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ABSTRACT  

This paper describes the application of MITRE’s CyGraph tool for proactive and reactive cyber resilience. 

Employing a multi-relational property graph formalism, CyGraph combines data from numerous sources to build 

a unified graph representation for network infrastructure, security posture, cyber threats, and mission 

dependencies. This forms an enterprise resilience knowledge base for remediating attack vulnerability paths and 

responding to intrusion events, while focusing on the protection of key cyber assets. We leverage our previous 

work in topological vulnerability analysis for mapping known vulnerability paths through a network, along with 

capabilities for mapping enterprise mission dependencies on cyber assets. We then extend this by discovering and 

prioritizing risky multi-step patterns among traffic flows, alerts, and vulnerabilities. Through the CyGraph 

resilience knowledge base, we associate risky network traffic paths with traffic filtering devices and rules allowing 

them, for proactive remediation and reactive mitigation. CyGraph employs NoSQL graph database technology to 

store and process the resilience knowledge base at scale, with domain-specific queries that uncover multi-step 

reachability from threats to vulnerable hosts and key cyber assets. 

1.0 INTRODUCTION 

Cyber resilience is the ability to anticipate, withstand, recover from, and adapt to adverse conditions, stresses, 

attacks, or compromises on cyber resources [1]. Cyber resilience can be a property of an individual system, a 

network, a mission, a system-of-systems on which a mission depends, or an organization. Understanding risks 

enables systems engineers and cyber defenders to achieve an appropriate level of cyber resilience in a system or 

network. Risk to mission can also serve as a resilience metric [2]. 

Risk is a function of likelihood and impact, i.e., the likelihood that a particular adverse event will occur and the 

impact that the event has on some important outcome. In the context of cybersecurity, likelihood is usually 

decomposed to include likely threats against an enterprise and known vulnerabilities of enterprise systems [3], 

and sometimes other factors such as the availability of countermeasures  [4] [5]. Risks can be mitigated by reducing 

either likelihood or impact severity; vulnerabilities can be remediated by removing them (e.g., by patching 

incorrect code, by removing an unused piece of code the flaws in which have not been determined) or by reducing 

their exposure. Mitigation and remediation can be proactive, based on analysis which reveals the potential for a 

risk to materialize, or reactive, based on analysis which takes specific threats into consideration in the assessment 

of likelihood and/or impact severity. 

Because of complex interdependencies among networked systems, risks associated with individual hosts, 

vulnerabilities, and events should not be considered in isolation. Advanced adversaries usually expand their 

network presence through incremental movement. Moreover, complex mission systems and systems-of-systems 

are deployed across a multitude of networked cyber assets. In such contexts, both the likelihood and impact aspects 

of cyber risk are not determined by individual hosts, threats, vulnerabilities, or alerts. Rather, they are emergent 

properties of the patterns of relationships among such entities. 
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Graphs are an ideal representation for encoding such entities and relationships in the cyber domain. However, 

traditional graph formulations with entities (vertices) and relationships (edges) of a single homogeneous type lack 

the expressiveness required for representing the rich structures involved in analyzing cyber risk. So-called property 

graphs [6] are attributed, multi-relational graphs [7], with vertices and edges of multiple types having arbitrary 

key/value attributes (properties). Property graphs have the power needed for expressing a range of heterogeneous 

vertex and edge types, which arise from combining data from a variety of sources into a coherent unified 

cybersecurity graph model. 

A number of software systems exist for storing and computing over property graphs, including NoSQL graph 

databases [8] such as Neo4j [9] [10] and JanusGraph [11], RDF stores such as Rya [12], and the Apache 

TinkerPop [13] graph computing framework. There have been standardization efforts for querying non-relational 

graph databases [14], and there is multi-vendor support for such graph query languages as Cypher [15], 

SPARQL [16], and Gremlin [17]. While there are some languages with imperative features, graph query languages 

are generally declarative [18], in which one specifies a graph query pattern to be matched, rather the giving the 

specific instructions accessing the data. Rather, the database implementation accesses the data based on the query 

declaration, allowing for implementation-specific optimizations. There is direct correspondence between a graph 

data model and language for querying it [19], i.e., data analysis needs to match data representation. 

MITRE’s CyGraph [20] [21] is a methodology and tool for improving network security posture, maintaining 

situational awareness in the face of cyberattacks, and focusing on protection of mission-critical assets. CyGraph 

constructs a cybersecurity knowledge graph, i.e., a graph representing a network’s security posture, based on a 

cybersecurity knowledge base. It enables identification of vulnerability paths, where a vulnerability path is an 

attack path through a network in which vulnerabilities are sequentially exploited, and which can be broken by 

remediating a vulnerability. 

Given data from various network and host sources, CyGraph leverages NoSQL graph database technology to 

capture the complex relationships among entities in the cybersecurity domain. It employs graph queries for 

identifying risky patterns with prioritization of the matched subgraph clusters. Domain-specific CyGraph Query 

Language (CyQL) is compiled to the query language native to the backend graph database. Employing web-based 

client-server architecture, CyGraph provides interactive graph visualization in the browser for navigating the 

results of queries. CyGraph discovers and prioritizes risky patterns among multi-step relationships in network data, 

and guides proactive remediation and reactive mitigation. This provides more mature cybersecurity that is 

informed by threats and mission needs, and founded on practical experience [22]. 

2.0 SYSTEM ARCHITECTURE 

As shown in Figure 1, CyGraph ingests data from various sources and normalizes them. It then transforms the 

elements of the normalized model into a graph model specific to the cybersecurity domain. Graph queries are 

issued from the client front end, executed on the backend database, and the resulting query matches are visualized. 

In this agile architecture, the graph model is defined by how the data sources are transformed into a property graph, 

rather than conforming to a predetermined schema. Model extensions are simply the creation of additional of 

nodes, relationships, and properties in the property graph model, and require no schema changes or other database 

renormalizing. CyGraph currently supports two options for backend data storage and query processing: 

• Neo4j graph database [9] [10] with normalized data in Elasticsearch [23] [24]. 

• Apache Rya [12] RDF store with normalized data in Apache Accumulo [25]. 
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Figure 1: CyGraph Architecture. 

Each of these options are available as open-source software, and (with the exception of Rya) have commercial 

support available. The second option (Rya+Accumulo) is available as part of DISA’s Big Data Platform 

(BDP) [26], and offers horizontal scalability. Neo4j scales horizontally for reads and vertically for writes [27]. 

In the CyGraph front-end analyst dashboard, graph pattern-matching queries are expressed domain-specific query 

language, which CyGraph compiles to Cypher (for Neo4j) or SPARQL (for Rya). This presents a simplifying layer 

of abstraction, designed specifically the desired risk analysis, freeing the analyst from learning a complex general-

purpose query language. 

As shown in Figure 2, typical inputs to CyGraph fall under four categories: 

1. Network Infrastructure: This captures the configuration and policy aspects of the network 

environment. 

2. Security Posture: Specification of network infrastructure is combined with vulnerability data to map 

potential attack paths through the network. 

3. Cyber Threats: This captures events and indicators of actual cyberattacks, which are correlated with 

security posture to provide context for risk analysis and attack response. 

4. Mission Dependencies: This captures how elements of enterprise missions depend on cyber assets.  

This enables the relationship between system or network risks and mission risks to be expressed. 
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Figure 2: Example Data Sources. 

The primary role of CyGraph is a knowledge base and analysis tool. It relies on other tools and data sources for 

raw material to build its cybersecurity graphs. For example, the Cauldron tool for Topological Vulnerability 

Analysis [28] [29] [30] builds network attack graphs (security posture) from host vulnerabilities, firewall rules, 

and network topology, which are ingested into CyGraph. For cyber threats, CyGraph ingests data for both 

potential and actual threats, including from the Splunk log analysis tool [31], packet capture via Wireshark [32], 

the National Vulnerability Database (NVD) [33], and Common Attack Pattern Enumeration and Classification 

(CAPEC™) [34]. For capturing mission dependencies on cyber assets, CyGraph ingests models developed 

through other MITRE tools [35], including Crown Jewels Analysis (CJA) [36], Cyber Command System 

(CyCS) [37], and Automagical Dependency Mapping (ADM) [38]. 

The CyGraph data model is schema-free, so that the model is decoupled from the storage implementation. The 

particular way in which the data are transformed to a property graph determines an instantiated CyGraph model. 

So, for example, an arbitrary subset of the data sources in Figure 2 need be populated for useful analysis – often 

only a single data source is ingested. User queries must match a given graph model instantiation. This is enforced 

through CyGraph’s domain-specific query language. This means that the middle-tier query language translation 

needs to be informed if the data model is extended though new node types or edge types. 

3.0 SYSTEM OPERATION 

Figure 3 shows one of the panels of the CyGraph web browser user interface. In this panel, a graph model is 

presented that represents the node and edge types present in the CyGraph knowledge base. The user can interact 

with this graph model to generate queries in the domain-specific CyQL query language. Depending on what 

information is captured in the knowledge base, it can be characterized as a cybersecurity knowledge base 

(capturing information about security posture, particularly about vulnerabilities) or a resilience knowledge base 

(capturing both cybersecurity knowledge and information about mission dependencies on cyber assets). 
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Figure 3: CyGraph Analysis Dashboard. 

User-selected combinations of edge types (diamonds) populate the CyQL edgeTypes($types) clause, which 

specifies edge types to be matched in a query. For example, edges of type IN define relationships between 

Machine nodes and Domain nodes, i.e., network machine membership in protection domains (e.g., subnets) [20]. 

In Figure 4, Query 1 selects the IN and ROUTES edge types, which populates the edgeTypes(":IN", 

":ROUTES")clause. This query returns the relationships among machines, protection domains, and traffic filtering 

devices (e.g., firewalls). Query 2 selects the LAUNCHES and VICTIM types (edgeTypes(":LAUNCHES", 

":VICTIM")clause), matches graph elements for machines launching exploits to other (victim) machines. 
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Figure 4: Selecting Edge Type Combinations in the Dashboard. 

A key aspect of risk analysis is determining reachability through the knowledge base graph. Here are CyQL clauses 

for defining patterns of reachability: 

• hops($numHops): Matches multi-step graph paths of length $numHops. Examples include 

reachability from alerts (transitive risk), especially to vulnerable and/or mission-critical hosts. 

• hops($minHops, $maxHops): Matches multi-step graph paths of lengths between 

$minHops and $minHops. Provides additional flexibility for tuning reachability range, e.g., to 

trade off depth of search with size/complexity of query match. 

• startType($type): Constrains the type for starting nodes in multi-step graph paths. 

Typically, for selecting alert types of interest as starting points of multi-step reachability. 

• endType($type): Constrains the type for ending nodes in multi-step graph paths. Typically, 

for selecting mission-critical host types. 

• undirected(): Controls whether graph paths are constrained to a single direction, e.g., as a 

pattern for lateral adversary movement. 

The CyQL query language includes other features for matching patterns in the cybersecurity domain [21], 

including keywords for host names, IP addresses, and subnet address ranges, arbitrary Boolean combinations of 

clauses, and wildcards in parameter values. As shown in Figure 5, the CyGraph analysis dashboard allows queries 

to be stored for sharing and reuse. 

Full	GraphQuery	1 Query	2

edgeTypes(:”IN”,”:ROUTES”)

Query	Result	1

edgeTypes(”:PREPARE”,”:LAUNCHES”,”:VICTIM”)

Query	Result	2
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Figure 5: CyGraph Saved Queries. 

4.0 RISK ANALYSIS AND RESILIENCE 

We fuse information about network infrastructure, security posture, cyber threats, and mission dependencies to 

build a CyGraph knowledge base for enterprise risk analysis, remediation, and mitigation. There are numerous 

tools available for capturing information about network infrastructure, e.g., for network mapping [39], firewall 

rules [40], and host vulnerabilities [41]. There are also tools available that combine such information into maps of 

exposed vulnerabilities across networks [42] [43] [44]. Figure 6 shows such a vulnerability exposure graph 

generated by the Cauldron tool [42]; in previous work, such graphs are extended via CyGraph [20]. 

Cybersecurity knowledge graphs built from network infrastructure and security posture alone support proactive 

remediation, at least limited forms of it. For example, from the graph in Figure 6, one can prioritize 

vulnerabilities in terms their exposure through firewalls, and understand how adversaries can potentially exploit 

known vulnerability paths. It is also possible to extend this kind of analysis for measuring risk against zero-day 

attacks [45], as well as compute overall risk scores for enterprise networks [46] [47]. 
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Figure 6: Mapping Vulnerable Paths through Network. 

To analyse cyber resilience and enable its improvement, we extend our graph knowledge base to include how 

various mission functions depend on cyber assets [48] [49]. Representation of mission dependencies enables 

proactive remediation efforts to be mission-focused, e.g., by prioritizing vulnerable paths that lead to mission-

critical cyber assets [2]. Figure 7 shows a mission-dependency graph built with the CyCS tool [37], visualized 

via CyGraph. This captures a hierarchy of dependencies (“needs” from higher to lower levels) among mission 

functions, the information needed for these functions, and the services that provide the information. Such models 

usually stop at the lowest level of abstract services. The actual cyber assets providing the services often change 

frequently, making automated dependency discovery important [38]. 

 

Figure 7: Dependencies among Mission Elements. 
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For example, by including mission dependencies in our knowledge graph, we can apply the CyQL hops, 

startType, and endType clauses to find vulnerability paths leading to mission-critical assets. We can then 

query relationships between vulnerability exposures and firewall locations/rules to determine exactly which rule 

changes on which firewalls are needed. 

We further extend CyGraph knowledge bases with information on cyber threats, enabling reactive threat 

mitigation. Figure 8 shows examples of data ingested into CyGraph for such risk analysis and mitigation, i.e., from 

Host Based Security System (HBSS) [50], Assured Compliance Assessment Solution (ACAS) [51], and network 

flow records [52]. 

 

Figure 8: Alerts, Vulnerabilities, and Network Flows for CyGraph Ingest. 

Figure 9 is the CyGraph property graph model based on the data sources in Figure 8. Nodes are created for each 

IP address, which contain relevant information from each source (sources and destinations for alerts and flows, 

and reported hosts for vulnerability scans). Node types are defined for categories of alerts for alert destination 

nodes, e.g., whether they are reconnaissance events (such a port scans), or represent actual host compromise. There 

are node types categorizing countries associated with network flow sources and destinations, as well as identifying 

key cyber assets based on services for flow destinations. 

Data are continually streaming in that need to be analysed for cyber risk correlation and prioritization via CyGraph. 

Leveraging the open source Elastic Stack [23], the Beats platform provides agents for gathering data, with 

Logstash for transformation and ingest into Elasticsearch. A CyGraph web service then creates a property graph 

model (as in Figure 9) and imports it into the CyGraph graph data base (Neo4j). There is a similar analytic flow 

for CyGraph deployment on BDP, in which data streams are processed via Apache Storm [53], stored in 

Accumulo [25] and accessed from Rya [12]. 

Host
Alerts

Host
Vulnerabilities

Network
Flows



Big-Data Graph Knowledge Bases for Cyber Resilience  

PAPER NBR - x   STO-MP-IST-148 

 

 

 

Figure 9: CyGraph Property Graph Model for HBSS, ACAS, and Network Flows. 

Operationally, CyQL queries are executed on a periodic schedule from a library of standard queries, or on demand 

(e.g., with custom queries). In practice, usually a small fraction of the full data set under analysis matches a query. 

We have observed that directed paths (alerts and/or flows) are usually shallow in operational network traffic. 

Therefore, CyQL queries with hops($numHops) (which are directed) generally have few matches, especially for 

$numHops of three or more. Additional constraints, e.g., startType($type)and endType($type)tend to 

make query responses even smaller, while still serving to effectively identify patterns of cybersecurity risk. For 

example, the query hops(2,4).startType(":compromise").endType(":keyTerrain") matches paths 

of length two, three, or four, which start from a compromised node and end at a key asset node. Such paths are 

relatively rare but have clear implications for risk, especially when there are vulnerable nodes along a path. 

The result of such a query typically looks like 

Figure 10, with the query match being orders 

of magnitude smaller than the full graph. This 

query match is a combination of alerts, 

network flows, and vulnerabilities. Here, 

each edge represents the set of alerts and/or 

network flows between a pair of IP addresses. 

Nodes are typed according to whether they 

are destinations of alerts (with the alert 

category), along with whether nodes are 

known to be vulnerable, and whether they are 

key cyber assets. In this fused graph 

representation, network flows serve to fill in 

potential gaps from adversary activity that 

was not detected by HBSS (false negatives). 

 

Figure 10: Prioritizing Clusters in Graph Query Results. 
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As shown in Figure 11, we prioritize the clusters (weakly connected components) that result from query matches. 

Conceptually, alerts that are not associated with other alerts (or even other traffic) are isolated events. With all 

other aspects of individual alerts assumed equal, those should have lower priority for defensive response. On the 

other hand, larger clusters of correlated alerts and other (non-alert) network flows are considered more suspicious, 

especially when such clusters include vulnerable hosts and/or hosts that are key assets. The choice of optimal 

overall risk scoring for clusters (e.g., via some utility function) remains an open problem; we apply heuristics such 

as the size of the cluster (connected component), with stronger weighting for numbers of key assets, alerts, and 

vulnerable hosts. 

 

Figure 11: Graph Knowledge Layers for Cyber Resilience. 

To analyse cyber resilience, relationships among aspects of network infrastructure, security posture, cyber threats, 

and mission dependencies must be understood and represented. By understanding these relationships, one can 

determine the higher priority system capabilities for applying cyber resilience. As illustrated in Figure 11, lower-

level aspects tend to influence the aspects above them, in terms of maintaining mission operations in the face of 

threats. Security posture is influenced by elements of the network configuration (firewall rules, access control 

policy, web gateways, known vulnerabilities, etc.). The success of cyber threat actors is influenced by the strength 

of defensive posture. Mission success in turn depends on the ability of defenders to protect key cyber assets. 

CyGraph provides a structured yet flexible approach to incorporating these aspects into a unified knowledge base 

for situational awareness, risk analysis, proactive remediation, and reactive mitigation. 

The application of CyGraph involves several cyber resiliency techniques, and helps achieve cyber resiliency 

goals and objectives. As illustrated in Figure 12, the Cyber Resiliency Engineering Framework (CREF) 

organizes the cyber resiliency domain into a set of goals, objectives, and techniques [1] [22]. Goals – Anticipate, 

Withstand, Recover, and Evolve – are high-level statements of intended outcomes, which help scope the cyber 

resiliency domain. In keeping with the fact that cyber resiliency is concerned with all threats, the goals are 

derived from those defined by the discipline of Resilience Engineering [54]. Objectives are more specific 

statements of intended outcomes that serve as a bridge between techniques and goals. Objectives are expressed 
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so as to facilitate assessment, making it straightforward to develop questions of “how well,” “how quickly,” or 

“with what degree of confidence or trust” can each objective be achieved. Cyber resiliency techniques 

characterize approaches to achieving one or more cyber resiliency objectives that can be applied to the 

architecture or design of mission/business functions and the cyber resources that support them. Each technique 

refers to a set of related approaches and technologies. 

 

Figure 12: Graph Knowledge Layers for Cyber Resilience. 

CyGraph implements the Dynamic Representation technique, which is to construct and maintain current 

representations of mission or business posture in light of cyber events and courses of action. CyGraph supports 

effective application of the other cyber resiliency techniques, enabling Adaptive Response (implement nimble 

cyber courses of action to manage risks), looking for gaps in Coordinated Defence (manage multiple distinct 

mechanisms in a non-disruptive or complementary way), and enabling evaluation of architectural alternatives 

in which network connectivity and device properties apply such techniques as Segmentation / Isolation, 

Redundancy, Diversity, Substantiated Integrity, and Non-Persistence. CyGraph can significantly improve 

enterprise ability to achieve the first three cyber resiliency objectives: (i) the Understand objective, to maintain 

useful representations of mission and business dependencies and the status of resources with respect to possible 

adversity; (ii) the Prepare objective, to maintain a set of realistic courses of action that address predicted or 

anticipated adversity; and (iii) the Prevent / Avoid objective, to preclude the successful execution of an attack 

or the realization of adverse conditions. Use of CyGraph to evaluate architectural alternatives also supports the 

Re-architect objective, to modify architectures to handle adversity more effectively. 

5.0 SUMMARY AND CONCLUSIONS 

Through an attributed multi-relational property graph formalism, CyGraph combines data from disparate sources, 

building a graph knowledge base which can be used for risk assessment and analysis of system, mission, and 

enterprise resilience. This knowledge base integrates information about network infrastructure, security posture, 

cyber threats, and mission dependencies. We use CyGraph to map vulnerability paths, mission dependencies on 

cyber assets, and multi-step patterns of risk among traffic flows, alerts, and vulnerabilities. Through the CyGraph 

resilience knowledge base, we associate risky network traffic paths with elements of access policy that allow them, 

for proactive remediation and reactive mitigation. Our analytic queries support use cases such as prioritizing 

vulnerability paths for remediation and responding to intrusion events, while focusing on the protection of key 
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cyber assets. Through NoSQL graph database technology with domain-specific query language, CyGraph stores 

and processes the resilience knowledge base at scale, while making the technology readily accessible to cyber 

analysts. 
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