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Abstract. The Deep Web is constituted by data that are accessible
through Web pages, but not indexable by search engines as they are re-
turned in dynamic pages. In this paper we propose a conceptual frame-
work for answering keyword queries on Deep Web sources represented
as relational tables with so-called access limitations. We formalize the
notion of optimal answer and characterize queries for which an answer
can be found.
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1 Introduction

It is well known that the data available on the Web through forms and in general
in dynamic pages constitutes a corpus of data that is way larger than the Web
data that are indexed by search engines. The former are commonly referred to
as Deep Web, that is, data “hidden” in local databases whose content can only
be accessed through queries. This happens for instance when we search for a
flight on the Web site of an airline company – the data make sense only for
a short time, after which they become obsolete due to the frequent changes of
prices and availability. This immediately poses an interesting challenge, i.e., how
to automatically retrieve relevant information from the Deep Web – a problem
that has been investigated in recent years (see, e.g., [2, 4, 15] for discussion).

Usually, a data source in the Deep Web is modeled at the logical level by a
relational table in which some columns, called input attributes, represent fields
of a form that need to be filled in so as to retrieve data from the source, while
all the others, called output attributes, represent values that are returned to
the user. Consider for instance the following relations in which the i superscript
denotes the input attributes.

r1 =
Depti Emp

IT John t11
AI Mike t12

r2 =

Empi Proj
John P1 t21
Ann P2 t22
Mike P2 t23

r3 =
Proji Emp Role
P1 John DBA t31
P1 Ann Analyst t32

Relation r1 represents a form that, given a department, returns all the employ-
ees working in it; relation r2 a form that, given an employee, returns all the
projects he/she works on; and relation r3 a form that, given a project, returns
the employees working in it along with their role. These access modalities are
commonly referred to as access limitations, in that data can only be queried
according to given patterns.



Different approaches have been proposed in the literature for querying
databases with access limitations: conjunctive queries [3], natural language [13],
and SQL-like statements [11]. In this paper, we address the novel problem of
accessing the Deep Web by just providing a set of keywords, in the same way in
which we usually search for information on the Web with a search engine.

Consider for instance the case in which the user only provides the keywords
“DBA” and “IT” for querying the portion of the Deep Web represented by the
relations above. Intuitively, he/she is searching for employees with the DBA role
in the IT department. Given the access limitations, this query can be concretely
answered by first accessing relation r1 using the keyword IT, which allows us
to extract the tuple t11. Then, using the value John in t11, we can extract the
tuple t21 from relation r2. Finally, using the value P1 in t21, we can extract the
tuples t31 and t32 from relation r3. Now, since t31 contains DBA, it turns out
that the set of tuples {t11, t21, t31} is a possible answer to the input query in
that the set is connected (every two tuples in it share a constant) and contains
the given keywords. However, the tuple t21 is somehow redundant and can be
safely eliminated from the solution, since the set {t11, t31} is also connected and
contains the keywords. This example shows that, in this context, the keyword
query answering problem can be involved and tricky, even in simple situations.

In the rest of this paper, we formally investigate this problem in depth. We
first propose, in Section 2, a precise semantics of (optimal) answer to a keyword
query in the Deep Web. We then tackle, in Section 3, the problem of finding
an answer to a keyword query by assuming that the domains of the keywords
are known in advance. This allows us to perform static analysis to immediately
discard irrelevant cases from our consideration. Section 4 ends the paper with
some conclusions and future works.

Related work To the best of our knowledge, ours is the first comprehensive
approach to the problem of querying the Deep Web using keywords. Other works
addressed keyword search on relational data previously extracted from the Deep
Web [?]. This paper reports results previously published in [?], the paper where
we illustrate our techniques for keyword search in the Deep Web.

The problem of query processing in the Deep Web has been widely investi-
gated in the last years, with different approaches and under different perspectives
including: data crawling [16], integration of data sources [9], query plan optimiza-
tion [3], and generic structured query models [11]. However, none of them has
tackled the problem that we have addressed in this paper.

The idea of querying structured data using keywords emerged more than a
decade ago [1] as a way to provide high-level access to data and free the user from
the knowledge of query languages and data organization. Since then, a lot of work
has been done in this field (see, e.g., [18] for a survey) but never in the context
of the Deep Web. This problem has been investigated in the context of various
data models: relational [12], semi-structured [14], XML [8], and RDF [17]. Within
the relational model, the common assumption is that an answer to a keyword
query is a graph of minimal size in which the nodes represent tuples, the edges
represent foreign key references between them, and the keywords occur in some



node of the graph [10]. Our definition of query answer follows this line but it is
more general, since it is only based on the presence of common values between
tuples, while not forcing the presence of foreign keys.

The various approaches to keyword query answering over relational databases
are commonly classified into two categories: schema-based and schema-free.
Schema-based approaches [1, 10] make use, in a preliminary phase, of the
database schema to build SQL queries that are able to return the answer.
Conversely, schema-free approaches [7, 12] rely on exploration techniques over
a graph-based representation of the whole database. Since the search for an op-
timal answer consists in finding a minimal Steiner tree on the graph, which is
known to be an NP-Complete problem [6], the various proposals rely on heuris-
tics aimed at generating approximations of Steiner trees. Our approach makes
use of the schema of the data sources but cannot be classified in any of the
approaches above since, given the access limitations, it rather relies on building
a minimal query plan of accesses to the data sources.

2 Preliminaries and problem definition

We model data sources as relations of a relational database and we assume that,
albeit autonomous, they have “compatible” attributes. For this, we fix a set
of abstract domains D = {D1, . . . , Dm}, which, rather than denoting concrete
value types (such as string or integer), represent data types at a higher level of
abstraction (for instance, car or country). Therefore, in an abstract domain an
object is uniquely represented by a value. The set of all values is denoted by
D =

⋃n
i=1 Di. For simplicity, we assume that all abstract domains are disjoint.

We then say that a (relation) schema r, customarily indicated as r(A1, . . . , Ak),
is a set of attributes {A1, . . . , Ak}, each associated with an abstract domain
dom(Ai) ∈ D, 1 ≤ i ≤ k. A database schema S is a set of schemas {r1, . . . , rn}.

As usual, given a schema r, a tuple t over r is a function that associates a
value c ∈ dom(A) with each attribute A ∈ r, and a relation instance rI of r is a
set of tuples over r. For simplicity, we also write dom(c) to indicate the domain
of c. A (database) instance I of a database schema S = {r1, . . . , rn} is a set of
relation instances {rI1 , . . . , rIn}, where rIi denotes the relation instance of ri in I.

For the sake of simplicity, in the following we assign the same name to at-
tributes of different schemas that are defined over the same abstract domain.

Definition 1 (Access pattern). An access pattern Π for a schema
r(A1, . . . , Ak) is a mapping Π : {A1, . . . , Ak} → M , where M = {i, o} is called
access mode, and i and o denote input and output, respectively; Ai is corre-
spondingly called an input (resp., output) attribute for r wrt Π.

Henceforth, we denote input attributes with an ‘i’ superscript, e.g., Ai. Moreover,
we assume that each relation has exactly one access pattern.

Definition 2 (Binding). Let A′
1, . . . , A

′
` be all the input attributes for r wrt

Π; any tuple b = 〈c1, . . . , c`〉 such that ci ∈ dom(A′
i) for 1 ≤ i ≤ ` is called a

binding for r wrt Π.



Definition 3 (Access). An access is a pair 〈Π, b〉, where Π is an access pattern
for a schema r and b is a binding for r wrt Π. The output of such an access on
an instance I is the set T of all tuples in the relation rI ∈ I over r that match
the binding, i.e., such that T = σA1=c1,...,A`=c`(r).

Intuitively, we can only access a relation if we can provide a binding for it, i.e.,
a value for every input attribute.

Definition 4 (Access path). Given an instance I for a database schema S,
a set of access patterns Π for the relations in S, and a set of values C ⊆ D, an

access path on I (for S, Π and C) is a sequence
b1−→rI1
T1

b2−→rI2
· · · bn−→rIn

Tn,

where, for 1 ≤ i ≤ n, (i) bi is a binding for a relation ri ∈ S wrt a pattern
Πi ∈ Π for ri, (ii) Ti is the output of access 〈Πi, bi〉 on I, and (iii) each value
in bi either occurs in Tj with j < i or is a value in C.

Definition 5 (Reachable portion). A tuple t in I is said to be reachable
given C if there exists an access path P (for S, Π and C) such that t is in the
output of some access in P ; the reachable portion reach(I,Π, C) of I is the set
of all reachable tuples in I given C.

In the following, we will write SΠ to refer to schema S under access patterns Π.

Example 1. Consider the following instance I of a schema SΠ =
{r1(Ai, B), r2(Bi, A), r3(Ai, B,C)}.

r1 =
Ai B
a1 b1 t11
a2 b3 t12

r2 =

Bi A
b1 a2 t21
b2 a2 t22
b1 a4 t23

r3 =

Ai B C
a2 b1 c1 t31
a3 b2 c2 t32
a4 b4 c1 t33

Then, for instance, {t11} is the output of the access with binding 〈a1〉 wrt

r1(Ai, B), and
〈a1〉−→rI1

{t11}
〈b1〉−→rI2

{t21, t23}, is an access path for S, Π and

C = {a1}, since, given C, we can extract t11 from r1 and, given {b1} from t11,
we can extract t21 and t23 from r2. The reachable portion of I, given C, is
reach(I,Π, C) = {t11, t12, t21, t23, t31, t33}, while {t22, t32} ∩ reach(I,Π, C) = ∅.
Figure 1a shows the reachable portion I ′ of I given C along with the access
paths used to extract it, with dotted lines enclosing outputs of accesses.

The definition of answer to a keyword query in our setting requires the prelimi-
nary notion of join graph.

Definition 6 (Join graph). Given a set T of tuples, the join graph of T is a
node-labeled undirected graph 〈N,E〉 constructed as follows: (i) the nodes N are
labeled with tuples of T , with a one-to-one correspondence between tuples of T
and nodes of N ; and (ii) there is an arc between two nodes n1 and n2 whenever
the tuples labeling n1 and n2 have at least one value in common.
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Fig. 1: Illustration of Examples 1, 2, and 3.

Example 2. Consider instance I of Example 1 and the reachable portion I ′ of I
given {a1}, shown in Figure 1a. The join graph of I ′ is shown in Figure 1b.

A keyword query (KQ) is a non-empty set of values in D called keywords.

Definition 7 (Answer to a KQ). An answer to a KQ q against a database
instance I over a schema SΠ is a set of tuples A in reach(I,Π, q) such that:
(i) each keyword k ∈ q occurs in at least one tuple t in A; (ii) the join graph
of A is connected; (iii) no proper subset A′ ⊂ A satisfies both Conditions (i)
and (ii) above.

It is straightforward to see that there could be several answers to a KQ; below
we give a widely accepted criterion for ranking such answers [18].

Definition 8. Let A1,A2 be two answers to a KQ q on an instance I. We say
that A1 is better than A2 if |A1| ≤ |A2|. The optimal answers are those of
minimum size.

Example 3. Consider a KQ q = {a1, c1} over the instance I of Example 1. Fig-
ure 1a shows two possible answers: A1 = {t11, t31} and A2 = {t11, t23, t33}. A1

is better than A2 and is the optimal answer to q.

3 Detecting non-answerable queries

For convenience of notation, we sometimes write c : D to denote value c and
indicate that dom(c) = D. In addition, in our examples, the name of an attribute
will also indicate its abstract domain.

3.1 Compatible queries

In order to focus on meaningful queries, we semantically characterize queries for
which an answer might be found.



Definition 9 (Compatibility). A KQ q is said to be compatible with a schema
S if there exist a set of access patterns Π and an instance I over SΠ such that
there is an answer to q against I.

Example 4. The KQ q1 = {a : A, c : C} is not compatible with schema S1 =
{r1(A,B), r2(C,D)}, since no set of tuples from S containing all the keywords in
q1 can ever be connected, independently of the access patterns for S1. Conversely,
q1 is compatible with S2 = {r1(A,B), r3(B,C)}, as witnessed by a possible
answer {r1(a, b), r3(b, c)} and patterns Π such that SΠ2 = {r1(Ai, B), r3(B,C)}.

Similarly, KQ q2 = {a : A, a′ : A} is compatible with a schema S3 =
{r1(A,B)}, as witnessed by a possible answer {r1(a, b), r1(a′, b)} and patterns
Π such that SΠ3 = {r1(Ai, B)}. However, q2 is not compatible with a schema
S4 = {r4(A)}, since a unary relation, alone, can never connect two keywords.

Checking compatibility of a KQ with a schema essentially amounts to checking
reachability on a graph. The main idea is that in order for an answer to ever be
possible, we must find an instance that exhibits a witness (i.e., a set of tuples)
satisfying all the conditions of Definition 7.

3.2 Answerable queries

A stricter requirement than compatibility is given by the notion of answerability.

Definition 10 (Answerability). A KQ q is answerable against a schema SΠ
if there is an instance I over SΠ such that there is an answer to q against I.

Example 5. Consider KQ q = {a : A, c : C} and schema SΠ1 = {r(Ai, B),
s(B,C,Di)}. Although q is compatible with S1, it is not answerable against
SΠ1 , since no tuple from S1 can be extracted under Π (no values for domain D
are available). Conversely, q is answerable against SΠ2 = {r(Ai, B), s(Bi, C,D)},
since an answer like {r(a, b), s(b, c, d)} could be extracted by first accessing r
with binding 〈a〉, thus extracting value b, and then s with binding 〈b〉.

In order to check answerability, we need to check that all the required relations
can be accessed according to the access patterns. To this end, we first refer to a
schema enriched with unary relations representing the keywords in the KQ. 1

Definition 11 (Expanded schema). Let q be a KQ over a schema SΠ. The
expanded schema SΠq of SΠ wrt. q is defined as SΠq = SΠ∪{rc(C)|c ∈ q}, where

rc is a new unary relation, not occurring in SΠ, whose only attribute C is an
output attribute with abstract domain dom(C) = dom(c).

Then, we use the notion of dependency graph (d-graph) to denote output-input
dependencies between relation arguments, indicating that a relation under access
patterns needs values from other relations.

1 If other values are known besides the keywords, this knowledge may be represented
by means of appropriate unary relations with output mode in the schema.



Definition 12 (d-graph). Let q be a KQ over a schema SΠ. The d-graph GSΠ

q

is a directed graph 〈N , E〉 defined as follows. For each attribute A of each relation
in the expanded schema SΠq , there is a node in N labeled with A’s access mode
and abstract domain. There is an arc uyv in E whenever: (i) u and v have the
same abstract domain; (ii) u is an output node; and (iii) v is an input node.

Some relations are made invisible by the access patterns and can be discarded.

Definition 13 (Visibility). An input node vn ∈ N in a d-graph 〈N , E〉 is
visible if there is a sequence of arcs u1

yv1, . . . , un
yvn in E such that (i) u1’s

relation has no input attributes, and (ii) vi’s and ui+1’s relation are the same,
for 1 ≤ i ≤ n− 1. A relation is visible if all of its input nodes are.

Example 5 (cont.). Consider the KQ and the schemas from Example 5. The d-

graphs G
SΠ
1

q and G
SΠ
2

q are shown in Figures 2a and Figure 2b, respectively.
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Fig. 2: D-graphs from the Examples.

Answerability of a KQ q is checked by means of compatibility with a schema in
which all non-visible relations have been eliminated.

Example 6. Consider a KQ q = {a : A, c : C} and a schema SΠ =

{r(Ai, B), s(Ci, D), u(B,D,Ei)}. Relation u is not visible in GSΠ

q (Figure 2c).

Then, q is not answerable in SΠ, since q is not compatible with schema
{r(A,B), s(C,D)} (i.e., S without relation u).



4 Conclusions and future work

We have defined the problem of keyword search in the Deep Web. We are cur-
rently working on minimizing the number of accesses to the data sources.

We believe that several interesting issues can be studied in the framework
defined in this paper. We plan, e.g., to leverage known values (besides the key-
words) and ontologies to speed up the search for an optimal answer as well as
to consider the case in which nodes and arcs of the join graph are weighted to
model source availability and proximity, respectively.

References

1. Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system for
keyword-based search over relational databases. In ICDE, pages 5–16, 2002.

2. Meghyn Bienvenu et al. Dealing with the deep web and all its quirks. In Proc. of
VLDS, pages 21–24, 2012.

3. Andrea Cal̀ı and Davide Martinenghi. Querying data under access limitations. In
ICDE, pages 50–59, 2008.

4. Andrea Cal̀ı and Davide Martinenghi. Querying the deep web. In EDBT, pages
724–727, 2010.

5. Andrea Cal̀ı, Davide Martinenghi, and Riccardo Torlone. Keyword search in the
deep web. In Proc. of the 9th AMW, 2015.

6. M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing
Steiner minimal trees. SIAM J. on Applied Mathematics, 32(4):835–859, 1977.

7. Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword proximity
search in complex data graphs. In SIGMOD, pages 927–940, 2008.

8. Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. Xrank:
ranked keyword search over xml documents. In SIGMOD, pages 16–27, 2003.

9. Bin He, Zhen Zhang, and Kevin Chen-Chuan Chang. Metaquerier: querying struc-
tured web sources on-the-fly. In Proc. of SIGMOD, pages 927–929, 2005.

10. Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in rela-
tional databases. In VLDB, pages 670–681, 2002.

11. Hasan M. Jamil and Hosagrahar V. Jagadish. A structured query model for the
deep relational web. In CIKM, pages 1679–1682, 2015.

12. Benny Kimelfeld and Yehoshua Sagiv. Finding and approximating top-k answers
in keyword proximity search. In PODS, pages 173–182, 2006.

13. Jens Lehmann et al. Deqa: Deep web extraction for question answering. In
ISWC’12, pages 131–147. Springer-Verlag, 2012.

14. Guoliang Li et al. EASE: an effective 3-in-1 keyword search method for unstruc-
tured, semi-structured and structured data. In SIGMOD, pages 903–914, 2008.

15. Jayant Madhavan, Loredana Afanasiev, Lyublena Antova, and Alon Y. Halevy.
Harnessing the deep web: Present and future. In CIDR, 2009.

16. Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web. In VLDB,
pages 129–138, 2001.

17. Thanh Tran et al. Top-k exploration of query candidates for efficient keyword
search on graph-shaped (rdf) data. In ICDE, pages 405–416, 2009.

18. Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational databases:
A survey. IEEE Data Eng. Bull., 33(1):67–78, 2010.


