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Abstract—This paper describes SALENE, a Multi Agent 
System (MA S) for l earning Nash Equilib r ia in non-cooperative 
games. SALENE is based on the following assumptions: if agents 
representing the players act as rat ional players, i.e. they act to 
maximise their expected utility  in each match of a game, and if 
such agents play k matches of the game they will converge in 
playing one of the Nash Equilibria of the game. SALENE can be 
conceived as a heur istic and efficient method to compute at least 
one Nash Equili bria in  a non-cooperative game represented in its 
normal f orm. 
 
Index Terms�Multi- Agent Systems, Game Theory, Nash 
Equilibria . 

I. INTRODUCTION 

he complexity of NASH [21], the problem consisting in 

computing Nash equilibria in non-cooperative games, is 

considered one of the most important open problem in 

Complexity Theory [22]. In 2005, Daskalakis, Goldbergy, and 

Papadimitriou showed that the problem of computing a Nash 

equilibrium in a game with four or more players is complete 

for the complexity class PPAD1 [7], moreover, Chen and 

Deng extended this result for 2-player games [5]. However, 

even in the two players case, the best algorithm known has an 

exponential worst-case running time [23]; furthermore, if the 

computation of equilibria with simple additional properties is 

required, the problem immediately becomes NP-hard [3, 6, 11, 

12]. 

Motivated by these results, recent studies have dealt with 

the problem of computing Nash Equilibria by exploiting 

approaches based on the concepts of learning and evolution 

[10, 15]. In these approaches the Nash Equilibria of a game 

are not statically computed but are the result of the evolution 

of a system composed by agents playing the game. In 

particular, each agent after different rounds will learn to play a 

strategy that, under the hypothesis of agent�s rationality,  will 

be one of the Nash equilibria of the game [2, 4, 9, 13, 18].   

In this paper we present SALENE, a MAS for learning 

Nash Equilibria in non-cooperative games. In particular, given 
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a static non cooperative game described in its normal form, 

the agents of the system will play the static game k times; after 

each match each agent will decide which strategy to play in 

the next match on the basis of his beliefs about the strategies 

that the other agents are adopting. More specifically, each 

agent assumes that his beliefs about the other players� 

strategies are correct and he plays a strategy that is a best 

response to his beliefs. By increasing k the agents will 

converge in playing one of the Nash equilibria of the game. 

This paper is structured as follows. In Section 2, a formal 

definition of the problem will be given and the system 

requirements detailed. In Section 3 and in Section 4 the design 

and the implementation of SALENE will be described 

respectively, then, in Section 5, some experimental results will 

be shown. Finally, in Section 6, conclusions and future efforts 

will be addressed. 

II.  PROBLEM DEFINITION AND SYSTEM REQUIREMENTS   

An n-person strategic game G  can be defined as a tuple G 

= (N; (Ai)i�N; (ri)i�N), where N = {1, 2, � , n} is the set of 

players, Ai is a finite set of actions for player i�N, and ri : A1 × 

� × An o � is the payoff function of player i. The set Ai is 

called also the set of pure strategies of player i. The Cartesian 

product ×i�NAi = A1 × � × An can be denoted by A and r : A o 

�N can denote the vector valued function whose ith 

component is ri, i.e., r(a) = (r1(a), � , rn(a)), so it is possible 

to write (N, A, r) for short for (N; (Ai)i�N; (ri) i�N).  

For any finite set Ai the set of all probability distributions 

on Ai can be denoted by 
�

(Ai). An element � i � 
�

(Ai) is a 

mixed strategy for player i. 

A (Nash) equilibrium of a strategic game G = (N, A, r) is an 

N-tuple of (mixed) strategies �  = (� i) i�N, � i � 
�

(Ai), such that 

for every i � N and any other strategy of player i, � i � 
�

(Ai), 

ri( � i,� -i) � ri( � i, � -i), where ri denotes also the expected payoff 

to player i in the mixed extension of the game and � -i 

represents the mixed strategies in �  of all the other players. 

Basically, supposing that all the other players do not change 

their strategies it is not possible for any player i to play a 

different strategy � i able to gain a better payoff of that gained 

by playing � i. � i is called a Nash equilibrium strategy for 

player i.  

In 1951 J. F. Nash proved that a strategic (non-cooperative) 

game G = (N, A, r) has a (Nash) equilibrium �  [17]; in his 

honour, the computational problem of finding such equilibria 

is known as NASH [21].   
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In order to exemplify the definitions given above let us 

consider a game with two players (n=2) and |A1|=|A2|=m, i.e., 

the sets of pure strategies have both cardinality equals to m 

[3]. In this case the set of pure strategies for each player could 

be identified with the ordered set M = {1, 2, . . . , m} and the 

game could be represented by two m×m matrices B and W. 

The first player is called the row player and the second player 

is called the column player. If the row player plays strategy i 

and the column player strategy j, the payoff will be Bij for the 

first player and Wij for the second player.  

A mixed strategy, a probability distribution over pure 

strategies, is a vector �  � �M such that 1 ¦ �Ms s
F  and for 

every s � M, � s � 0. 

When the row player plays mixed strategy �  and the column 

player plays mixed strategy � , their expected payoffs will be, 

respectively, JF Bt  and JF Wt  ( � t is the transpose of vector 

� ).  

A Nash Equilibrium of the game described by the matrices 

B and W is a pair of mixed strategies ( � , � ) such that for all 

mixed strategies F  and J , of the row and the column player 

respectively, JFJF BB
t

t t and JFJF WW tt t . 

Starting from the problem definition discussed above, 

SALENE was conceived as a system for learning at least one 

Nash Equilibrium of a non-cooperative game given in the 

form G = (N; (Ai)i�N; (ri)i�N). In particular, the system asks the 

user for: 

- the number n of the players which defines the set of 

players N = {1, 2, � , n}; 

- for each player i�N, the related finite set of pure 

strategies Ai and his payoff function ri : A1 × � × An o 

�; 

- the number k of times the players will play the game. 

Then, the system creates n agents, one associated to each 

player, and a referee. The players and the referee both know 

that G is the actual game to be played, i.e. there is complete 

information [8, 19].  Each player is a rational player i.e. his 

goal is to maximise his expected utility/payoff2. In particular, 

in SALENE a rational player acts to maximise his expected 

utility in each single match without considering the overall 

utility that he could obtain in a set of matches.  

This kind of agents will play the game G k times, after each 

match, each agent will decide the strategy to play in the next 

match to maximise his expected utility on the basis of his 

beliefs about the strategies that the other agents are adopting. 

By increasing k the agents will converge in playing one of the 

Nash Equilibria of the game. This conclusion relays on the 

hypothesis that the agents will act as rational players and 

derives straightly from the assumptions on which the Nash�s 

theorem is based [8, 17, 19, 25].  

 
2 Payoffs are numeric representations of  the utility obtainable by a player 

in the different outcomes of a game. 

III.  SYSTEM DESIGN   

On the basis of the requirements highlighted in the previous 

section the SALENE (Software Agent for LEarning Nash 

Equilibria) MAS was designed. The class diagram of 

SALENE is shown in Figure 1.  
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Fig. 1. Class diagram of SALENE 

 

The Manager Agent interacts with the user and it is 

responsible for the global behaviour of the system. In 

particular, after having obtained from the user the input 

parameters G and k (see section II), the Manager Agent  

creates both n Player Agents, one associated to each player, 

and a Referee Agent that coordinates and monitors the 

behaviours of the players. The Manager Agent sends to all the 

agents the definition G of the game then he asks the Referee 

Agent to orchestrate k matches of the game G. In each match, 

the Referee Agent asks each Player Agent which pure strategy 

he has decided to play, then, after having acquired the 

strategies from all players, the Referee Agent communicates 

to each Player Agent both the strategies played and the 

payoffs gained by all players. After playing k matches of the 

game G the Referee Agent communicates all the matches� 

data to the Manager Agent which analyses it and properly 

presents the obtained results to the user.  

A Player Agent is a rational player that, given the game 

definition G, acts to maximise his expected utility in each 

single match of G.  In particular the behaviour of the Player 

Agent i can be described by the following main steps: 

1. In the first match the Player Agent i chooses to play a 

pure strategy randomly generated considering all the pure 

strategies playable with the same probability: if |Ai|=m the 

probability of choosing a pure strategy s�Ai is 1/m.  

2. The Player Agent i waits for the Referee Agent to ask him 

which strategy he wants to play, then he communicates to 

the Referee Agent the chosen pure strategy as computed 

in step 1 if he is playing his first match or in step 4 

otherwise; 
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3. The Player Agent waits for the Referee Agent to 

communicate him both the pure strategies played and the 

payoffs gained by all players; 

4. The Player Agent decides the mixed strategy to play in 

the next match. In particular, the Player Agent updates the 

beliefs about the mixed strategies currently adopted by 

the other players and consequently recalculate the 

strategy able to maximise his expected utility. Basically, 

the Player Agent i tries to find the strategy � i � 
�

(Ai), 

such that for any other strategy � i � 
�

(Ai), ri( � i, � -i) � 

ri(� i, � -i) where ri denotes his expected payoff and � -i 

represents his beliefs about the mixed strategies currently 

adopted by all the other players, i.e. � -i=( � j)j�N,j�i, � j � 
�

(Aj). In order to evaluate � j for each other player j�i the 

Player Agent i considers the pure strategies played by the 

player j in all the previous matches and computes the 

frequency of each pure strategy, this frequency 

distribution will be the estimate for � j. If there is at least 

an element in the actually computed set   � -i=(� j)j�N,j�i that 

differs from the set � -i as computed in the previous match, 

the Player Agent i solves the inequality ri(� i,� -i) � ri(� i, � -i) 

that is equivalent to solve the optimization problem 

P={max(ri( � i,� -i)), � i�
�

(Ai)}. It is worth noting that P is 

a linear optimization problem, actually, given the set � -i, 

ri(� i, � -i) is a linear objective function in � i (see the two 

players example reported in Section II), and with |Ai|=m 

� i�
�

(Ai) is a vector �  � �M such that 1 ¦ �Ms s
F  and for 

every s�M � s�0, so the constraint � i�
�

(Ai) is a set of 

m+1 linear inequalities. P is solved by the Player Agent 

by using an efficient method for solving problems in 

linear programming [14, 16], in particular the predictor-

corrector method of Mehrotra [16], whose complexity is 

polynomial for both average and worst case. The obtained 

solution for � i is a pure strategy because it is one of the 

vertices of the polytope which defines the feasibility 

region for P. The obtained strategy � i will be played by 

the Player Agent i in the next match; ri( � i, � -i) represents 

the expected payoff to player i in the next match; 

5. back to step 2. 

The Manager Agent, receives from the Referee Agent all 

the data about the k matches of the game G and computes an 

estimate of a Nash Equilibrium of G, i.e. an N-tuple � =(� i)i�N, 

� i�
�

(Ai). In particular, in order to estimate � i (the Nash 

equilibrium strategy of the player i), the Manager Agent 

computes, on the basis of the pure strategies played by the 

player i in each of the k match, the frequency of each pure 

strategy: this frequency distribution will be the estimate for � i. 

The so computed set  � =( � i)i�N, � i�
�

(Ai)  will be then 

properly proposed to the user together with the data exploited 

for its estimation.  

IV. SYSTEM IMPLEMENTATION   

The JADE-based classes of SALENE were 

straightforwardly derived from the class diagram reported in 

Figure 1. In particular:  

� ManagerAgent, RefereeAgent and PlayerAgent extend the 

Agent class of JADE [1];  

� ManagerBehaviour,RefereeBehaviour and PlayerBehaviour 

extend FSMBehaviour class of JADE which models a 

complex task whose sub-tasks correspond to the activities 

performed in the states of a finite state machine. In 

particular, the behaviours of both the Referee and the 

Player Agent are also cyclic. 

The interactions among SALENE Agents are appositely 

defined through sequences of ACL messages instances of the 

ACLMessage class of JADE. 

V.  EXPERIMENTAL RESULTS  

SALENE was tested on different games that differ from 

each other both in the number and in the kind of Nash 

Equilibria. This section presents the results obtained for three 

popular games: (1) The Prisoner�s Dilemma which has one 

pure Nash Equilibrium (that is an equilibrium in which all the 

players play a pure strategy); (2) Matching Pennies which has 

one mixed Nash Equilibrium (that is an equilibrium in which 

at least one player plays a mixed strategy); (2) Battle of the 

Sexes which has three Nash Equilibria (two Pure Equilibria 

and one Mixed Equilibrium). 

A. The Prisoner�s Dilemma 

An informal description of the Prisoner�s Dilemma can be 

found in [24]. Formally, in a game G of Prisoner�s Dilemma 

(PD), two players (n=2) simultaneously choose a move, either 

cooperate (c) or defect (d), so A1=A2={c,d} and 

|A1|=|A2|=m=2. There are thus four possible outcomes for each 

encounter: both cooperate (cc), the first player cooperates, 

while the second defects (cd), vice versa (dc), and both 

players defect (dd). Each player receives a payoff after each 

encounter as reported in Table Ia-b. Table I semantic derives 

straightly from the bimatrix representation of a two-player 

game as discussed in Section II. In particular, the move of 

Player 1 determines the row, the move of Player 2 determines 

the column, and the pair (X,Y) in the corresponding cell 

indicates that payoff of  Player 1 is X and the payoff of Player 

2 is Y.  Regarding the payoffs reported in Table Ia the 

following order must hold: T>R>P>L. Table Ib shows a valid 

assignment for the payoffs.  
TABLE I 

(A) PAYOFFS FOR PRISONER'S DILEMMA 

Player 2 
 

c  d 

c   R,R L,T 
Player 1 

d  T,L P,P 

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (T>R>P>L) 

Player 2 
 

c  d 

c   6,6 0,10 
Player 1 

d  10,0 3,3 

 By looking at Table Ib, it is possible to note that for Player 

1 d is  the best response to c (10>6) and d is also the best 

response to d (3>0). The same is true for Player 2, so both 

players rationally will play their pure strategy d that is their 
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dominant strategy. Formally, the Prisoner�s Dilemma has one 

Nash Equilibrium � ={� 1, � 2}={ � , � }, � 1� 
�

(A1), � 2 � 
�

(A2),  �  

� �2, �  � �2, where �  =[0, 1] and � =[0, 1]. 

In order to compare the analytical result with the result 

obtainable in SALENE we ran 30 experiments each consisting 

of 100 matches (k=100) of the Prisoner�s Dilemma. In the 

case of the Prisoner�s Dilemma the expected result was that as 

soon as a Player Agent played his dominant strategy d, he 

would never change his choice, so after few matches the 

Player Agents played both their dominant strategy d so 

converging in playing the Nash Equilibrium of the game. The 

experiments confirm the expected result, as an example Figure 

2a-b reports one of the experiments carried out. In particular, 

Figure 2a(2b) shows the strategy played by Player 1(Player 2) 

in each of the k match of an experiment. As showed in Figure 

2a-b, after few matches both the Player Agents play their pure 

strategy d as required by the Nash Equilibrium of the game.  
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(a) Strategy played by Player 1 
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(b) Strategy played by Player 2 

Fig. 2. The Prisoner�s Dilemma: experimental results 

B. Matching Pennies 

An informal description of the Matching Pennies game 

follows: the game is played between two players, each player 

has a penny and must secretly turn it to heads or tails, the 

players then reveal their choices simultaneously; if the pennies 

match (both heads or both tails), Player 1 receives S dollars 

from Player 2. If the pennies do not match (one heads and one 

tails), Player 2 receives S dollars from Player 1. This is an 

example of a zero-sum game, where one player's gain is 

exactly equal to the other player's loss. Formally, in a game G 

of Matching Pennies (MP), two players (n=2) simultaneously 

choose a move, either heads (h) or tails (t), so A1=A2={h,t} 

and |A1|=|A2|=m=2. Each player receives a payoff after each 

encounter as reported in Table IIa-b. 

TABLE II 

(A) PAYOFFS FOR MATCHING PENNIES 

Player 2 
 

h  t  

h    L,-L -L,L 
Player 1 

t  -L,L L,-L 

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (S=1) 

Player 2 
 

h  t  

h  1,-1 -1,1 
Player 1 

t  -1,1 1,-1 
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(a) Strategy played by Player 1 
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(b) Strategy played by Player 2 

Fig. 3. Matching Pennies: experimental results 

Matching Pennies has no pure strategy Nash equilibrium 

since there is no pure strategy (heads or tails) that is a best 

response to a best response, i.e. a dominant strategy. 

Alternatively, there is not a pure strategy that a player would 

ever change when told the pure strategy played by the other 

player. Instead, the unique Nash equilibrium of Matching 

Pennies is in mixed strategies: each player chooses heads or 

tails with equal probability. In this way, each player makes the 

other indifferent in choosing heads or tails, so neither player 

has an incentive to try another strategy. Formally, Matching 

Pennies has one mixed Nash Equilibrium � ={ � 1, � 2}={ � , � }, 

� 1� 
�

(A1), � 2 � 
�

(A2),  �  � �2, �  � �2, where �  =[0.5, 0.5] 

and � =[0.5, 0.5]. 

In order to compare the analytical result with the result 

obtainable in SALENE we ran 30 experiments each consisting 

13



 

of 100 matches (k=100) of Matching Pennies. The expected 

result was that, analyzing the pure strategies played by each 

player in each of the k match, their frequency distribution 

would asymptotically converge to the  mixed Nash 

Equilibrium of the game. The experiments confirm the 

expected result: by increasing k the computed frequency 

distributions asymptotically converge to the mixed Nash 

Equilibria of the game. As an example Figure 3a-b reports one 

of the experiments carried out. In this case the computed 

frequency distributions were: � 1=� =[0.49, 0.51] and 

� 2=� =[0.49, 0.51]. 

C. Battle of Sexes 

An informal description of the Battle of Sexes game 

follows: a man and a woman plan to meet after work to attend 

an event: an opera or a football match, but they can not 

communicate so they have to choose separately where to go. 

The woman prefers the opera to the football match, whereas 

the man prefers the football match to the opera, but both 

prefer to be together at either event than alone at either one. 

More formally in a game G of Battle of Sexes (BS), two 

players (n=2) simultaneously choose a move, either opera (o) 

or football (f), so A1=A2={o,f} and |A1|=|A2|=m=2. Each 

player receives a payoff after each encounter as reported in 

Table IIIa-b. Regarding the payoffs reported in Table IIIa the 

following order must hold: T>R>L. Table IIIb shows a valid 

assignment for the payoffs. 

TABLE III 

(A) PAYOFFS FOR BATTLE OF SEXES 

Player 2 
 

o   f  

o  T,R L,L 
Player 1 

f  L,L R,T 

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (T>R>L) 

Player 2 
 

o   f  

o  3,2 0,0 
Player 1 

f  0,0 2,3 

Battle of Sexes has two pure strategy Nash equilibria, one 

where both go to the opera and another where both go to the 

football game; there is also a Nash equilibrium in mixed 

strategies, where, given the payoffs listed in Table IIIb, each 

player attends their preferred event with probability 2/3. 

Formally, Battle of Sexes has three Nash Equilibria: 

� I={ 1

I
V , 2

I
V }={ � I,� I}, 1

I
V � 

�
(A1), 2

I
V  � 

�
(A2),  � I � �2, � I � 

�2, where � I =[1, 0] and � I=[1, 0]; 

� II={ 1

II
V , 2

II
V }={� II, � II}, 1

II
V � 

�
(A1), 2

II
V  � 

�
(A2),  � II � �2, 

� II � �2, where � II =[0, 1] and � II=[0, 1]; 

� III={ 1

III
V , 2

III
V }={ � III,� III}, 1

III
V � 

�
(A1), 2

III
V  � 

�
(A2),  � III � 

�2, � III � �2, where � III =[2/3, 1/3] and � III=[1/3, 2/3]; 

 In order to compare the analytical result with the result 

obtainable in SALENE, we ran 30 experiments each 

consisting of 100 matches (k=100) of the Battle of Sexes. 

Battle of Sexes presents an interesting case for games theory 

since each of the Nash Equilibria is deficient in some way. 

The two pure strategy Nash Equilibria are unfair, one player 

consistently does better than the other. In the mixed strategy 

Nash Equilibrium the players will be together at the same 

event with probability 4/9 and will be alone with probability 

5/9, leaving each player with an expected payoff of 10/9 that 

is very low if compared with the expected payoff of the two 

pure Nash Equilibria.  

The expected result was that as soon as both the Player 

Agents played the same pure strategy (o or f), i.e. one of the 

Pure Nash Equilibria of the game, the Agents would never 

change their choices: the Player who plays his favorite 

strategy will not have incentive to change it, the player who 

does not play his favorite strategy will not change it because 

in this case his expected payoff will get worse in the next 

match. In particular, after 1 or h*(T+R) matches, k�h�1, there 

is a probability of 50% that from this match on the Player 

Agents will converge in playing one of the Pure Nash 

Equilibria of the game. 
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(a) Strategy played by Player 1 
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(b) Strategy played by Player 2 

Fig. 4. Battle of Sexes: experimental results 

The experiments confirm the expected result: in all the 

experiments after 1 or h*(T+R) matches the Player Agents 

play one of the two pure Nash Equilibria of the game. As an 

example Figure 4a-b reports one of the experiments carried 

out, in this case the played Nash Equilibrium was � I. 

VI.  CONCLUSIONS   

The complexity of NASH, the problem consisting in 

computing Nash equilibria in non-cooperative games, is still 

debated, but even in the two players case, the best algorithm 

known has an exponential worst-case running time. Starting 

from these considerations SALENE, a MAS for learning Nash 

Equilibria in non cooperative games, was developed. 
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SALENE is based on the assumptions that if agents 

representing the players act as rational players, i.e. if each 

player acts to maximise his expected utility in each match of a 

game G, and if such agents play k matches of G they will 

converge in playing one of the Nash Equilibria of the game. In 

particular, after each match each agent decides the strategy to 

play in the next match on the basis of his beliefs about the 

strategies that the other agents are adopting. More specifically, 

each agent assumes that his beliefs about the other players� 

strategies are correct and plays a strategy that is a best 

response to his beliefs. Analyzing the behaviour of each agent 

in all the k matches of G, SALENE presents to the user an 

estimate of a Nash Equilibrium of the game. 

A set of experiments was carried out on different games 

that differ from each other both in the number and in the kind 

of Nash Equilibria. The experiments demonstrated that: 

- if the game has one Pure Nash Equilibrium the agents 

converge in playing this equilibrium; 

- if the game has one Mixed Nash Equilibrium, the 

frequency distributions of the pure strategies played by 

each player asymptotically converge to the mixed Nash 

Equilibrium of the game; 

- if the game has p>1  Pure Nash Equilibria and s>1 Mixed 

Nash Equilibria the agents converge in playing one of the 

p Pure Nash Equilibria. 

SALENE can be conceived as a heuristic and efficient 

method for computing at least one Nash Equilibria in a non-

cooperative game represented in its normal form; actually, the 

learning algorithm adopted by the Player Agents has a 

polynomial running time [14, 16] for both average and worst 

case. 

 Efforts are currently underway to: (i) evaluate different 

learning algorithms and extensively testing them on complex 

games; (ii) let the user ask for the computation of  equilibria 

with simple additional properties. 

REFERENCES 

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent 

systems with a FIPA-compliant agent framework. In Software Practice 

and Experience, 31, pp. 103-128, 2001. 

[2] M. Benaim and M.W. Hirsch. Learning process, mixed equilibria and 

dynamic system arising for repeated games. In Games Econ. Behav., 29, 

pp. 36-72, 1999. 

[3] V. Bonifaci, U. Di Iorio, and L. Laura. On the complexity of uniformly 

mixed Nash equilibria and related regular subgraph problems. In 

Proceedings of the 15th International Symposium on Fundamentals of 

Computation Theory (FCT) 2005. 

[4] D. Carmel and S. Markovitch. Learning Models of Intelligent Agents. In 

Proceedings of the 13th National Conference on Artificial Intelligence 

and the Eighth Innovative Applications of Artificial Intelligence 

Conference, Vol. 2, pp 62-67, AAAI Press, Menlo Park, California, 

1996. 

[5] X. Chen and X. Deng. Settling the Complexity of 2-Player Nash-

Equilibrium. Electronic Colloquium on Computational Complexity, 

Report No. 140 (2005).  

[6] V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. 

In Proceedings of the 18th Int. Joint Conf. on Artificial Intelligence, 

pages 765�771, 2003. 

[7] C. Daskalakis, P. W. Goldbergy, and C. H. Papadimitriou. The 

Complexity of Computing a Nash Equilibrium. Electronic Colloquium on 

Computational Complexity, Report No. 115 (2005). 

[8] A.K. Dixit and S. Skeath. Games of Strategy (2nd edition). W.W. Norton 

& Company, 2004. 

[9] D.B. Fogel. Evolving Behaviours in the Iterated Prisoner�s Dilemma, 

Evolutionary Computation, Vol. 1:1, pp 77-97, 1993. 

[10] D. Fudenberg and D. Levine. The Theory of Learning in Games. 

Cambridge, MA, MIT Press, 1998. 

[11] I. Gilboa and E. Zemel. Nash and correlated equilibria: some complexity 

considerations. Games and Economic Behavior, 1(1):80�93, 1989. 

[12] G. Gottlob, G. Greco, and F. Scarcello. Pure Nash Equilibria: hard and 

easy games. In Proceedings of the 9th Conference on Theorethical 

Aspects of Rationality and Knowledge (TARK-2003), Bloomington, 

Indiana, USA, June 20-22, 2003.  

[13] P. Jehiel and D. Samet. Learning to Play Games in Extensive Form by 

Valuation, NAJ Economics, Peer Reviews of Economics Publications, 3, 

2001.  

[14] N. Karmarkar. A New Polynomial-time Algorithm for Linear 

Programming. In Combinatorica 4, 373-395, 1984. 

[15] J. Maynard Smith. Evolution and the Theory of Games. Cambridge 

University Press, 1982. 

[16] S. Mehrotra. On the Implementation of a Primal-dual Interior Point 

Method. In SIAM J. Optimization 2, 575-601, 1992. 

[17] J. F. Nash. Non-cooperative games. In Annals of Mathematics, volume 

54, pages 289�295, 1951. 

[18] A. Neyman. Finitely Repeated Games With Finite Automata. In 

Mathematics Of Operations Research, Vol. 23, No. 3, August 1998. 

[19] M. J. Osborne. An Introduction to Game Theory. Oxford University 

Press, 2002. 

[20] C. H. Papadimitriou. On inefficient proofs of existence and complexity 

classes. In Proceedings of the 4th Czechoslovakian Symposium on 

Combinatorics, 1991. 

[21] C. H. Papadimitriou. On the complexity of the parity argument and other 

inefficient proofs of existence. Journal of Computer and Systems 

Sciences, 48(3):498�532, 1994. 

[22] C. H. Papadimitriou. Algorithms, Games and the Internet. In 

Proceedings of the 33rd Annual ACM Symposium on the Theory of 

Computing (STOC), pages 749�753, 2001. 

[23] R. Savani and B. von Stengel. Exponentially many steps for finding a 

Nash equilibrium in a bimatrix game. In Proceedings of the 45th Symp. 

Foundations of Computer Science, pages 258�267, 2004. 

[24] G. Tsebelis. Nested Games: rational choice in comparative politics. 

University of California Press, 1990. 

[25] J. Von Neumann and O. Morgenstern. Theory of Games and economic 

Behaviour, Princeton University Press, 1944. 

 

15


