
DemoEffTE: A Demonstrator of
Dependency-aware Evaluation of
Test Cases over Ontology
Lavdim Halilaj halilaj@cs.uni-bonn.de

University of Bonn / Fraunhofer IAIS, Germany

Irlán Grangel-González grangel@cs.uni-bonn.de

University of Bonn / Fraunhofer IAIS, Germany

Maria-Esther Vidal vidal@cs.uni-bonn.de

Fraunhofer IAIS, Germany / Universidad Simon Bolivar, Venezuela

Steffen Lohmann steffen.lohmann@iais.fraunhofer.de

Fraunhofer IAIS, Germany

Sören Auer soeren.auer@tib.eu

Technische Informationsbibliothek, Hannover, Germany

Keywords

Ontology Engineering Test-Driven Ontology Development Test Cases Dependency Graph

Abstract
Traditional approaches, which follow a test-driven development technique, allow a set of test cases to be
exhaustively evaluated ensuring that each modification of an ontology does not violate predefined
requirements. However, the time required for the evaluation of test cases is high and usually represents a
bottleneck in an ontology development process. The EffTE framework tackles this problem; it relies on a
graph-based model of the dependencies between test cases to support users during an ontology
development process. Traversing the dependency graph is realized using breadth-first search along with a
mechanism that tracks tabu test cases, i.e., test cases that will be ignored for further evaluation due to faulty
parent test cases. As a result, the number of test cases that are evaluated is minimized, thus reducing the time
required for validating an ontology after each modification. We demonstrate the benefits of prioritization and
selection of the test cases to be evaluated with DemoEffTE . Attendees will observe the behavior of both a
naive approach and the EffTE framework on different configuration settings such as different: (1) ontology
size; (2) topology of the dependency graph of the test cases; and (3) number of test cases. The demo is
available at: http://vocol.iais.fraunhofer.de/DemoEffTE .

1. Introduction
The development of domain-specific ontologies requires joint efforts among different groups of stakeholders,
such as knowledge engineers and domain experts. Functional requirements can be expressed through
Competency Questions, which are questions that the underlying ontology should be able to answer [4] .
However, the concurrent definition of ontology concepts often results in a violation of the defined
requirements, or creates design issues like duplicate entries or missing documentation. For example, in the
large and monolithic DBpedia ontology, version 2016-04 only 556 from a total of 2,849 properties have
associated label descriptions or comments [3] . To ensure that any ontology modification has only the
expected effects, a set of test cases can be defined based on Competency Questions. This is similar to the
test-driven software development principles, where test cases that represent requirements, are defined before
the code is actually written [1] .

1

mailto:halilaj@cs.uni-bonn.de
mailto:grangel@cs.uni-bonn.de
mailto:vidal@cs.uni-bonn.de
mailto:steffen.lohmann@iais.fraunhofer.de
mailto:soeren.auer@tib.eu
http://vocol.iais.fraunhofer.de/DemoEffTE

Commonly, the time demand for evaluating predefined test cases is high and represents a bottleneck in the
ontology development process. Therefore, with a naive approach, test cases are exhaustively evaluated to
identify any not intended modification or design issue introduced during the concurrent development of the
ontology. Since much effort is invested in creating and extending ontologies for various domains, it is crucial
to make ontology development and maintenance cost-effectively [2] .

On the other hand, modeling the relationship between test cases using a dependency graph enables
prioritization and selection of test cases to be evaluated. As a result, the number of test cases that are
evaluated is minimized, thus reducing the time required for ontology validation after each modification. In
order to illustrate the benefits of a test cases dependency graph compared to the cases where such a graph is
not used, we designed DemoEffTE, a naive and dependency-aware test cases evaluation demonstrator.
Attendees will be able to choose various options related to the: (1) ontology size; (2) topology of dependency
graphs; and (3) number of test cases and observe results like total evaluation time and number of evaluated
test cases. The demo includes a set of test cases to be evaluated that provides a comparison of the
performance between a naive approach and EffTE .

2. The DemoEffTE Architecture
The architecture of DemoEffTE is illustrated in Figure 1 and is composed of two main components: (1) the
GUI; and (2) Test Cases Processing (TCP) . The GUI provides the possibility for the users to specify the
approach to be tested; ontology size; number of test cases and the typology of the dependency graph. The
TCP component receives as input the selections made by users. Next, according to the chosen options, the
TCP component validates the ontology file against a set of test cases, which are defined by the user and
stored in the Test Cases DB module. The Test Case Selection is responsible for prioritization and selection
of the test cases to be evaluated. Each test case is evaluated in the Test Case Evaluation . The collected
results are returned to the GUI, where can further be explored by attendees.

Figure 1. The architecture of the DemoEffTE demonstrator. Users are able to choose different scenarios for
evaluation of the EffTE approach compared to a naive approach, as well as a set of test cases and their

dependencies; the result of the validation process i s returned as output.

Figure 2. A Naive Approach. (a) Test Cases (TCs) to check if an ontology satisfies the design requirements;

(b) faulty test cases (orange) over time after each ontology modification; and (c) number of evaluated test
cases (TCs) per instance of time. Every instan ce of time, the set of test cases is completely evaluated.

DemoEffTE demonstrates the evaluation of a set of 15 test cases using the naive approach and the EffTE
framework. Figure 2 illustrates that in different instances of time, the number of evaluated test cases after
each ontology modification using a naive approach is always the same, i.e., 15 test cases. On the other hand,
as shown in Figure 3 , the number of evaluated test cases in different instance of times is reduced. This
comes as a result of considering the parent-child relationships between test cases modeled as a dependency
graph, where a faulty parent indicates a set a faulty children test cases.

Figure 3. The EffTE Approach. (a) A test case dependency graph; (b) faulty test cases over time (orange
nodes are faulty test cases), gray nodes represent test cases ignored for evaluation; and (c) number of

evaluated test cases (TCs) per instance of time. Depen dencies enable to ignore faulty test cases.

The results are visualized using D3.js library according to the selected options. Additionally, DemoEffTE
illustrates traversals of a dependency graph according to a breadth-first search algorithm. This illustration is
enabled in an animation view developed on Cytoscape.js library. Bar charts that depict the results are
designed using Highcharts.js . The TCP component is implemented using Java Apache Jena libraries
version 3.0.1. The entire implementation of DemoEffTE is deployed on a virtual server with AMD Opteron 2.3
GHz CPU, 4 cores, 8 GB RAM operating in SUSE Linux Enterprise Server 12 SP1.

3. Demonstration of Scenarios
We design several scenarios to illustrate the efficiency of the EffTE approach. Thus, attendees will be able to
observe how a naive approach and the EffTE approach exhibit different behavior on the evaluation of a given
set of test cases. DemoEffTE demonstrates the execution of both approaches in five instances of time. In the
first four time instances, various test cases are randomly chosen to fail. No faulty test cases are included in
the instance number five, in order to show the behavior of both approaches on the same conditions. Two
evaluation metrics will be shown: (1) evaluation time; and (2) number of evaluated test cases. The following
scenarios are demonstrated:

Effect of an Ontology Size . The impact of the ontology size will be observed on a set of test cases. We
asses the efficiency of a naive approach and the EffTE framework on three different ontologies: (1) FOAF : an
ontology used to describe persons, activities, and relationships between them and other objects; (2)
Schema.org ontology describes entities, actions, and their relations to promote the usage of the structured
data; and (3) DBpedia , a cross-domain ontology for describing the information extracted from Wikipedia
infoboxes. Table 1 describes these ontologies in terms number of triples, different subjects, properties, and
objects.

Ontology # triples # subjects # properties # objects

FOAF 631 86 15 192

Schema.org 8,103 1,569 13 3,545

DBpedia 30,793 3,986 23 16,807

2

3

Table 1. Description of Ontologies. Different ontology sizes in terms of number of triples, subjects, properties,
and objects.

Impact of the Topology of the Dependency Graph . The goal of this scenario is to show the impact of the
topology of dependency graph in the evaluation of set of test cases. Figure 4 shows three topologies with 10
test cases each where test case has different dependencies between each other. The topologies are
randomly generated using RStudio randomDag function. Attendees will be able to visualize the results
from evaluation of a given set of test cases produced over a period of five instances of time.

Figure 4. Test Cases. Three different topologies of dependency graphs between test cases.

Impact of the Number of the Test Cases. We demonstrate three different dependency graphs composed of
10, 20, and 30 test cases, respectively. Figure 5 illustrates the dependency graphs randomly generated using
RStudio randomDag function. Similar to other scenarios, for each set, a random number of test cases are
chosen to fail using a Random Distribution function in RStudio. Attendees will be able to visualize the results
produced over a period of time.

Figure 5. Test Cases. Three different sets composed of 10, 20, and 30 test cases, respectively.

4. Conclusions
DemoEffTE provides a visual comparison how modeling relationships between test cases using dependency
graphs affects the performance of the overall evaluation time after each ontology change. Particularly,
DemoEffTE shows a trade-off between a naive approach that exhaustively evaluates all test cases and the
EffTE framework in three different scenarios. Attendees will be able to explore all the scenarios, understand
why modeling relationship of test cases using dependency graphs play an important role in ontology
development process. Furthermore, they will observe how this dependency graph modeling enables
minimization of the test cases to be evaluated, thus reducing the time required for validating an ontology after
each modification.

Acknowledgements
This work has been supported by the European Union's Horizon 2020 programme for the project
BigDataEurope (grant no. 644564), and the German Federal Ministry of Education and Research (BMBF) for
the projects Industrial Data Space (grant no. 01IS15054) and SDI-X (grant no. 01IS15035C).

4 5

1

2

3

4

5

References
1. Fraser, S. Beck, K., Caputo, B., Mackinnon, T., Newkirk, J., & C. Poole. (2003). Test driven development

(tdd). In 4th International Conference on Extreme Programming and Agile Processes in Software
Engineering, pages 459–462. Springer-Verlag.

2. Mehrotra, M. (2002). Ontology analysis for the semantic web. In Ontologies and the Semantic Web:
AAAI Workshop (Technical Report WS-02-11). AAAI Press.

3. Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R., & Gómez-Pérez, A. (2016).
Collaborative Ontology Evolution and Data Quality - An Empirical Analysis. In 13th OWL: Experiences
and Directions Workshop.

4. Uschold, M. & Gruninger, M. (1996). Ontologies: principles, methods and applications. Knowledge
Engineering Review, 11(2):93–136.

Footnotes
http://wiki.dbpedia.org/services-resources/ontology/

http://js.cytoscape.org/

https://www.highcharts.com/

https://www.rstudio.com/

https://rdrr.io/rforge/pcalg/man/randomDAG.html

[back]

[back]

[back]

[back]

[back]

	DemoEffTE: A Demonstrator of Dependency-aware Evaluation of Test Cases over Ontology
	Abstract
	Introduction
	The DemoEffTE Architecture
	Demonstration of Scenarios
	Conclusions
	Acknowledgements
	References
	Footnotes

