utors/curators of the result set as well as of the data used to compute it. The
latter depends on the query.

Since there are a potentially infinite number of queries, each accessing and
generating different subsets of the database, we cannot hope to explicitly attach
a citation to every possible result set and/or query. Instead, we must find ways
of specifying citations for some semantically meaningful portions of the database
(possibly defined declaratively via queries), and use these to automatically con-
struct citations for more general queries. Thus data citation is a computational
problem, as argued in [3] and fleshed out in more detail here.

Our approach draws inspiration from results in two areas: query rewriting
using views, which has been well studied in the context of query optimization,
data integration [2], and database provenance [7].

We start with a notion of citation views, through which database own-
ers specify how citations are attached to the output of some number of queries
(views) over the database representing typical usage patterns. The citation to a
general query is then constructed by rewriting it to a set of equivalent queries
using the citation views, and combining the citations attached to these views
to construct a citation to the query (Section 3). To construct the citation, we
leverage the fact that citations and provenance are both forms of annotation that
are manipulated through queries [4]. In particular, the joint (·) and alternative
(+) use of annotations within a rewriting are modeled using the semirings ap-
proach of [7] presented in Section 4. We close in Section 5 by discussing several
open issues that must be addressed in developing a practical solution to this
challenging problem.

2 Use cases

Currently, several data resources specify how citations to single resources, col-
lections, result lists and data subsets should be constructed but do not generate
the appropriate citation. Three such examples are Eagle-i4 (an RDF dataset
built to facilitate translational science research which allows researchers to share
information about resources such as cell lines and software), Reactome5, an
open-source, curated and peer reviewed pathway relational database, and Drug-
bank6, a relational database (available also as RDF and XML) combining de-
tailed chemical, pharmacological and pharmaceutical data with comprehensive
sequence, structure, and pathway information. Instructions are given on which
snippets of information on the web page view of the resource should be included
in a citation to the resource, but generating the citation is left to the user.

4 https://www.eagle-i.net/
5 http://www.reactome.org/
6 http://www.drugbank.ca/



The example we will use throughout the remainder of this paper is the
IUPHAR/BPS Guide to Pharmacology (GtoPdb).7 GtoPdb is a relational data-
base that contains expertly curated information about drugs in clinical use and
some experimental drugs. Users view information through a hierarchy of web
pages: The top level divides information by families of drug targets that re-
flect typical pharmacological thinking; lower levels divide the families into sub-
families and so on down to individual drugs. The content of a particular family
“landing” page is curated by a committee of experts; a family may also have a
“detailed introduction page” which is written by a set of contributors, who are
not necessarily the same as the committee of experts for the family. Currently,
citations for these views are hard-coded into the web pages – queries are issued
against the underlying relational database to obtain content for the page as well
as the committee members or contributors. Thus, GtoPdb in fact does generates
citations, but only to a subset of the possible queries against the underlying
relational database, i.e. those corresponding to web-page views of the data.

In the future, the owners of GtoPdb would like to allow users to issue
general queries against the relational database and automatically generate a
citation for the result. We address this problem in the remainder of the paper.

3 Citation Views and Rewriting

We assume that queries and views are expressed as Conjunctive Queries (see [1]
for an overview). Given a databaseD, we start with a set of view definitions. Each
view definition has an associated citation query CV and citation function FV .
A citation view consists of a view query, a citation query, and citation function.
The citation function takes as input the citation query result, and returns a
citation. The citation becomes an annotation on each tuple in the view query
result. The view and citation queries may be parameterized, which we discuss
shortly.

Definition 1. A citation view is a triple (V , CV , FV ) where

– V is the view definition of form λX.V (Y ) :− Q;
– CV is the citation query of form λX. CV (Y ′) :− Q′; and
– FV is the citation function which transforms the output of the citation query

(i.e. the bindings to variables Y ′) into a citation in some desired format,
such as JSON or XML.

In V and CV :

– Q and Q′ are conjunctions of atoms;
– X = [x1, ..., xn], Y = [y1, ..., ym], Y ′ = [y′1, ..., y

′
p] are ordered sequences of

variables;
– X ⊆ Y are subsets of the variables in Q;
– X and Y ′ are subsets of the variables in Q′.

7 http://www.guidetopharmacology.org/



The terms x1, ..., xn are the parameters of V and CV . Parameters are optional,
in which case the λ-term may be dropped. If there is a λ-term the citation view
is called parameterized.

Each choice of values for the parameters may lead to a different view in-
stance and different citation. We denote the view instance by applying the view
to the input parameter values, e.g. if the view is

λ(x1, . . . , xn)V (Y ) :− Q
and is passed parameter values (a1, . . . , an), we write

V (Y )(a1, . . . , an).
Since the citation query Q′ is also parametrized by X, each valuation of X leads
to a different result for Q′. The output of the citation function – the citation for
the view – becomes an annotation on each tuple in the output of the instantiated
view. Thus for every sequence of parameter values (a1, . . . , an), the citation for
all tuples in V (Y )(a1, . . . , an) is Fv(Cv(Y

′)(a1, . . . , an)). Note that the citation
views and queries have to be defined by the DBA and thus they can be con-
sidered a user choice. On the other hand, we can also foresee some methods to
automatic define views and queries for instance by using query logs.

Example 1. We use as a running example a simplified database schema for
GtoPdb, in which keys are underlined:

Family(FID, FName, Type)
FamilyIntro(FID, Text)
Person(PID, PName, Affiliation)
FC(FID, PID), FID references Family, PID references Person
FIC (FID, PID), FID references FamilyIntro, PID references Person
MetaData(Type, Value)

Intuitively, FC captures the committee members who curate the content of
a family page while FIC captures the contributors who author the Family Intro-
duction page of a family. The last table, MetaData, captures other information
that may be useful to include in citations, such as the owner of the database
(“Owner”, “Tony Harmar”), the URL of the database (“URL”, “guidetopharma-
cology.org”) and the current version number of the database (“Version”, “23”).

To express citation views for GtoPdb we start by defining a small set of
view definitions.

λF.V 1(F,N, Ty) :−Family(F,N, Ty)
λF.V 2(F, Tx) :−FamilyIntro(F, Tx)

V 3(F,N, Ty) :−Family(F,N, Ty)

All views except V 3 are parameterized. V 1 and V 2 restrict the output to a single
tuple since the parameter, F, corresponds to the key FID in Family. V 3 contains
all tuples in Family. For each of the views, we define a citation query.

λF. CV 1(F,N, Pn) :− Family(F,N, Ty), FC(F,C), P erson(C,Pn,A)
λF. CV 2(F,N, Tx, Pn) :− Family(F,N, Ty), FamilyIntro(F, Tx),



FIC(F,C), P erson(C,Pn,A)
CV 3(X1, X2) :− MetaData(T1, X1), T1 = “Owner”,

MetaData(T2, X2), T2 = “URL”

Since V1 and its citation query CV 1 are parameterized by F, each valuation
of V1 results in a single tuple and each tuple may have a different citation. As
an example, for the family with FID=11 the citation is a function of the result of
CV 1(F,N,Pn)(“11”), which consists of the family id, name and list of committee
members. In contrast to V 1 and V 2, V 3 is not parameterized, which means
that all tuples have the same citation in V3. CV 3 uses the MetaData table to
obtain the url and owner of the database.

Database owners specify a set of citation views, from which the citation
for a general query over the database will be constructed. Our approach is to
rewrite as much of the query as possible using the view definitions, and combine
their citations to construct a citation for the input query. We start by defining
what a rewriting is.

Definition 2. Let R be a set of relation names, Q be a query, and V be a set
of views. The query Q′ is a rewriting of Q using V if:

– the subgoals of Q′ are either relation names in R, views in V, or comparison
predicates;

– Q′ is equivalent to Q;
– no subgoal of Q′ can be removed and obtain an equivalent query; and
– no subset of subgoals of Q′ can be replaced by a view in V and obtain an

equivalent query.

A rewriting is total if its subgoals contain only views and comparison pred-
icates; otherwise, if its subgoals also contain relation names, it is partial. We
illustrate the trade-offs between different rewritings in terms of the citations
generated through an example.

Example 2. Let us consider a query which finds the name and text of the intro-
duction of families with type “gpcr”.

Q(N,Tx) :− Family(F,N, Ty), FamilyIntro(F, Tx), T y = “gpcr”

Q can be rewritten in several ways, including:

Q1(N,Tx) :−V 1(F,N, Ty), V 2(F, Tx), T y = “gpcr”
Q2(N,Tx) :−V 3(F,N, Ty), V 2(F, Tx), T y = “gpcr”

These two rewritings are total and the difference between Q1 and Q2 is
that the former uses V1, while the latter uses V3; CV 1 produces a citation for
each distinct family, whereas CV 3 provides a single citation for the entire view.
In this sense, V 3 is more general than V 1. In neither case is the comparison
predicate Ty = “gpcr” matched by the lambda term of the view.



4 Combining citations

As we have seen, a single query may be rewritten in multiple ways and each
rewriting may use one or more views. The question is how the citation for the
query result should be defined as a function of these rewritings. To do this,
observe that citations and provenance are both forms of annotation that are
manipulated through queries [4]. We therefore take inspiration from work on
database provenance, in particular that of provenance semirings [7], to model
the different ways in which citations views are combined.

In provenance semirings, provenance tokens (base annotations) are associ-
ated with each tuple in a relational instance (EDB). Restricting our attention to
SPJU queries, there are two ways in which tuples are combined through queries:

– Joint use, as in a join which combines two tuples to form a new tuple. In this
case, the provenance annotation of the new tuple is the ‘·’ of the annotations
of the two input tuples.

– Alternate use, as when one or more tuples are “identified” via unions or
projections to form a new tuple. In this case, the provenance annotation of
the new tuple is the ‘+’ of the annotations of all input tuples.

In citations, annotations are defined through the citation queries (and their
corresponding functions). Citation views are combined in two different ways
when providing a citation to general queries: they may appear jointly in equiv-
alent rewritings of the query, or they may appear in alternate rewritings.

In the following, we will assign query output with citations that are the
combination of results of citation functions, through + and · based on the use of
the views in the query. The resulting structure of citations is that of a commuta-
tive semiring: we start with a set of basic citations C, and introduce an abstract
operation + on it with the properties that + is commutative, associative, and
has some neutral element 0 in C. Similarly we introduce an operation · with the
same properties, but with a different neutral element 1. Last, we impose that ·
is distributive over +.

We start by defining a citation for a single binding of a single rewriting of
the query. This dictates a single output tuple, and a particular valuation to the
parameters of the views. We define the citation of the output tuples as the joint
use of citations for the views and the parameter valuations, denoted by “·”.

Definition 3. Let Q be a query, let V be a set of citation views and let Q′ be a
(partial) rewriting of Q using V 1, ..., V n ∈ V . Further let B be a binding to the
variables of Q′, yielding an output tuple t. The citation for t w.r.t. Q,Q′, V, B,
denoted as cite(t, Q,Q′, V, B), is defined as FV 1(CV 1(B1)) · . . . · FV n(CV n(Bn))
where Bi is the application of B to the variables occurring in an atom involving
V i in Q′.

Example 3. Consider the rewriting Q1 from Example 2, and consider the bind-
ing to its variables F=“11”, N=“Calcitonin”, Ty = “gpcr” and Tx=“stuff”. The
resulting tuple is (“Calcitonin”, ”stuff”), and the citation we get for this partic-
ular binding is the citation assigned in V 1 to family “11” (note that the lambda



parameter of V 1 is F ), combined via · with the one assigned in V 2 to the same
family (i.e., FV 1 · FV 2): {ID: “11”, Name: “Calcitonin”, Committee: [“Hay”,
“Poyner”]} · {ID: “11”, Name: “Calcitonin”, Text: “The calcitonin peptide fam-
ily ”, Contributors: [“Brown”, “Smith”]}.

So far we have only defined the citation for a single binding. Multiple
bindings lead to multiple alternative citations, which we capture using +.

Definition 4. Let Q,V,Q′ be as in Definition 3, and let βt be the set of all
bindings for Q′ that yield a tuple t. The citation for t w.r.t. Q,Q′ (denoted as
cite(t, Q,Q′, V )) is denoted as ΣB∈βtcite(t, Q,Q

′, V, B).

Example 4. Recall Q1 and assume now that the family name N=“Calcitonin”
is shared by two families, with identifiers 11 and 12. This leads to two bindings
to the variables of Q1, and intuitively to two ways of using the views to get the
output tuple (“Calcitonin”). The citation for the tuple, in this case, will be a
“+” over the expression in Example 3 and a similar expression for family id 12:
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]} · {ID: “11”,
Name: “Calcitonin”, Text: “The calcitonin peptide family”, Contributors: [“Brown”,
“Smith”]} + {ID: “12”, Name: “Calcitonin”, Text: “The calcitonin peptide fam-
ily”, Contributors: [“Brown”, “Hey”]}

For example, “·” could be a join of some sort and “+” could be union.

Finally, a query may have multiple rewritings, each leading to a possibly
different citation. These are again alternatives, but the function used to combine
the citations for them may be different than the one used for multiple bindings
for a single rewriting. We therefore use +R (“+ for rewritings”) to denote this
function, whose operands are elements of the citation semiring (i.e. polynomials
using + and ·). +R has a neutral value 0R, and is associative and commutative.
Note that this is a formal semantics, not a means of computation: going through
all rewritings would be an impractical implementation.

There are many interpretations “·” , “+”, and +R that could be used. For
“·” and “+”, union or join are natural interpretations. For +R, the “minimum” in
some ordering would also be natural. These ordering could reflect how “precise”
or “comprehensive” the rewritings are relative to each other, or the “size” of the
resulting citation.

5 Final Remarks

We presented an approach for automatically constructing citations to informa-
tion extracted from a database via general queries. In this approach, owners of
the database specify citations to a small set of (possibly parameterized) views
of the database which represent typical usage patterns; they also give interpre-
tations to the combining functions + , · and +R. A query against the database
is then rewritten using the views, and a citation for the result set constructed
using the interpretations of the combining functions.



The described model can be used for constructing citations using only
schema level information (as is done in query optimization using views) as well
as using citation annotations attached to tuples (as is done with reasoning about
provenance). Note that reasoning at the tuple level requires changes to an ex-
isting database both in terms of the schema (to capture citation annotations on
view tuples) and in terms of query processing (to combine citation annotations).

While we have formally defined a model for citations for query results,
we have not given efficient means for computing them. In particular, it is in-
feasible both in terms of run time and the size of the resulting citation to go
through all rewritings and all assignments within each of them. A precursor for
algorithms in this respect is further modeling of (some of) the “black boxes” of
the model, which include the citation functions and the semiring operations. We
have demonstrated initial ideas in this respect, such as the assumption of idem-
potence over + and its use in some cases. Even for restricted cases, designing
efficient algorithms for computing citations is a non-trivial task. To this end,
our future work will also study further connections to relevant classic problems
in the literature such as query inclusion (which we have mentioned as useful for
the preference relation); query rewriting using views; using logs to understand
database usage and decide what citation views should be specified; caching and
materialization; and the maintenance and presentation of data provenance.

Acknowledgments The authors would like to thank Peter Buneman and Val
Tannen for many fruitful discussions. Peter Buneman initially formulated several
of these ideas in the context of XML. This work has been partially funded by NSF
IIS 1302212, NSF ACI 1547360, and NIH 3-U01-EB-020954-02S1; by the ERC
under the FP7, ERC grant MoDaS, agreement 291071; by the ISF (1636/13);
and by a grant from the Blavatnik Interdisciplinary Cyber Research Center.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. F. A. Afrati, C. Li, and J. D. Ullman. Using views to generate efficient evaluation
plans for queries. Journal of Computer and System Sciences, 73(5):703–724, 2007.

3. P. Buneman, S. B. Davidson, and J. Frew. Why data citation is a computational
problem. Communications of the ACM (CACM), 59(9):50–57, 2016.

4. J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases, 1(4):379–474, 2009.

5. S. B. Davidson, D. Deutsch, M. Tova, and G. Silvello. A Model for Fine-Grained
Data Citation. In 8th Biennial Conference on Innovative Data Systems Research
(CIDR 2017), 2017.

6. N. Ferro and G. Silvello. The Road Towards Reproducibility in Science: The Case
of Data Citation. In C. Grana and L. Baraldi, editors, Proc. 13th Italian Research
Conference on Digital Libraries (IRCDL 2017). Communications in Computer and
Information Science (CCIS), Springer, Heidelberg, Germany, 2017.

7. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. In L. Libkin,
editor, Proc. of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, pages 31–40. ACM Press, New York, USA, 2007.


