

IoT Data Storage: Relational & Non-Relational Database
Management Systems Performance Comparison

Gizem Kiraz

Computer Engineering

Uludag University

Gorukle, Bursa

501631002@ogr.uludag.edu.tr

Cengiz Toğay

Computer Engineering

Uludag University

Gorukle, Bursa

ctogay@ uludag.edu.tr

ABSTRACT

Internet of Things (IoT) becomes recently a popular

research topic and market reality. According to several

research companies, in 2025, up to 75 billion devices are

estimated to connect internet and generate an enormous

number of data. This increases in data cause several

difficulties such as the storage cost and processing of such

large data. In this paper, we have been studied on

performance comparison of relational (MySQL) and non-

relational (MongoDB) database management systems for

storing and processing of this large IoT data. Both types

of database management systems have been tested.

According to comparison of experimental results, the non-

relational database management systems, which we

studied and searched, have provided better performance

for storing and processing of large data.

Keywords

Internet of Things; MySQL; MongoDB; RDBMS;

NRDBMS.

INTRODUCTION

The Internet of Things (IoT) is a self-configuring and

adaptive system that consist of sensor networks and smart

objects whose aim is to interconnect all devices/sensors in

daily life [1]. According to the projections of many

organizations and companies, up to 75 billion devices will

interconnect using the internet and several challenges and

issues that need to be addressed will raise. Therefore, IoT

becomes one of the most popular research topic recent

years. Moreover, IoT is closely related to big data and

cloud technology. Big data is produced by the different

types of the applications such as industrial processes,

medical devices, embedded control systems, gateways,

and GPS sensors etc. This means that an amount of data

worldwide increases day by day. In 2016, more than 5.5

million connected devices are inserted every day, and it is

expected that number of devices more than 20.8 billion

worldwide by 2020 [2]. Sensors are also produced data

and they are important for big data growth. The sensor

data is the most popular data type between IoT

applications.

Big data is a term that describes the large volume of data

–both structured and unstructured. The DBMSs basically

can be separated into relational and non-relational DBMS.

The relational DBMS stores the data rows and columns in

tables with a high data consistency. The most commonly

used open source relational DBMS is MySQL. Non-

relational databases (NOSQL) have arisen as an

alternative to relational databases. The aim of the NOSQL

is often not to give guaranty the Atomicity, Consistency,

Isolation, and Durability (ACID). The NOSQL does not

depend on constant table definitions and rigid schemas.

Columns or records can be added to the collection at any

time without exclusive process. Therefore; the number of

records in the columns does not have to equal with each

other. Data sets in IoT environment can change after setup

of the system, so this environment requires a flexible data

storage system. There are four different storage formats in

NOSQL namely key-value, columns, document-based

and graff-based.

It has been investigated a document-based storage format

in NOSQL. In such a system, a record is called document

and these documents are usually stored in JSON format

[3]. There are various implementation of the NOSQL

DBMS such as MongoDB [4] [5], CouchDB [6], HBase

[7], Cassandra [8], Amazon SimpleDB [9], and Redis

[10]. Since MongoDB is open source and commonly used,

it has been chosen MongoDB in this study. There are no

database schemas or tables in MongoDB. MongoDB uses

“collection” instead of a table, and “document” instead of

rows to store data. Furthermore, MongoDB uses two

different operations instead of the join operation. These

are nesting documents inside each other and to store a

reference to the other document rather than nesting entire

document.

There are many studies about comparing the performance

of databases [11] [12] [13] [14]. These studies vary

depending on the data size, the variety of data, the

differences in databases used, implementation languages,

and subjects of the projects. In the study [15], MongoDB,

MySQL, CouchDB, and Redis are compared. It is

declared that MongoDB is performing better among the

comparative database management systems in terms of

http://tureng.com/tr/turkce-ingilizce/give%20guaranty

the "bulk insert" writing performance. However, MySQL

and MongoDB have similar performance results for

reading operations. Performance parameters between

these DBMSs can be negligible (typically less than 1

second) [15]. However, our test results show that

MongoDB has better performance than MySQL in terms

of reading and writing as represented in “Results of

Experiments” section. MongoDB is utilized for to store

GPS sensor data and to communicate with the analysis

tools such as Apache Mahout [11]. ACID operations on

MongoDB and MySQL DBMSs are also applied to

compare them [12] [13]. According to the results, the use

of the MongoDB has been encouraged for large data

applications, especially for applications of big data [12].

In [14], MongoDB, Raven, CouchDB, Cassandra,

HyperTable, CouchBase, and SQL DBMSs are compared

in terms of the read, write, delete, and instantiate

operations. According to results of this study[14], all keys

are needed to fetch, MongoDB has better performance

than the others.

The aim of the experiments is a comparison of the

relational and non-relational DBMSs for utilization an IoT

platform. The system includes IoT devices which publish

a tremendous number of sensor data where servers store

and process them. Performance of reading and writing

tests has been done in both MYSQL and MongoDB in this

study. The test results which are calculated after the

application runs at least three times are compared to find

out where we can store data of IoT considering lowest cost

in terms of throughput.

IoT platform is defined which collects, and processes

sensor data as seen in Figure 1. The sensor data is

produced by devices/clients and collected by Data

Storage Server (DSS) in server side. The data is stored in

a DBMS through insert and update operations. Data

Query Server (DQS) in the platform provides an interface

for processing and reporting by Client Application. The

client application sends the data request to the DQS and

they are formed as a query for DBMS. The result of the

query is delivered to the client application. In our case,

enormous data should be stored in the DBMS. Therefore,

writing operations are more important than the reading

operations. The platform has active-active architecture.

Therefore, more than one DSSs can handle the data

Figure 1.The IoT Platform Architectural Structure

Figure 2.Test Environment

writing transactions. In our platform, our target

throughput is forty messages/milliseconds in average for

writing. Our target throughput and test results compared

with “Results of Experiments” section.

The rest of the article is organized as follows. “Test

Environment & Methodology” section consists of the

information about the environment of the experiments and

methodology. “Results of Experiments” section presents

the results and graphics from the experiments.

“Conclusions” section summarizes and concludes the

experiments and gives a recommendation for future of this

study.

TEST ENVIRONMENT & METHODOLOGY

In this paper, research is conducted on the relational and

non-relational databases. Server and clients of chosen

DBMSs to be used in our experiments are set up

separately in virtual machines with Ubuntu 16.04 Server

version. Virtual machines are hosted on a physical

machine (i7 6700HQ, 16 GB DDR3 RAM, and SSD disc).

The virtual machines (4 CPU cores, 4 GB RAM) are

executed on the physical servers as depicted in Figure 2.

A dedicated network is a setup among the servers.

Therefore, it is guaranteed that another network traffıc is

not disrupted the tests. Both DBMSs are installed on the

computer with SSD for the fastest possible read and write

speed and they are executed separately during the test

scenarios. Multithreaded Java applications for reading and

writing operations on DBMSs are implemented.

Experiments’ constraints are the number of machines,

number of threads, number of messages, and the size of

the string. These constraints are applied for both DBMSs.

The application is executed on a virtual machine;

therefore, the applications are limited in terms of the CPU

core and memory. In this study, since writing operations

are more important than reading operations, our tests

concentrate on the writing operations. In our tests, data

examples are selected as similar to real-time sensor

applications.

In this study, two columns are defined including variable-

length string type, an integer type. A primary key column

is automatically defined in MySQL, but it needs to be

defined in MongoDB. The execution time of the tests is

calculated in milliseconds. The number of messages is

measured dividing the total number of messages into the

experiment’s execution time.

Figure 3.Result Graph of Write Operations on MySQL

RESULTS OF EXPERIMENTS

Insert tests are executed with a multithreaded Java

application. The application sends insert SQL request

which contains a string (100 characters) and an integer

value to DBMSs. The application is executed in

computers based on the parameters (number of computer

and threads) as depicted in Figure 3 and Figure 4. Best

throughput is 18.21 messages/millisecond in average for

MySQL such that is succeeded with two computers each

has twenty threads as presented in Figure 3. As it can be

seen that forty threads for one and two computers

utilization have close results. Best throughput will go up

when the number of threads increases. However, when the

number of threads reaches eighty, throughput value begins

to decrease. Therefore, it has been decided that MySQL

can manage forty threads for best results.

Similarly, best throughput is 70.95 messages/millisecond

in average for MongoDB such that is succeeded with two

computers each has forty threads as presented in Figure 4.

To eliminate the effects of the thread switching, the third

computer is also used for MongoDB. Throughput for

utilization of the one, two and three computers is 61.22,

70.95, and 61.65 messages/millisecond, respectively. As

it can be seen that two computers’ utilization has the best

performance. Another result can be obtained from the

Figure. 3 and Figure. 4 is a correlation between a number

of threads and computers. Best results are obtained for

Figure 4.Result Graph of Write Operations on MongoDB

MySQL; forty threads for one computer and twenty

threads for two computers and also for MongoDB; eighty

threads for one computer, forty threads for two computers,

and twenty threads for three computers. It can be seen that

MongoDB supports more than sixty threads for best

throughput.

Figure 5.Results of String Length Experiments on MySQL

It is also tested the data with different variable string

length as depicted in Figure 5 and Figure 6. Since best

results are obtained from the two computers, only two

computers cases are tested in these tests. As it can be seen

that 18.21, 9.33, and 6.13 messages/millisecond in

average are obtained for MySQL with 100, 1000, and

2000 string length respectively as depicted in Figure 5.

Similarly, previous results, twenty threads utilization for

MySQL has best throughput results. For MongoDB, forty

threads utilization has best throughput results; 70.95,

49.04, and 39.85 messages/millisecond in average are

obtained with 100, 1000, and string (2000 characters)

respectively as depicted in Figure 6. MongoDB DBMS

has about four times better results than MYSQL. As it can

be seen that length of the message is one of the most

important parameters. Such as when the length is doubled,

throughput is decreased about twenty percent.

Select tests are also executed with the same multithreaded

Java application. The application retrieves data from two

DBMSs. The application is executed on a computer and

two computers with a different number of the threads as

depicted in Figure 7 and Figure 8. MySQL results are not

Figure 6.Results of String Length Experiments on

MongoDB

5 0 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 0 0 2 0 0 0 0 0 0 4 0 0 0 0 0 0

0,00

5,00

10,00

15,00

20,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

/T
IM

E

MYSQL

1-10 1-20 1-40 1-80

2-10 2-20 2-40 2-80

5 0 0 . 0 0 0 1 . 0 0 0 . 0 0 0 1 . 5 0 0 . 0 0 0 2 . 0 0 0 . 0 0 0 4 . 0 0 0 . 0 0 0

0,00

20,00

40,00

60,00

80,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

/T
IM

E

MONGODB

1-10 1-20 1-40 1-80

2-10 2-20 2-40 2-80

3-10 3-20 3-40 3-80

5 0 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 0 0 2 0 0 0 0 0 0 4 0 0 0 0 0 0

0,00

10,00

20,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

 /
 T

IM
E MYSQL

2-10-100 2-20-100 2-40-100
2-10-1000 2-20-1000 2-40-1000
2-10-2000 2-20-2000 2-40-2000

5 0 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 0 0 2 0 0 0 0 0 0 4 0 0 0 0 0 0

0,00

20,00

40,00

60,00

80,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

 /
 T

IM
E

MONGODB

2-10-100 2-20-100 2-40-100 2-80-100

2-10-1000 2-20-1000 2-40-1000 2-80-1000

2-10-2000 2-20-2000 2-40-2000 2-80-2000

Figure 7.Result Graph of Read Operations on MySQL

stable as MongoDB. Best throughput is 60.09

messages/millisecond and 44.34 in average for MySQL

with one computer has eighty threads. In MongoDB, the

best result is 68.68 messages/millisecond and 58.61

messages/millisecond in average is succeeded with three

computers each has eighty threads as depicted in Figure 8.

Furthermore, it has been concluded that MongoDB can

manage eighty threads for reading operations.

CONCLUSIONS

Our IoT platform requires that forty

messages/milliseconds in average should be written to the

chosen DBMS. Otherwise, the number of messages

waiting in the queue for writing will increase and it can

cause memory problems. In the IoT platform, active-

active architecture is applied. Therefore, more than one

computer can write to DBMS at the same time. Test

results show that MongoDB has better performance than

the MYSQL in terms of both writing and reading

operations. In the IoT Platform, the message payload is

varying between 100 bytes and 200 bytes. For these types

of messages, MongoDB has 70.95 messages/milliseconds

in average and MySQL has 18.21 messages/milliseconds

in average for writing. As it can be seen that only

MongoDB satisfy the target expectations 40

messages/milliseconds in average. MongoDB also can

satisfy the requirement with a single machine which has

61.22 messages/milliseconds throughput for writing.

Figure 8.Result Graph of Read Operations on MongoDB

The DQS in the IoT platform applies reading operations

on the DBMS. Test results show that MongoDB has better

throughput than the MySQL. MongoDB has 55.07

messages/millisecond in average and MySQL has 46.66

messages/millisecond in average for two computers.

Therefore, MongoDB is selected as DBMS for writing

and reading operations in the IoT Platform.

ACKNOWLEDGEMENT

These results preliminary study of the project proposal

applied to TUBITAK 1505 University Industry

Collaboration Grant Program and the study is supported

by EMKO Electronic A.Ş located in Bursa, Turkey.

REFERENCES
[1] “IoT.” [Online]. Available:

https://connectedtechnbiz.wordpress.com/tag/internet-of-

things/.

[2] “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use
in 2016, Up 30 Percent From 2015,” 2015. [Online].

Available: http://www.gartner.com/newsroom/id/3165317.

[3] “JSON.” [Online]. Available: http://json.org/.

[4] “MongoDB Documentation,”

https://docs.mongodb.com/manual/. .

[5] K. Chodorow, Mongo DB: The Definitive Guide. 2013.

[6] “CouchDB.” [Online]. Available: http://couchdb.apache.org/.

[7] “HBASE.” [Online]. Available: https://hbase.apache.org/.

[8] “Cassandra.” [Online]. Available:

http://cassandra.apache.org/.

[9] “Amazon SimpleDB.” [Online]. Available:

https://aws.amazon.com/simpledb/.

[10] “Redis.” [Online]. Available: https://redis.io/.

[11] G. Aydin, I. R. Hallac, and B. Karakus, “Architecture and

implementation of a scalable sensor data storage and analysis
system using cloud computing and big data technologies,” J.

Sensors, vol. 2015, 2015.

[12] S. Chickerur, A. Goudar, and A. Kinnerkar, “Comparison of
Relational Database with Document-Oriented Database

(MongoDB) for Big Data Applications,” Proc. - 8th Int. Conf.

Adv. Softw. Eng. Its Appl. ASEA 2015, pp. 41–47, 2016.

[13] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL

MongoDB to an SQL DB,” Proc. 51st ACM Southeast Conf. -

ACMSE ’13, p. 1, 2013.

[14] Y. Li and S. Manoharan, “A performance comparison of SQL

and NoSQL databases,” IEEE Pacific RIM Conf. Commun.

Comput. Signal Process. - Proc., no. August 2013, pp. 15–19,

2013.

[15] P. T. A. Mai, J. K. Nurminen, and M. Di Francesco, “Cloud

databases for internet-of-things data,” Proc. - 2014 IEEE Int.
Conf. Internet Things, iThings 2014, 2014 IEEE Int. Conf.

Green Comput. Commun. GreenCom 2014 2014 IEEE Int.

Conf. Cyber-Physical-Social Comput. CPS 20, no. iThings,

pp. 117–124, 2014.

1 0 0 . 0 0 0 2 5 0 . 0 0 0 5 0 0 . 0 0 0 1 . 0 0 0 . 0 0 02 . 0 0 0 . 0 0 0

0,00

20,00

40,00

60,00

80,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

/T
IM

E

MYSQL

1-10 1-15 1-20 1-40 1-80

2-10 2-15 2-20 2-40

1 0 0 . 0 0 0 2 5 0 . 0 0 0 5 0 0 . 0 0 0 1 . 0 0 0 . 0 0 0 2 . 0 0 0 . 0 0 0

20,00

40,00

60,00

80,00

NUMBER OF MESSAGES

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

 /
 T

IM
E

MONGODB

1-10 1-15 1-20 1-40 1-80
2-10 2-15 2-20 2-40 2-80
3-10 3-15 3-20 3-40 3-80

BIOGRAPHY(S)

Gizem Kiraz

Gizem Kiraz has completed her

undergraduate (2016) in Computer

Engineering Department from the

Pamukkale University (PAÜ). Her

postgraduate has started (2017) in

Computer Engineering Department

from the Uludag University.

Currently, she is studying on the

Internet of Things.

Cengiz Toğay

Cengiz Togay, Ph.D. is an assistant

professor at Uludag University's

Computer Engineering Department.

He obtained his undergraduate (1999)

and MS (2001) in computer

engineering from the Canakkale

Onsekiz Mart University and his PhD

(2008) in computer engineering

department from Middle East

Technical University. He has national and international

patent applications, papers, articles and projects about

Software Engineering, Secure Communications, Smart

Cards, and Internet of Things(IoT).

