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Abstract. Detecting duplicates is a pervasive data quality challenge
that hinders organizations from extracting value from their data sooner.
The increased complexity and heterogeneity of modern datasets has lead
to the presence of varying record formats, missing values, and evolving
data semantics. As data is integrated, duplicates inevitably occur in the
integrated instance. One of the challenges in deduplication is determining
whether two values are sufficiently close to be considered equal. Existing
similarity functions often rely on counting the number of required edits to
transform one value to the other. This is insufficient in attribute domains,
such as time, where small syntactic differences do not always translate to
’closeness’. In this paper, we propose a duplication detection framework,
which adapts metric functional dependencies (MFDs) to improve the
detection accuracy by relaxing the matching condition on numeric values
to allow a permitted tolerance. We evaluate our techniques against two
existing approaches using three real data collections, and show that we
achieve an average 25% and 34% improvement in precision and recall,
respectively, over non-MFD versions.

1 Introduction

Data quality has become a pervasive challenge for many industries and orga-
nizations, where the time to reap value from the data has been hindered by
missing values, inconsistencies, and duplicate records. Data duplication occurs
when a real-world entity has two or more different representations within or
across databases. Ideally, in an error-free system with perfectly clean data, each
record in a database has a unique identifier. Unfortunately, in most practical
cases, this does not occur, and the data often lacks a unique, global identifier.
This especially occurs in data integration when data is integrated from mul-
tiple sources across different departments or organizations. In such cases, it is
inevitable to introduce duplicates due to differences in record format, standard-
izations, schema and typos. Hence, identifying duplicates in the data is a critical
step towards ensuring reliable and trusted data.

However, identifying duplicates is not a trivial problem. Varying record se-
mantics, syntax, even the frequency of terms may affect the accuracy of iden-
tified duplicates. Existing solutions use string similarity to determine whether



two records are duplicates [11]. This process is far from perfect. String similarity
metrics consider all values as strings, and typically measure the number of edits
needed to transform one string to the other. This is not suitable for numeric
values, such as time, where small character differences can lead to large differ-
ences in semantics. For example, the difference between times ’2:02pm’ and
’12:02pm’ is only one character, but the actual semantic difference is 2 hours.
By using Euclidean distance, we can capture the actual difference between two
numeric values, but if users have data quality requirements that state a rela-
tionship between attributes in a database (e.g., movie theater and movie title
determine the movie start time), we need a mechanism that allows us to specify
data quality rules. These data quality rules can be used as additional information
to improve the accuracy of the duplicate detection task.

ID SRC FLIGHT DEP CTY DEST CTY DUR DEP TM ARR TM TERM GATE

r1 flightexplorer AA-1007-TP-MIA Tampa Miami 62 13:55 14:57 T1 D5

r2 airtravelcenter AA-1017-TPA-MIA Tampaa Miami 56 2:07 PM 3:03PM T1 D5

r3 myrateplan AA-1007-TPA-MIC Tampi Miami 52 14:03 14:55 T1 D5

r4 helloflight AAA-1007-TPA-MIA Tampe Miama 54 14:03 14:57 T1 D5

r5 flightexplorer AA-1518-YVV-SDF Vancouver Louisville 417 12:08 19:02 T2 A15

r6 airtravelcenter AA-1588-YVR-SDF Van Louis 418 12:09 PM 7:00 PM T2 A15

r7 myrateplan AA-1518-YVR-SDF Vancouver Louisville 432 12:13 19:25 T2 A15

r8 helloflight AAA-1518-YVR-SDF Van Louisvilla 430 12:10 19:22 T2 A15

Table 1: Sample flights data [1]

Example 1. Consider Table 1 containing a sample of real flight records for De-
cember 1st, 2011, collected from various online sources that state the departure
(DEP TM) and arrival (ARR TM) times of flights (FLIGHT) from a departure
city (DEP CTY) to a destination city (DEST CTY), with an expected flight
time duration (DUR) in minutes [1]. Upon observation, we can loosely recognize
that these records are likely duplicated based on two identifying flights. The data
contains several typos in FLIGHT, different representations in DEP CTY and
DEST CTY using short forms, and airport codes. In addition, the attributes
DUR, DEP TM, and ARR TM all have different values. The challenge is to
automatically determine which records are actually duplicates.

Existing approaches compare these attributes using string similarity, and
Euclidean distance, and check whether the values are sufficiently close to be i-
dentified as duplicates. These methods determine their similarity (or distance)
based on the syntactic forms of the values, and ignore any semantic relation-
ships among attributes. The drawback of this approach is that checking if two
values are ’close enough’ is often arbitrary, and subjective depending on the an-
alyst. In addition, correlations and dependencies among attributes often play an
important role in determining whether the records are clean.

In our example, suppose we have a data quality rule that states the DEP CTY
and DEST CTY determine the DUR. Intuitively, a departure and destination
city pair will give a unique flight duration. Existing database dependencies, such
as functional dependences are not robust enough to capture these functional



relationships from heterogeneous sources as they require the duration times to
be exactly equal. In Table 1, not all the flight durations between Tampa and
Miami are equal. While these may be in error, it is also possible that different
sources have different interpretations of departure time (and arrival time) leading
to different duration times. For example, some sources may consider departure
time as the time the aircraft leaves the gate, while others will consider it the
time the aircraft is off the ground. Due to these variations across heterogeneous
sources, the data contains small discrepancies that are tolerable.

In this paper, we propose a deduplication framework that uses a class of
data quality rules, called metric functional dependencies (MFD) that allows for
small variances in numeric values during the matching process [15]. We show
that by using these data quality rules, deduplication accuracy can be improved.
We make the following contributions:

1. We design a deduplication framework that uses metric functional dependen-
cies [15] to specify relationships among attribute values, and allows small
metric differences in numeric values. This helps to improve overall accuracy
when identifying duplicates.

2. During the matching process, we propose a weighting scheme that differen-
tiates terms (in a record) based on their frequency of occurrence.

3. We evaluate our approach against two existing solutions using real data
collections. We show that our solution achieves improved accuracy.

2 Preliminaries

2.1 Functional Dependencies

Our model assumes that the data is in a relational (tabular) format. Metric
functional dependencies (MFDs) are based on the same intuition as functional
dependencies (FDs). For a relation R, a functional dependency (FD) F : X → Y
is a constraint between two attribute sets X and Y . A data instance I of R
satisfies F , denote I � F , if for every pair of records r1, r2 ∈ I, if r1[X] = r2[X]
then r1[Y ] = r2[Y ]. Records that do not satisfy F are said to be inconsistent
w.r.t. F , or that they violate F .

Example 2. In Table 1, the FD F1: [GATE] → [TERM], states that a given
GATE determines which TERMINAL it belongs to. F1 is satisfied, since for
every unique value in attribute GATE, we observe a unique value in TERM.

2.2 Metric Functional Dependencies

For a relation R, a metric functional dependency (MFD) defines a relationship
between X and Y , where X and Y are attribute sets in R [15]. In general, we

can say that the MFD X
δ−→ Y with metric d holds if for any two records r, r′,

if r[X] = r′[X], then we have max(d(r[Y ], r′[Y ])) ≤ δ, where δ is a tolerance



parameter. Compared to FDs, MFDs relax the equality condition on the conse-
quent (Y ) attributes by allowing small differences. We can define the ”closeness”
of these values by a metric function d.

Example 3. In Table 1, records r5 and r7 do not satisfy FD F2 : [DEP CTY,
DEST CTY]→ DUR since r5[DUR] = 417 and r7[DUR] = 432. However, if we
allow a variance of δ = 15, then r5, r7 are no longer violations, and we can define

MFD σ : [DEP CTY, DEST CTY]
δ=15−−−→ [DUR] as a data quality rule on Table

1.

3 Framework Overview

Fig. 1: Framework modules.

Figure 1 presents an overview of our framework. In order to identify dupli-
cates, we need to compare records pairwise to calculate their similarity score. For
a database D, in the worst case, we potentially need to compare records pairwise
which involves |D|2 comparisons. This approach is computationally infeasible for
large datasets. To avoid this, we partition the records into disjoint blocks and
compare the records pairwise within a block. This reduces the overall number
of comparisons significantly. Assume D can be partitioned into m blocks, then
the number of comparison is |D|(|D|/m− 1). In this paper we use the k-means
unsupervised learning algorithm to cluster the records into blocks [19].

To cluster records, we consider each record as a document, and calculate the
tf-idf score for each term that appears in a record r. After this, each record
r ∈ D can be converted to a tf-idf vector v, which can be considered as a
n-dimensional vector. The k-means clustering can partition these vectors into
k sets to minimize the variance among them. We compute term frequencies
to automatically differentiate terms that will help to improve the accuracy in
identifying duplicates.

After record blocking, we need to compare records within a block. We take a
bottom-up approach that calculates the similarity of terms within a record, and
aggregate these scores to compute a similarity score between two records. During
term comparison, we distinguish terms based on their frequency of occurrence in
each block. We assume that terms occurring frequently contributes less towards
the overall score, and are not as good indicators of record similarity.

Finally, given a set of candidate duplicates, we apply an MFD σδ to refine
the set of matched duplicates by allowing small tolerances in the consequent
attribute values to provide greater flexibility during the matching step.



4 Duplicate Detection with MFDs

In this section, we present details of our framework, including the matching
functions we use, followed by the weighting scheme that differentiates terms
during the record comparison step. We then discuss how MFDs are used to
identify a greater number of duplicates.

4.1 Matching Functions

To deduplicate two records r and r′, we need to compare relevant terms from
each record, and aggregate the similarity scores to determine whether they are
sufficiently similar as duplicates. We assume a mapping exists to compare term
ti ∈ r with t′i ∈ r′. Hence, we can use similarity metrics to compute the similarity
between ti and t′i. We use two similarity functions in our framework: edit distance
and q-grams based matching. We note that while we select these two functions,
our framework supports other matching functions, and is agnostic to the type
of similarity function used.

The edit distance is a common metric to measure the distance between terms,
and it denotes the minimum number of edit operations to transform one term
to another. Let ed(ti, t

′
i) represent the similarity between terms ti, t

′
i using edit

distance, defined as simed(ti, t
′
i) = 1− editDist(ti,t

′
i)

max(|ti|,|t′i|)
.

The use of q-grams is a commonly used approach that converts a term to a set
of q-grams, and compares terms via comparing their q-gram sets. The intuition
is that if two strings are similar, they share a large number of q-grams. To
generate a q-grams set, we consider a sliding window of size q over r, and use the
sequence of characters within the window as a token. In this paper, we use q = 2,
and generate bi-gram tokens. For example, to compare ’paper’, ’pepper’ and
’page’, we divide each term into bi-gram tokens, and use a bi-gram bitmap to
determine whether a bi-gram appears in a value or record as showed in Table 2.

pa ap pe er ep pp ag ge
paper 1 1 1 1 0 0 0 0
pepper 0 0 1 1 1 1 0 0
page 1 0 0 0 0 0 1 1

Table 2: Bigrams bitmap.

It is efficient to calculate the similarity s-
core between two values via their bitmaps.
Let bt and bt′ represent the bitmap of record
r and r′ respectively, then the Jaccard simi-
larity[13] between two records can be defined

as Jacc(r, r′) = br∩br′
br∪br′

, where ∩ denotes bit-

wise AND operation, and ∪ denotes the bit-
wise OR. operation. Consider two terms t =
’paper’ and t′ = ’pepper, the correspond-
ing bitmaps are bt = [1, 1, 1, 1, 0, 0, 0, 0] and bt′ = [0, 0, 1, 1, 1, 1, 0, 0], and their
Jaccard similarity is Jacc(t, t′) = 2/6.

4.2 Differentiating Record Terms

Deduplicating two records r and r′ involves comparing relevant terms from each
record, and aggregating the similarity scores (such as those described in the pre-
vious section) to determine whether the terms are sufficiently similar. Existing



techniques have primarily assumed that the terms appearing in a record r have
equal weight during the aggregation. For example, in a stock dataset containing
company names, terms such as ’Apple’ occur less frequently in the data than
terms such as ’Corporation’ and ’Ltd.’. In our framework, we distinguish
these less frequent terms during the aggregation process by placing more em-
phasis terms such as ’Apple since they serve as a more accurate indicator of
similarity than commonly occurring terms in the data. We define a weight wij
for each pair of compared terms ti and tj , using the average term frequency, as

wij = log
freq(ti)+freq(tj)

2 .
Combining the weights with the term similarity scores, we compute a simi-

larity score between two records r and r′ as:

sim(r, r′) =
∑
i,j∈n

wij · c(ti, tj) (1)

where c(ti, tj) is a function that returns the similarity score between terms ti
and tj , such as edit-distance or q-grams similarity, discussed earlier. Intuitively,
this weighting scheme identifies core terms in a record, and places greater im-
portance on these core terms during the similarity matching, while discounting
terms occurring with high frequency.

4.3 Matching with MFDs

During the record matching, we compare two terms ti and tj , and compute
a similarity score c(ti, tj). When the terms are numeric and small variances
are allowed, as specified via an MFD, We refine c(ti, tj) based on the δ value.
Specifically, if max(d(ti, tj)) ≤ δ, then we consider the values ti, tj to be equal,
as per the MFD. This allows us to include a broader set of records that qualify as

duplicates based on allowing small differences in Y for an MFD σ :X
δ−→ Y . Setting

δ is application dependent as each domain defines their allowable variances. In
future work, we intend to evaluate the performance impact of varying δ values.

Example 4. Continuing our example from Table 1, if r1 − r4 are considered suf-
ficiently similar in attributes DEP CTY, DEST CTY, then we can apply the given

MFD σ : [DEP CTY, DEST CTY]
δ=15−−−→ [DUR]. Under existing string or Eu-

clidean comparison functions, these records would be considered distinct given
the range of DUR values. However, by applying σ, we validate that all flight time
durations are within 15 minutes. We update the similarity scores for r1 − r4 to
equal 1, which strengthens the record similarity scores between these tuples.

Furthermore, by having knowledge of attribute dependencies via σ, our frame-
work supports differentiation among attributes to consider attribute sets XY
(participating in σ) more strongly during the matching process. As the example
above shows, by leveraging MFDs, we expand the scope of potential duplicates
to include those containing numeric values with small variances that otherwise
would not have been captured.



5 Evaluation

We conduct preliminary experiments to investigate the accuracy of our tech-
niques. We focus on: (1) the benefits of using MFDs during the matching process;
and (2) the comparative accuracy of our term differentiation and MFD matching
against two existing solutions, WHIRL [10], and SERF [8].

5.1 Datasets

We use three real datasets in our evaluation: (1) flights data containing 27000
records showing flight arrival and departure times for various airlines collect-
ed from 38 online sources [1]; (2) stock listings showing company names, IPO
dates from the NASDAQ exchange with 8744 records and 8 attributes [3]; (3)
restaurants data containing 864 records and 5 columns listing restaurant names,
addresses, and category [2]. For our performance evaluation, we use the UIS
database generator to control the scalability in the number of tuples [4].

We compare the identified duplicates against the ground truth, and compute
precision and recall defined as, precision = #correct duplicates returned

#total duplicates returned and recall =
#correct duplicates returned

#true duplicates .

5.2 Benefits of Matching with MFDs

We use the flights dataset to experimentally verify the benefits of including
MFDs during the record matching step. We compute the precision and recall
of our approach using edit distance, and the q-grams based functions, referred
to as Weighted Frequency Edit Distance (WFED), and Weighted Frequency Bi-
grams (WFB), respectively. Figure 2 and Figure 3 show the precision and recall
results, respectively, of our solution with and without applying MFDs. We ob-
serve that applying MFDs improves both precision and recall. For precision, we
achieve a 24.6% (WFED), and 25.2% (WFB), improvement over the non-MFD
versions, showing that about a quarter of the records contained numeric values
where non-equality comparisons were needed. This is especially evident in the
flights dataset which contained several numeric attributes measuring flight time
durations, departure, and arrival times.

For recall, we achieve even larger gains of 33% (WFED), and 36% (WFB)
over the non-MFD versions due to the increased number of records we are able
to capture by relaxing the strict equality conditions. In summary, our initial
results are promising, showing significant gains in accuracy by allowing terms
to be matched within a small variance. As next steps, we are exploring how the
concept of MFDs can be applied to categorical and string data (currently MFDs
only apply to numeric data). This will enable us to capture duplicate records
involving non-numeric attributes, and improve our accuracy rates.



5.3 Sensitivity to Similarity Levels

We evaluate the sensitivity of our techniques as we vary the similarity threshold
ϑ. Figure 4 and 5 show the precision and recall, respectively. As expected, we
observe that all techniques achieve greater precision as the similarity increases
due to more stringent matching criteria to find true duplicates. In contrast, recall
values decline for increasing similarity values due to the stringent pruning that
may miss some duplicates. Our term differentiation allows WFED to achieve
improved accuracy. For example, in previous solutions, compared strings such as
’IBM Corp’ and ’ABM Corp’ would consider compared terms (’IBM’, ’ABM’),
and (’Corp’) equally during the similarity matching. Since we weigh (’IBM’,

’ABM’) more heavily, greater emphasis is placed on these terms to determine
whether the records are duplicates, helping to increase overall accuracy.

Fig. 2: Comparative precision. Fig. 3: Comparative recall.

Fig. 4: Precision for varying ϑ
Fig. 5: Recall for varying ϑ

6 Related Work

Record deduplication, also referred to as record linkage or entity resolution con-
tains an extensive literature of existing techniques [14, 9, 5]. We first discuss
existing similarity metrics used in deduplication, followed by a brief discussion
of approximate string matching, and then discuss the WHIRL and SERF tech-
niques that we consider in our experiments.

Similarity Metrics. Selecting a suitable similarity metric according to ap-
plication needs, and the relevant data types, is a key step towards achieving
good accuracy. In addition to edit distance, and q-gram based methods, the
Smith-Waterman distance is commonly used, and computes the longest common



substring that exists between two strings [17]. The affine gap distance metric in-
troduces two additional edit operations (open gap, extend gap) that extend the
transformation operations in edit distance [20]. The Jaccard similarity metric
compares two sets through the intersection of shared elements [13], while cosine
similarity computes the cosine of the angle between two record vectors [18].

Approximate String Matching. Approximate string matching techniques
have used cluster-based approaches that take advantage of co-citation or co-
occurrence information of values to identify plausible duplicates [6, 7]. Hassan-
zadeh et. al., propose a evaluation framework named Stringer that evaluated
a series of clustering algorithms [12]. Menestrina et al. proposed a generalized
merge distance which uses cluster split and merge operations to measure the
distance between two records [16].

WHIRL. Cohen presents a system named WHIRL which uses tf-idf weights
with cosine similarity to calculate string similarity [10]. WHIRL divides a string
s into a set of terms W , and for each term w ∈ W , the term frequency (tf) to
inverse document frequency (idf) score is used to represent w. The tf-idf value
is computed as tf · idf = log(tf + 1) ∗ log(idf). tf is the number of times that w
appears in s, and idf is |D|/N , where N is the number of records in the database
D that contain w, and |D| is the total number of records in D. After each term
w is represented as a tf-idf component, s can be represented as a vector, and
the similarity score between two records can be calculated by applying cosine
similarity to two vectors. Their method mainly relies on the distribution of terms
to measure records similarity, but does not look into each term s to check the
characters which will lead to ignore spelling errors. While our framework also
considers the distribution information of attribute values, we also consider using
the term frequencies to distinguish the importance of each term.

SERF. The Stanford Entity Resolution Framework (SERF) identifies similar
records via match and merge functions [8]. They develop a generic infrastructure
for Entity Resolution (ER). The goal of ER is to ”resolve” entities, by identifying
the records that represent the same entity and reconciling them to obtain one
record per entity. Their system defines a match function that takes two records as
input and returns true if the input records represent the same entity. The merge
function aggregates the duplicate records into a consolidated record representing
the entity. The authors propose the SWOOSH algorithm to reduce the number
of match and merge operations. This work shares the same spirit as ours, while
we consider finer grained matching for each term to distinguish column values
during the matching process. Specifically, we do not assume all values within
a record are treated equally, and our framework automatically computes the
weights to differentiate terms in a record.

7 Conclusion and Future Work

Duplicate records remain a pervasive data quality challenge that is fueled by
the increasing complexity, size, and heterogeneity of modern datasets. Real data
often contains missing values, inconsistent data formats, and unclear seman-



tics. We present a deduplication framework that leverages term frequencies as
a differentiator, and exploits metric functional dependencies (MFDs), during
the similarity matching process to improve duplicate detection. Our evaluation
shows that our approach achieves improved accuracy over two existing methods,
and significant gains in accuracy when MFDs are used during the matching. In
future work, we intend to improve the robustness of our framework against miss-
ing values by developing imputation methods that impute the missing values.
We also intend to expand our model to include semi-structured data, provide
guidelines for determining a suitable value for the tolerance parameter δ, and
conduct more extensive scalability experiments using large data collections.
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