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Abstract

Understanding and maintaining legacy software is a well-known prob-
lem. Static analysis tools aims to support developers in these tasks. We
present a static analysis method for extracting the supervisor hierarchy
of Erlang programs, which can support program comprehension and
maintenance. Beside the algorithm we introduce two different views of
the supervisor graph, a compact supervisor graph with only the essen-
tial information, and a more detailed full supervisor graph. We demon-
strate the method on an example Erlang application and present the
two different views of the supervisor hierarchy. The method has been
implemented as an extension of the RefactorErl analyser framework.

1 Introduction

RefactorErl [1, 2] is a static source code analyser, comprehension and refactoring tool for Erlang [3, 4]. The aim
of the tool is to support source code comprehension and maintenance. RefactorErl is an extensible framework
that provides several analysis features [5] and tools. The extracted information of the source code is stored in a
Semantic Program Graph [6] (SPG) which is available for users through a query language [7].

The tool provides several basic semantic analyses, like function call analysis, variable binding and reference
analysis, data flow analysis, etc. There are several advanced analyses built on the basic semantic analyses,
for example duplicate code analysis, dead code analysis, and dependency graphs, etc. However, the analysis of
supervisors and applications [8] of Erlang programs was not supported. Both concepts are fundamental in Erlang
because they describe dependencies and connections between Erlang modules.

A supervisor is a process that monitors and manages other processes and handle errors based on the given
strategies. A supervised process can be a worker or an other supervisor process. The hierarchically built structure
of supervisor processes are called supervision trees. Using supervisors is a good programming practice to build
fault-tolerant applications. Understanding the hierarchy of complex and concurrent or distributed applications
is essential in maintenance and support phases.

In this paper we are going to extend the semantic layer of the SPG with information about supervisors.
We provide formal definitions both for the extensions of the model of the semantic program graph and for the
algorithms of the semantic analyses. In addition we define two new graphs, a compact view of the supervision
hierarchy and a view of the full supervisor graph including detailed information.
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The paper is structured as follows. Section 2 describes the necessary background information for understanding
the approach. Section 3 describes the formal extension of the used source code representation (SPG) and the
algorithm of the analysis. Section 4 introduces two graphs/views with different granularity level. Section 5
demonstrates the presented algorithm and views on an example. Section 6 surveys the supervisor concept used
in other programming languages. Finally, Section 7 summarises our results and presents our conclusions.

2 Background

Before discussing the method in details, it is necessary to survey the Erlang supervisor and the RefactorErl
framework used as a basis for the analysis.

2.1 Erlang supervisors

The supervisor behaviour is a library module that contains generic code for process monitoring and managing.
The specific code is implemented in the callback module. The only mandatory function in the callback module
is the function init/1. This function defines the restart strategy, the maximum restart intensity and the child
specifications of the supervisor process. The child specification describes the identifier of the child, the function to
start the process, the restart option, the timeout of the shutdown, the type of child process (worker or supervisor)
and its callback module.

The supervisor process can be started with the supervisor:start link/2,3 functions. These functions
require the name of the supervisor (optional), the callback module and startup arguments. When the function
is applied the init/1 function is invoked from the provided callback module with the specified arguments.

We must note here that besides the static initialising arguments, there are several supervisor manipulating
functions such as adding, restarting, deleting a child process, or querying and checking child specifications, etc
in runtime.

2.2 RefactorErl

RefactorErl stores the analysed data in a special directed graph called semantic program graph (SPG). This
graph includes all the information that can be statically extracted from the source code with different analyses.
The SPG consists of three layers. The first is the lexical layer, the second is the syntactic layer and the third is
the semantic layer.

The semantic layer is constructed by several analyses which can be divided into two groups. The first is the
group of pre analyses which are executed when an Erlang source file is being loaded into RefactorErl, and the
second is the group of post analyses which need to be run manually after the pre analysis phase.

The SPG is a directed graph that can be described as an ordered hextuple:

SPG = (V,AN , AV , l, E, e)

The components of the hextuple are the following:

• V = (Vlex ∪ Vsyn ∪ Vsem ∪ Vr): The nodes of the SPG are the union of the lexical, syntactic and semantic
nodes, extended with a special singleton set of the root node.

• AN : The set of attribute names of the nodes.

• AV : The set of possible attribute values.

• l : V ×AN → AV : The node labelling partial function.

• E: The set of edge labels.

• e : V × E × N→ V : The partial function that describes labelled, ordered edges between the graph nodes.

The SPG has several type of nodes with different attributes describing the properties of the nodes. The nodes
of the SPG and their attributes that are important from the aspect of the supervisor analysis are as follows:

Root: A special singleton set that includes the root node of the SPG. Symbol: Vr

File: Set of syntactic nodes representing the files in the SPG. Symbol: Vfi ⊆ Vsyn
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Expr: Set of syntactic nodes representing the expressions in the SPG. The expression nodes have a type

attribute which describes the type of the expression. The supervisor analysis uses expression nodes with
type application, which means that the expression is a function invocation. Symbol: Ve ⊆ Vsyn

Module: Set of semantic nodes representing an Erlang module in the SPG. The module nodes have a name

attribute which describes the name of the module. Symbol: Vm ⊆ Vsem

Behaviour: Set of semantic nodes representing the behaviours in the SPG. A behaviour node is present in the
SPG if the analysed module implements a behaviour. The type attribute of the node describes the name
of the implemented behaviour. Symbol: Vb ⊆ Vsem

Func: Set of semantic nodes representing the functions in the SPG. The functions are identified by the triple
of the name of the defining module, and the name and arity of the function ((M,F,A)). Symbol: Vf ⊆ Vsem

3 Supervisor analysis

The analysis defined in this paper extends the SPG with the supervisor semantic node and new labelled links
between semantic and syntactic nodes of the graph according to the semantics of the supervisor behaviour.

3.1 SPG extension

We formally specify how do we extend the previously described set of semantic nodes with a set of Supervisor
nodes (Vsup) and the directed edges between the nodes of the graph.

Attributes of the Supervisor node:

• name: The name of the supervisor. Type: atom()

• type: The type of the supervisor. Type: [supervisor,worker]

• registered name: This attribute contains the possible registered names of the supervisor.
Type: supRegName() = [{[via], [Module :: atom()], [Name :: atom()]}],
{[Scope :: atom()], [Name :: atom()]}.

• data: If the supervisor is a worker then this attribute contains every information about the worker.
Type: supPropList() = [{child id, [atom()]}, {restart, [atom()]}, {shutdown, [integer()]},
{modules, [atom()]}].

• strategy: The restart strategy of the supervisor.
Type: supStrategy() = [{[Strategy :: strategy()], [MaxTime :: integer()], [MaxRestart

:: integer()]}] where the strategy() is the type of restart strategies (one for all, one for one, rest -
for one, simple one for one), MaxTime and MaxRestart describe the maximum intensity of restarts within
the given time period.

• start args: Contains the last argument of the supervisor:start link/2,3 function calls which can start
the actual supervisor. The last argument is passed to the init/1 callback function. Type: [term()]

New edges from the Supervisor node:

• sup cb module : Vsup → Vm : Points to the node of the callback module of the supervisor.

• sup start : Vsup → Vf : Points to the function nodes that apply the functions supervisor:start link/2,3

in their definition (potentially start the supervisor process).

• sup init : Vsup → Vf : Points to the function node init/1 in the callback module.

• sup worker : Vsup → Vsup : Points from a supervisor to its direct successor supervisor nodes (in the
supervision tree).

• w def : Vsup → Vf : Points from a worker supervisor node to the function node that defines the worker.

• sup def : Vsup → Vsup : Points from a supervisor to its defining supervisor node.
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• sup ref : Vsup → Ve : Points to the function calls (expressions) that can modify or query the supervisor in
runtime.

New edges to the Supervisor node:

• beh sup : Vb → Vsup : This edge points from the behaviour node to the supervisor node if its type attribute
is supervisor.

Formal extension of the SPG

Let SPG′ denote the extended semantic program graph:

SPG′ = (V ′, A′
N , A′

V , l
′, E′, e′)

The set of semantic nodes (Vsem) is extended with the set of Supervisor nodes (Vsup):

V ′
sem = Vsem ∪ Vsup

V ′ = V ∪ V ′
sem

The sets of attribute names (AN ) and values (AV ) are extended with the attributes and possible values of
attributes of the Supervisor node:

Asup
N = {name, type, registered name, data, strategy, start args}

Asup
V = {atom() ∪ [supervisor|worker] ∪ supRegName() ∪ supPropList() ∪ supStrateg() ∪ [term()]}

A′
N = AN ∪Asup

N

A′
V = AV ∪Asup

V

The set of edge labels (E) is extended with the new labels:

Esup = {sup def, sup cb module, sup start, sup init, sup worker,

w def, sup ref, beh sup}

E′ = E ∪ Esup

The node labelling partial function l is extended with the following cases for an arbitrary x ∈ Vsup node:

l′ : x× name→ atom()

l′ : x× type→ [supervisor|worker]

l′ : x× registered name→ supRegName()

l′ : x× data→ supPropList()

l′ : x× strategy → supStrategy()

l′ : x× start args→ [term()]

The partial function e is extended with the following cases for an arbitrary x ∈ Vsup node and an arbitrary n ∈ N
natural number:

e′ : x× sup cb module× n→ y ∈ Vm

e′ : x× {sup start, sup init, w def} × n→ y ∈ Vf

e′ : x× {sup worker, sup def} × n→ y ∈ Vsup

e′ : x× sup ref × n→ y ∈ Ve

For an arbitrary z ∈ Vb node:
e′ : z × beh sup× n→ y ∈ Vsup
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3.2 The algorithm

The analysis is performed in two phases. The first step is the pre analysis which is performed during the basic
semantic analysis. The second step is the post analysis, which extracts all the statically available information
about the supervisors. We separated our analysis according to the asynchronous, incremental analyser framework
of RefactorErl. The first phase of the analysis (pre analysis) is the syntax based node identification part that
can be performed incrementally form by form asynchronously. In this phase we have only a partial view on
the semantic layer. The second phase (post analysis) uses the information calculated by the first phase of the
supervisor analysis and other semantic analyses performed on the full SPG in an interfunctional way (such as
the data-flow reaching). The pseudo code of the analysis is presented in Algorithm 1.

Pre analysis

In the pre analysis phase a new Supervisor semantic node is created and inserted into the SPG if the module
implements the supervisor behaviour. That is, the module contains the -behaviour(supervisor) attribute.
This module is the callback module of the behaviour. A new edge with label sup cb module is inserted between
the Supervisor node and the module and the name attribute of the Supervisor is set to the name of the callback
module. Finally, a new edge with label beh sup is inserted between the corresponding behaviour node and the
Supervisor node.

Post analysis

The pre analysis phase did the initialisation, new Supervisor nodes have been created, initialised and inserted
to the SPG. The post phase of the algorithm extracts the most possible information about the supervisors.
The algorithm determines the starting arguments, workers, hierarchy, etc. The post phase creates new semantic
nodes and extends the semantic information available in the SPG. The Algorithm 1 shows the pseudo code of
the post analysis phase for a given Supervisor node.

First of all, the algorithm finds the init/1 callback function of the supervisor using the find init fun routine.
Once the callback function node is found we insert an edge with label sup init between the examined Supervisor
node and the function node.

The second step of the algorithm is to determine the functions that potentially start the supervisor process.
The algorithm searches for supervisor:start link/2,3 function applications. For each function application
we get its arguments with the get args routine, then we apply data-flow reaching by invoking the flow routine to
determine the possible values of the arguments. The Module variable contains the name of the callback module
of the supervisor that is started with the examined application. We filter the result for the actual supervisor
(Supervisor) and we update its registered name and args attributes. Finally, we create a link with label
sup start between the Supervisor and the node of the function that applies the supervisor:start link/2,3

functions.
The third step of the algorithm is the analysis of restart strategies and child specifications of the Supervisor.

This information can be found in the return value of the init/1 callback function or the supervisor:start -

child/2 function. At first, we examine the return points of the init/1 callback function. The return points
of the function are queried by the return points routine. For each return point we apply data-flow reaching
to determine the possible strategies and child specifications. We update the attribute restart strategy with
the newly found restart strategies (Strategies) and collect the child specifications in the set GoodChildSpecs.
Next, we need to get the child specifications from the supervisor:start child/2 function applications. We
query the function applications and for each function application we try to determine the values of its arguments
with data-flow reaching. The gathered child specifications are inserted to the GoodChildSpec set if the set of
registered names of the examined Supervisor and the set SupRefNames has a non empty section. Next we
create a new worker Supervisor node using the create worker routine for every child specification from the
GoodChildSpec and create a link with label sup worker between every newly created worker and the examined
Supervisor. Finally, based on the type of the worker process we use a sup def or w def edge to create a link
between the worker and its definition.

The last step is to analyse the supervisor references. We examine the function from the supervisor module
listed in variable FunsWithArity. For each function we query the function applications, then with data-flow
reaching we try to determine the referred supervisor from its arguments. If the function application refers the
examined Supervisor, then a link with label sup ref is created between the function application and the Supervisor
node.
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Algorithm 1 analyse supervisor(Supervisor)

1: InitFun← find init fun(Supervisor)
2: create link(Supervisor, InitFun, sup init)
3: %% Analyse supervisor : start link/2, 3 functions %%
4: StartFunCalls← get fun calls(supervisor, start link, {2, 3})
5: for FunCall ∈ StartFunCalls do
6: (SupName,Module, Args)← flow(get args(FunCall))
7: if Supervisorname ∩Module 6= ∅ then
8: Supervisorregistered name ← Supervisorregistered names ∪ SupName
9: Supervisorargs ← Supervisorargs ∪Args

10: create link(Supervisor, get fun(FunCall), sup start)
11: end if
12: end for
13: %% Analyse child specifications %%
14: RetPoints← return points(InitFun)
15: GoodChildSpecs← ∅
16: for RetPoint ∈ RetPoints do
17: (ok, (Strategies, ChildSpecs))← flow(RetPoint)
18: Supervisorstrategy ← Supervisorstrategy ∪ Strategies
19: GoodChildSpecs← GoodChildSpecs ∪ ChildSpecs
20: end for
21: StartChildFunCalls← get fun calls(supervisor, start child, 2)
22: for FunCall ∈ StartChildFunCalls do
23: (SupRefNames,ChildSpecs)← flow(get args(FunCall))
24: if Supervisorregistered name ∩ SupRefNames 6= ∅ then
25: GoodChildSpecs← GoodChildSpecs ∪ ChildSpecs
26: end if
27: end for
28: for ChildSpec ∈ GoodChildSpecs do
29: NewWorker ← create worker(ChildSpec)
30: WorkerDef ← get worker def(ChildSpec)
31: create link(Supervisor,NewWorker, sup worker)
32: if supervisor ∈ NewWorkertype then
33: create link(NewWorker,WorkerDef, sup def)
34: else if worker ∈ NewWorkertype then
35: create link(NewWorker,WorkerDef,w def)
36: end if
37: end for
38: %% Analyse supervisor references %%
39: FunsWithArity ← {(start child, 2), (terminate child, 2), (delete child, 2),
40: (restart child, 2), (which children, 1), (count children, 1)}
41: for (Fun,Arity) ∈ FunsWithArity do
42: FunCalls← get fun calls(supervisor, Fun,Arity)
43: for FunCall ∈ FunCalls do
44: (SupRefNames, )← flow(get args(FunApp))
45: if Supervisorregistered name ∩ SupRefNames 6= ∅ then
46: create link(Supervisor, FunCall, sup ref)
47: end if
48: end for
49: end for

4 The supervisor graph

In Section 3 we extended the SPG with additional semantic information about supervisors. It is possible to
visualise the SPG, however it is too extensive and it is hard to find relevant information about supervisors. In
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this section we define a supervisor graph which is a view of the SPG that contains information only about the
supervisors.

The introduced graphs contain explicit information about the supervisor structure that can be used for code
comprehension, debugging or checking the hierarchy of the software.

4.1 Definition of the supervisor graph

Let the supervisor graph Gsup be an ordered pair. The first component of the pair is the set of nodes of the
supervisor graph. The second component of the pair is the set of directed edges represented as ordered triples.

Gsup = (V sup, Esup)

The set of nodes is the union of supervisor nodes, worker nodes, function nodes and expression nodes, formally:

V sup = (V sup
s ∪ V sup

w ∪ V sup
f ∪ V sup

e )

The set of edges is represented by ordered triples. The components of a triple are the head node, the tail node
and the label of the edge:

Esup ⊆ V sup × V sup × LABELsup

The set of edge labels of the supervisor graph is:

LABELsup = {start, init, supervisor, worker, sup def, worker def, reference}

Nodes of the supervisor graph

• The definition of the supervisor node is the following:

Sup node = {name :: string(), strategy :: supStrategy(), registered name :: [term()],

start args = [term()]}

The Sup nodes are representing the supervisors in the supervisor graph. The Sup node has the following
attributes:

– name: The name of the supervisor. This will be the caption of the node in the supervisor graph.

– strategy : The restart strategy of the supervisor.

– registered name: If the supervisor is registered, this attribute contains the type of the registration along
with the registered name.

– start args: The arguments which are passed to the init/1 callback function.

• The definition of the worker node is the following:

SupWorker node = {name :: string(), data :: supPropList()}

The SupWorker nodes are representing the workers in the supervisor graph. The SupWorker node has the
following attributes:

– name: The name of the worker. This name will be the caption of the node in the supervisor graph.

– data: This attribute contains every information available about the worker, for example: the type of
the worker.

• The definition of function node is the following:

SupFunction node = {name :: string()}

The function nodes represent the callback functions in the supervisor graph. The SupFunction node has
the following attributes:

– name: The name of the function. This will be the caption of the node in the supervisor graph.
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• The definition of the expression node is the following:

SupExpression node = {name :: string(), func :: {module(), fun(), arity()}, args : [term()]}

The expression nodes represent the supervisor references in the supervisor graph. Supervisor references
are function applications, which might modify or query the supervisor arguments during runtime. The
SupExpression node has the following attributes:

– name: The text of the expression node which will be the caption of the node in the supervisor graph.

– func: A module, function and arity triple ({M,F,A}) that identifies the function which is referred by
the application expression.

– args: The arguments of the function application.

Notations

In the previous section we introduced the Vsup set of Supervisor semantic nodes in the SPG. In this section we
use the V sup notation for the set of supervisor nodes in the new supervisor graph. We define two subsets of set
Vsup:

• Vsups
⊆ Vsup – set of supervisor nodes which type is supervisor. Formally:

Vsups
= { x | x ∈ Vsup, supervisor ∈ l(x, type)}

• Vsupw ⊆ Vsup – set of supervisor nodes which type is worker. Formally:

Vsupw = { x | x ∈ Vsup, worker ∈ l(x, type)}

Auxiliary functions

We introduce some auxiliary functions to shorten the supervisor graph building rules:

• edges(x, y): The function takes two nodes from the SPG and returns the set of labels of directed edges with
head x and tail y.

• updateSup(Sup, Sup′):

Sup ∈ Vsups
∧ Sup′ ∈ V sup

s

Sup′[name = Supname, strategy = Supstrategy,

registered name = Supregistered name, start args = Supstart args]

The rule says that the Sup′ node (type of Sup node) shall have the same name, strategy, registered name
and start arguments as the Sup Supervisor node from the SPG.

• updateSupWorker(Sup,Worker):

Sup ∈ Vsupw
∧Worker ∈ V sup

w

Worker[name = Supname, data = Supdata]

The rule says that the Worker node (type of SupWorker node) shall have the same name and the same
data as the Sup Supervisor node (which type is worker) from the SPG.

• updateSupFunction(Fun, Fun′): The function updates the name attribute of Fun′ node (type of set
SupFunction node) with the (M,F,A) of the Func node from the SPG.

• updateSupExpression(Expr,Expr′): The function updates the attributes of Expr′ node (type of
SupExpression node). The name attribute shall be the string created from (M,F,A) of the function that
contains the SPG expression Expr. The args attribute contains the arguments of the function application
which information is gathered from. Finally, the func attribute contains the ordered triple {M,F,A} of the
function which the supervisor reference refer. E.g.: {supervisor,start child,2}.
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COMPACT supervisor graph

We introduce two types of supervisor graphs. The full supervisor graph contains every available information
about the supervisors and workers, like callback functions, supervisor references, worker definitions, etc. The
COMPACT supervisor graph only contains information about the hierarchy of the supervisors and workers. We
use the COMPACT flag to distinguish the COMPACT and full supervisor graphs in the rules.

Rules

In the followings we define the rules which are used to build the full and COMPACT supervisor graphs.

1. Supervisor node
x ∈ Vsups

x′ ∈ V sup
s ∧ updateSup(x, x′)

If an x Supervisor node is present in the SPG then the x′ node which is synthesised from x using the
updateSup function will be in the supervisor graph. This x′ will be a member of the Sup nodes of the
supervisor graph.

2. Supervisor edge (COMPACT )

{x, y, z} ⊆ Vsups
∧ sup worker ∈ edges(x, y) ∧ sup def ∈ edges(y, z) ∧ COMPACT

x′ ∈ V sup
s ∧ z′ ∈ V sup

s ∧ updateSup(x, x′) ∧ updateSup(z, z′)∧
(x′, z′, supervisor) ∈ Esup

Let the x, y and z be Supervisor nodes from SPG. If there is a sup worker edge between x and y and
a sup def edge between y and z, then there will be a supervisor edge between the x′ and z′ synthesised
Sup node nodes in the COMPACT supervisor graph. The not COMPACT (full) supervisor edge rule can
be analogously defined.

3. Worker edge

x ∈ Vsups
∧ y ∈ Vsupw

∧ sup worker ∈ edges(x, y)

x′ ∈ V sup
s ∧ y′ ∈ V sup

w ∧ updateSup(x, x′) ∧ updateSupWorker(y, y′)∧
(x′, y′, worker) ∈ Esup

Let x and y be Supervisor nodes in the SPG and the type of y is worker. If there is a sup worker edge
between x and y, then there will be a worker edge between the x′ and y′ synthesized Sup node nodes in
the supervisor graph.

4. Supervisor init

x ∈ Vsups
∧ f ∈ Vf ∧ sup init ∈ edges(x, f) ∧ ¬COMPACT

x′ ∈ V sup
s ∧ f ′ ∈ V sup

f ∧ updateSup(x, x′) ∧ updateSupFunction(f, f ′)∧
(x′, f ′, init) ∈ Esup

If a Supervisor node is connected to a function node with a sup init edge in the SPG, then there will be
an init edge between the synthesised x′ and f ′ nodes in the supervisor graph (if the supervisor graph is not
COMPACT ). This rule describes that the supervisor shall be connected to its init callback function.

5. Supervisor start

x ∈ Vsups ∧ f ∈ Vf ∧ sup start ∈ edges(x, f) ∧ ¬COMPACT

x′ ∈ V sup
s ∧ f ′ ∈ V sup

f ∧ updateSup(x, x′) ∧ updateSupFunction(f, f ′)∧
(x′, f ′, start) ∈ Esup
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If a Supervisor node is linked to a function node with a sup start edge in the SPG, then there will be an
start edge between the synthesised x′ and f ′ nodes in the supervisor graph (if the supervisor graph is not
COMPACT ). This rule describes that the supervisor shall be connected to the function that can start the
supervisor with an application of the supervisor:start link/2,3 functions.

6. Supervisor reference

x ∈ Vsups
∧ e ∈ Ve ∧ sup ref ∈ edges(x, e) ∧ ¬COMPACT

x′ ∈ V sup
s ∧ e′ ∈ V sup

e ∧ updateSup(x, x′) ∧ updateSupExpression(e, e′)∧
(x′, e′, reference) ∈ Esup

If the x Supervisor node is linked to an expression node x with a sup ref edge in the SPG, then there
will be a reference edge between the synthesised x′ and e′ nodes in the supervisor graph (if the supervisor
graph is not COMPACT ).

5 Demonstrating Example

In this section we illustrate the algorithm of the analysis with an example implementation of a supervisor. First
we introduce the example implementation, then we discuss the algorithm step by step focusing mostly on the
post analysis phase of the SPG extension. Finally we present the supervisor graph and the compact supervisor
graph.

5.1 Example Supervisor

The example supervisor can be seen in Figure 1. This supervisor is a simplified model of a theatre. The theatre
has a director, a technician, and a bandmaster. The bandmaster supervises the musicians as can be seen in
Figure 2.

Figure 1: Theatre supervisor

1 −module( thea t r e ) .
2 −behaviour ( supe rv i s o r ) .
3
4 −export ( [ s t a r t l i n k /1 , add crew/1 ] ) .
5 −export ( [ i n i t /1 ] ) .
6
7 s t a r t l i n k ( Args ) −>
8 supe rv i s o r : s t a r t l i n k ({ l o c a l , ?MODULE} , ?MODULE, Args ) .
9

10 i n i t ( Args ) −>
11 Chi ldren = [
12 {d i r e c t o r ,
13 {d i r e c t o r , s t a r t l i n k , [ ]} ,
14 t r an s i en t , 100 , worker , [ d i r e c t o r ]} ,
15 {tech ,
16 {tech , s t a r t l i n k , [ ]} ,
17 t r an s i en t , 100 , worker , [ tech ]} ,
18 {bandmaster ,
19 {bandmaster , s t a r t l i n k , [Args ]} ,
20 t r an s i en t , 100 , superv i so r , [ bandmaster ]} ] ,
21 {ok , {{ o n e f o r a l l , 3 , 500} , Chi ldren}} .
22
23 add crew ( ChildSpec ) −>
24 supe rv i s o r : s t a r t c h i l d ({ l o c a l , ?MODULE} , ChildSpec ) .
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Figure 2: Bandmaster supervisor

1 −module( bandmaster ) .
2 −behaviour ( supe rv i s o r ) .
3
4 −export ( [ s t a r t l i n k /1 ] ) .
5 −export ( [ i n i t /1 ] ) .
6
7 s t a r t l i n k ( Args ) −>
8 supe rv i s o r : s t a r t l i n k ({ l o c a l , ?MODULE} , ?MODULE, Args ) .
9

10 i n i t ( l e n i e n t ) −>
11 i n i t ({one fo r one , 3 , 60} ) ;
12 i n i t ( angry ) −>
13 i n i t ({ r e s t f o r o n e , 2 , 60} ) ;
14 i n i t ( j e r k ) −>
15 i n i t ({ o n e f o r a l l , 1 , 60} ) ;
16
17 i n i t ({RestartStrategy , MaxRestart , MaxTime} ) −>
18 Mod = music ians ,
19 Type = worker ,
20 Chi ldren = [
21 {gu i tar ,
22 {Mod, s t a r t l i n k , [ gu i tar , good ]} ,
23 t r an s i en t , MaxRestart , Type , [Mod ]} ,
24 {drummer ,
25 {Mod, s t a r t l i n k , [drummer , average ]} ,
26 t r an s i en t , MaxRestart , Type , [Mod ]} ] ,
27 {ok , {{RestartStrategy , MaxRestart , MaxTime} , Chi ldren}} .

Pre analysis

The pre analysis phase looks for ”-behaviour(supervisor).” attribute in each module. In this case both
theatre (in line 2) and bandmaster module (in line 2) has such attribute. Two new Supervisor nodes will be
inserted into the SPG. One for theatre module and one for bandmaster module, and two sup cb module links
will be inserted between the Supervisor nodes and the module nodes. The name attribute of the Supervisor
nodes will be equal to the names of the module which they are connected to. Also two beh sup links will be
inserted between the Behaviour nodes and the Supervisor nodes.

Post analysis

We discuss only the analysis of the theatre supervisor since the analysis of the bandmaster can be executed
analogously. The only difference will be the amount of extracted information about the restart strategy and
maximal restart intensity as the information is passed as a parameter to function init/1. This additional
information is not always trivially available statically, but the data-flow analysis can calculate the possible values
of variables statically.

The first step of the post analysis is to find the definition of the function init/1 from theatre callback module
in the SPG. It can be found in the line 10 of Figure 1. We insert a link sup init between the supervisor node
and the function node.

The second step of the analysis is the examination of the supervisor:start link/2,3 function applications.
We query the references of the function and we get two function applications, one application in the defini-
tion of function theatre:start link/1 (in line 8 in Figure 1) and one other one in the definition of function
bandmaster:start link/1 (in line 8 in Figure 2). The next step is the filtering of the relevant applications. To
do that we query the possible values of arguments for each application (using data flow analysis) and we look
for the second argument which describes the started supervisor. We find that the function application from the
theatre module refers to the theatre supervisor because the ?MODULE macro is substituted to the name of the
containing module. We update the attributes of the theatre supervisor node with the gathered information. The

52



attributes registered name and args are updated with the possible values of the first and the third arguments
of the application. Finally we insert a link sup start between the node of the function theatre:start link/1

(in line 7 in Figure 1) and the node of the supervisor theatre.
The third step is the analysis of restart strategies and child specifications. To find the child specifications

we need the possible return values of the init/1 callback function. We query the possible return values and
extract the information about the restart strategy and maximum intensity of restarts from the result. In our
case it is the tuple {one for all, 3, 500} (in line 21 in Figure 1). We update the strategy attribute of the
theatre node with this information. Next we try to extract the child specifications from the return values using
backward data-flow reaching. The Children variable (in line 11 in Figure 1) contains the child specifications,
and we need to determine the possible values of this variable using data-flow analysis. There are three different
children of the theatre supervisor. For each children we create a new Supervisor node of type worker and
update the data attributes with the information can be found about each supervisor. We link the theatre

supervisor to the workers with sup worker edges. We insert worker def links between the workers and their
function definition. The name of the worker function will be the second component of the child specification.
For example, {director, start link, []} (in line 13 in Figure 1) means, that the children will be started
using the director:start link/0 function. We also examine the child specifications found in the applications
of supervisor:start child/2 function, but in our case there is no information about them.

In the final step of the analysis we examine the supervisor references that potentially query or change the
attributes of the theatre supervisor. There is a reference to our supervisor in the theatre:add crew/1 function
(in line 23 in Figure 1) . We insert a link sup ref between the supervisor node an the reference.

The post analysis of the bandmaster supervisor can be analogously executed. The only important difference is
that the data flow analysis will have heavier impact on the data extracted, because the init/1 callback function
of the bandmaster module have four clauses. Thus, the restart strategy and the maximal restart intensity can
be given as parameters to the supervisor. For example the data-flow analysis will determine that the supervisor
can have three different restart strategies (one for one, rest for one, one for all.

5.2 Results

Using the rules defined in Section 4 the COMPACT and full supervisor graphs can be constructed from the SPG
after the supervisor analysis is completed. We show the COMPACT and full supervisor graphs for our example
supervisor implementation presented in subsection 5.1.

COMPACT supervisor graph

The Figure 3 shows the COMPACT supervisor graph for the theatre supervisor. The graph shows only the
hierarchy of the supervisors and the workers. The green diamond nodes represent the supervisors and the blue
oval nodes are the workers of the supervisors. The attributes of the nodes contains every information that can
be extracted statically about the supervisors or the workers as it can be seen in the picture, we highlighted the
attributes of three nodes.

Figure 3: COMPACT supervisor graph

Full supervisor graph

The Figure 4 shows the full supervisor graph for the theatre supervisor. We can see that the structure of this
graph is more complex than in the case of the COMPACT supervisor graph. We can find additional information
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in the graph like the functions of the callback module, the function nodes of the worker definitions and the
supervisor references. The orange hexagons represent the function nodes.

Figure 4: Full supervisor graph

6 Related work

The supervisor concept is present in other programming languages as well. In this section we examine some tools
which are capable of analysing supervisors in Erlang and in other programming languages as well.

Percept2

Percept2 [9] is a profiler tool for Erlang programs with focus on processes and process communication. Percept2
is a dynamic analyser tool which analyses the program in runtime. In comparison with our results Percept2 can
detect the hierarchy of the supervisors correctly. However it does not know the supervisor specific information,
for example restart strategy, child specifications, etc. In some cases Percept2 can provide more accurate results,
because it can detect new children added to supervisors dynamically. Our tool is a static code analyser, and can
detect only those children which specification is present in the source code. However our tool can detect child
specifications that are not necessarily added to the supervisors in a certain runtime configurations. In conclusion,
the two tools have slightly different focus, as Precept2 is a dynamic and RefactorErl is a static analyser tool.
The tools should be used as complementary tools.

Akka

Akka [10] is a library for Scala and Java programs. It supports the implementation of distributed concurrent and
fault tolerant software using the Actor model. The Actor model takes care of the thread handling and resource
locking, thus the developer can focus on the business logic of the software. Supervisors are present in Akka and
it is very similar to the supervisors in Erlang. The processes are represented as actors and the supervisor can
monitor these actors. Supervisors can start, stop and restart the monitored processes, and also halt them. Akka
supports two restart strategies only. Currently there is no static code analyser support for supervisors in aid of
Akka. Several IDE-s can provide dynamic information, like call stacks and class diagrams which can be used to
get some information about the supervisors, but it is not nearly as accurate as our results for Erlang supervisors.

Cloud Haskell

Cloud Haskell [11] is a library for Haskell programs. It supports the implementation of distributed and concurrent
software mainly for clusters. In Cloud Haskell there is a package called distributed-process-supervisor [12] which
supports supervisors very similar to the supervisors used in Erlang. There is no static code analyser tool that
support supervisor analysis in Cloud Haskell. The SourceGraph [13] can be used to make function call graphs and
detect module import hierarchy. From these graphs there are some information available about the supervisors,
but our results for Erlang supervisors are more accurate and user friendly.

7 Conclusions

In this paper we discussed a new method for extracting the relevant information from the source code written in
Erlang implementing the supervisor behaviour. For the analysis we used the static analysis tool RefactorErl and
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the information available in its Semantic Program Graph. RefactorErl performs lexical, syntactic and different
semantic analyses on the source code and stores the extracted results in the SPG. We presented the algorithm
of the new analysis with its pseudocode and explained the steps in detail. We introduced the formal extension
of the SPG with the new nodes and the way the new semantic information is embedded in the SPG. To make
the supervisor hierarchy more explicit we defined a supervisor graph that is a view of the SPG that includes
only information about supervisors. We defined two levels of granularity for supervisor graphs, that is a full and
a compact view. We discussed the steps and rules how these graphs are generated from the SPG. Finally we
demonstrated our approach on an example and showed the generated graphs, both a full and a compact view.

The presented method was examined on different open source Erlang applications, and the results seemed to
be useful in software comprehension.
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