Novel architecture for executable UML tooling*

Gergely Dévai, Tibor Gregorics, Boldizsar Németh, Baldzs Gregorics, David Jdnos Németh,
Gabor Ferenc Kovacs, Zoltan Gera, Andras Dobreff, Maté Kardcsony
{deva,gt,nboldi,grbtaai,nemdav94 kovacsgabor,gerazo,doauaai,kmate } Qcaesar.elte.hu

ELTE Eotvos Lorand University
Faculty of Informatics
Budapest, Hungary

Abstract

Executable UML [Obj15b] models define both behavior and structure
of software. These models can be executed, debugged and tested inde-
pendently of the target platforms, providing early validation [DKN*15].
Model compilers translate them to efficient, platform-specific target
code.

Providing a practical toolchain for large scale executable UML mod-
eling in industrial setup is challenging: version control, compare and
merge functions, convenient editor, debugging support, high quality
diagrams and model compilation need to be provided. On the other
hand, the toolchain should be lightweight for scalability, stability and
for low tool development costs.

In this paper we propose an architecture for executable UML model-
ing to achieve these goals using a text-based approach [GKR*07]. We
discuss how technologies like Xtext [Xteb] and Xbase [Xbal, language
embedding, JDT and Papyrus UML [Pap] can be integrated into a prac-
tical toolchain to design, debug, visualize [GGK™15] and translate mod-
els. The proposal is based on a working implementation: tztUML [txt],
which is now used in a pilot project by our industrial partner.

1 Introduction

Executable software modeling starts with a platform-independent model. Such a model is completely independent
of the execution platform and implementation language, and can be executed, debugged and tested on model-
level. This enables early functional validation of the software being developed. In order to test and deploy the
product on the target platforms, model compilers are used to generate code in selected implementation languages.
These code generators take additional information about the specifics of the targeted platform (in the form of
platform-specific model or platform description).

The key point here is model-level execution, which enables the following two use cases:

e Interactive debugging: The execution of the model can be analyzed using the usual debugging features
(breakpoints, stepping, variable view) and model specific features, such as the animation of state machines.

*This research is supported by Ericsson Hungary.
Copyright (© by the paper’s authors. Copying permitted for private and academic purposes.

In: E. Vatai (ed.): Proceedings of the 11th Joint Conference on Mathematics and Computer Science, Eger, Hungary, 20th — 22nd of
May, 2016, published at http://ceur-ws.org

62

deva@caesar.elte.hu
gt@caesar.elte.hu
nboldi@caesar.elte.hu
grbtaai@caesar.elte.hu
nemdav94@caesar.elte.hu
kovacsgabor@caesar.elte.hu
gerazo@caesar.elte.hu
doauaai@caesar.elte.hu
kmate@caesar.elte.hu

This use case requires the integration of the model execution engine with the user interface of the development
environment.

e Automated mass testing: The model is exercised on a configured set of test cases as part of nightly testing
or sanity checks before a commit. In this case command line compatible tooling is needed, which can be
easily integrated into testing frameworks. Runtime performance of the model execution engine is important
in this use case.

An executable software modeling environment must support many functionalities: a model editor with the
graphical visualization of the model, tools for model compare and merge, a debugger with graphical animations,
a model compiler, etc. Figure 1 depicts the many different use cases such a toolset is responsible for. Our
experience shows that the available open source tools still need to evolve a lot to provide convenient, robust,
scalable and stable solution for all these requirements.

/ Model compilation

_Model-level execution >

Figure 1: Use cases of executable modeling

Textual modeling solves many of these concerns: High-quality text editors with sophisticated editing and
search-related features are available, and users can select from numerous compare and merge tools. It is also faster
for experienced developers to edit models in text rather than to edit graphics, which is partly the consequence of
the maturity of text editors compared to graphical model editors. However, merely defining a textual notation for
modeling does not solve all the issues. Text editors need plugins to do syntax highlighting and auto-completion
correctly for the new language. Moreover, graphical visualization of certain kinds of models, like UML for
example, is essential: Understanding a model is much easier by looking at an expressive diagram than reading
text. Thus the visualization of the textual model must be established. Executable modeling makes even more
heavy-weight demands: interpreter and debugger are also required.

Diagram

*-————— > Executor environment animation
for testing purposes (optional)
A
+ Diagrams D

|

|

v +
Diagram Code in target D
generator language

? A
Model in D

Text editor

Model in text D

Model standard format, — Model
translator complying to the target compiler
metamodel

Figure 2: Architecture overview

This paper proposes a novel architecture, shown in figure 2, for text-based executable software modeling tools,
taking into account the above mentioned use cases and challenges. Dashed lines on the diagram denote interaction
between two modules, while continuous lines represent input and output. This architecture is validated by an

63

open source prototype [txt], a set of Eclipse plugins created by the authors of this paper. It is called tztUML,
which stands for textual, ezecutable, translatable UML.

1.1 Overview

————————1 ﬁ ¢ -2iagram _ Papyrus
i i [S D" SR —— txtUML animation -
o N > + runtime library d'g'sacér!ifr;ﬁt’i‘;n D
Fy

Xtext support
in text

A ‘ Papyrus diagrams

Support for standalone }
syntax v ?
Any Java Model in D Diagram Code in C++ D
editor Java syntax generator T
Model in D Xtext :
standalone syntax P ibace Model ‘_. Model in D Model

exporter EMF-UML2 compiler

Figure 3: Overview of txtUML

Figure 3 gives an overview of the prototype implementation. Modules with gray background are developed in
the txtUML project, while white ones are independent components we rely on.

Users define the UML models in text, and have two options regarding the syntax: Standalone syntax is clean
and short, but users need to learn new syntactic elements. The other option is an embedded language in Java,
which is realized by a Java API providing the necessary constructs to define models. This option is useful for
Java programmers not willing to learn new syntax and opens up possibilities to edit, run and debug txtUML
models in non-Eclipse Java development environments.

Models in standalone syntax are translated on-the-fly to the embedded Java syntax using Xtext and Xbase
as underlying Eclipse technologies. See section 3.1 and 3.2 for details of the two syntaxes and the translation
process. The resulting Java programs — on top of the txt UML runtime libraries — can be run and debugged in
any Java environment. If Eclipse is used, Xtext and Xbase makes the standard debugging features (breakpoints,
variable view, stepping in the code) available in standalone syntax as well.

The Java programs defining models can be translated to EMF-UML2 representation which is the de facto
standard format of UML models in Eclipse environment. In order to help understanding and validating the
models created in text, we generate UML diagrams compatible with the Papyrus open source UML framework
(section 3.4). Currently class and state machine diagrams are supported. The txtUML runtime is able to
communicate with the generated state machine diagrams and can animate them when the model is running or
being debugged.

The toolchain is completed by a C++ code generator that uses the EMF-UML2 model as input (section 3.6).
The toolchain can be extended by further project-specific code and document generators all working on the same,
platform-independent EMF-UML2 representation.

The main novelty of this architecture is the multi-purpose Java syntax which is (1) a full-fledged language
frontend, (2) the target of the translation from the standalone syntax and (3) the source of the UML model
generation process at the same time. We summarize the most important advantages of this setup as follows:

e Running the models as Java programs provides higher performance than interpretation. This is important
in automated testing scenarios.

e Learning new syntax and using its editor is not mandatory: The Java frontend is standard Java with a smart
API and can be used in any Java development environment.

e The platform-independent, high abstraction level language allows the generation of standard UML models
with diagrams and translation to platform-specific implementation languages.

2 Related Work
2.1 Executable UML

BridgePoint [One] is a commercial executable UML implementation originally based on the Shlaer-Mellor
method [SM96]. The solution has been open sourced [Exe| in 2014. The tool is Eclipse-based. It consists

64

of UML diagram editors, a model simulator and model compilers. The simulator animates state machines,
supports breakpoints and provides other standard debugging features.

Unlike our solution, BridgePoint’s model editor is diagram and form-based with textual action code snippets
residing in operations and state machines. The model storage format is a series of SQL-like statements, therefore
specialized model compare and merge tooling is needed. Another difference is that BridgePoint uses an interpreter
for model execution which is a performance limitation in automated mass test execution use cases. The modeling
language used by BridgePoint is an early fork of UML, therefore it diverges from the standard at certain points.
In our case, it is a design decision to keep compatibility with the latest UML standard [Obj15b].

Foundational UML, or fUML for short [Obj13b] is a subset of UML containing a limited set of class modeling
features and activities with formal execution semantics defined in an OMG standard. The goal of f{UML is to be
a basis for defining precise semantics for richer UML subsets: The Precise Semantics of Composite Structures
(PSCS) [Objlba] is an OMG standard along these lines concentrating on classes communicating through ports
and interfaces. There is another OMG standard that defines textual syntax for f{UML called Alf [Obj13a].

We have considered adopting Alf as the standalone syntax in our project but as of now, Alf (and f{UML) does
not support state machines. (This is expected to change when the Precise Semantics of State Machines (PSSM)
standard will be accepted and Alf will be extended based on the basis of PSSM.) Using our own syntax also
helps us to keep the standalone syntax and the Java frontend close to each other, making it easier for users to
switch between the two.

There are fUML and Alf reference implementations available. The fUML reference implementation is an
interpreter written in Java, and follows closely the formal semantics definition of the standard. In fact, the
implementation was part of the standardization work, and therefore execution performance was not a design
goal. The Alf reference implementation is integrated in the Eclipse environment using Xtext for parsing and
OCL [Tec12] for semantic checks. Alf execution is provided by transformation back to fUML activities and
leveraging the f{UML implementation. Consequently, efficiency of model execution was ignored in these imple-
mentations.

Moka [Mok] is an extension module of the open source Papyrus UML editor [Pap]. Moka simulates UML
activity diagrams and provides basic debugging support such as breakpoints on actions. It uses the diagrams of
Papyrus as graphical frontend for simulation and debugging, and uses a modified version of the fUML reference
implementation for the execution logic. Recent work on the integration of Alf code fragments into graphical
Papyrus models [ST15] promise BridgePoint-style executable model editing but Alf source level debugging is not
yet available.

Moliz [MLMK13] is another testing and debugging framework for f{UML activities. It defines a test specifi-
cation language and extends the f{UML reference implementation with debugging and tracing capabilities. The
execution traces are used to decide if a given test case passes or fails. This project also uses the fUML reference
implementation.

All above mentioned solutions use interpretation for model execution. The zUML-RT Model Ezecu-
tor [DKNT15] — which is a Papyrus-based model execution toolchain for the merge of the xtUML and UML-RT
languages — provides model execution and debugging features based on generated code. That toolchain lever-
ages Papyrus as model editor and uses incremental compilation techniques to translate the model to Java code,
and reimplements some of the Xtext infrastructure to connect the generated code with the model for debugging
purposes. Another difference from this paper’s architecture is that xXUML-RT’s generated Java code is hidden
from the users, therefore its API does not form an embedded language.

2.2 Textual modeling and Xtext

Textual modeling has many advantages over editing models in graphics. We have highlighted some of these in
the introduction of this paper but for a deeper insight, we refer the reader to [GKR™T07].

Creating models in text and generating graphical diagrams is a well known and applied technique.
Umple [FBL10] and eTrice [eTr] are examples of modeling environments using this principle. Unlike txtUML,
models in these tools lack abstract action language: Umple allows modeling code mixed in Java, PHP, C++
and Ruby and its code generator emits code in these languages, while eTrice allows action code in Java or C
written in the models as string literals which are propagated to the generated code. None of the approaches
allow execution and debugging on the model level. Diagram generation methodology is also different: Umple and
eTrice use autolayout algorithms (Graphviz and KIELER), while txtUML allows the user to define the layout of
diagrams using a concise DSL (see section 3.4). On the other hand, Umple and eTrice allow hybrid model editing

65

(models can be edited both in text end graphics), while txtUML’s generated diagrams are used for visualization
purposes only.

Xtext [Xteb] is a framework designed for the development of domain-specific languages. Xbase [Xba] is
an expression language — provided as part of Xtext — which can be customized and reused in other Xtext-
based languages. It has many advanced features like type inference, syntactic sugar for anonymous functions,
extension methods and type guards in switch constructions. We extensively use Xtext and Xbase to implement
the standalone syntax of txtUML and provide executability and debuggability for it.

Xbase has also been used to create Xtend [Xtea] which is intended to improve expressiveness of Java by
extending it with useful capabilities like type multi-dispatch method calls and operator overloading. Java-
-, created by Lorenzo Bettini et al. [Jav] is a simplified, educational dialect of Java. It uses a customized
version of Xbase expressions to create a Java-like procedural language. We have studied the Xtend and Java-
- implementations in order to find appropriate customization points of Xbase during the development of the
standalone syntax of txtUML.

3 Architecture
3.1 Standalone Syntax

From now on, Xtzt UML will stand for the standalone syntax variant (as an abbreviation of Xtext-based txtUML),
whereas we will refer to the Java-embedded alternative as JtztUML (for Java-based txtUML) which will be
discussed in detail throughout section 3.2.

Essentially, the XtxtUML syntax can be considered syntactic sugar on top of JtxtUML as we map the elements
of the former back the latter one. The base of this mapping is Xtext’s built-in JVM types Ecore metamodel
which is a sophisticated internal representation of the Java type system covering structural concepts such as
class attributes and methods as well. As the compilation of its constructs to Java is predefined, in most of the
cases merely specifying the connection between elements of our syntax and the JVM metamodel was sufficient to
provide automatic code generation. The mapping itself is defined with the help of the framework’s JVM model
inferrer APL.

One of the main advantages of using Xtext for implementing the standalone syntax variant is that, in this
way, highly customizable Eclipse IDE support such as syntax highlighting, hyperlinking and reference lookup is
provided out of the box by the framework. Validation for language elements can also be defined in a declarative
manner. The aforementioned mapping makes it possible to use XtxtUML entities and their generated JtxtUML
equivalents interchangeably across other XtxtUML or even Java sources.

Based on Xtext, not only structural but also behavioral parts of the new language can be implemented. For
the latter, significantly more challenging task we heavily modified Xtext’s reusable expression language — Xbase
— both in its grammar and semantics to suit our needs. Due to the overall customization-oriented nature of the
framework, it was even possible to extend Xbase with new expressions — e.g. signal sending and association
navigation — by defining their syntax, type computation, compilation to Java and optional validation.

For a brief insight into XtxtUML, see the following example.

1 || package examples.counter;
2

3 || signal S;

4

5 || class Sender {

6 public void emit () {
7 send new S() to this->(S_R.r).selectAny();
8 }

9|}

10

11 || class Receiver {

12 private int count;

13

14 initial Init;

15 state Accepting;

16 transition Initialize {
17 from Init;

18 to Accepting;

19 }

20

21 transition Accept {

66

22 from Accepting;
23 to Accepting;
24 trigger S;

25 effect { count++; }
26 }

27 || ¥

28

29 || association S_R {

30 hidden 1 Sender s;
31 * Receiver r;

32 || }

This simple model consists of two classes, Sender and Receiver, which are connected by the association s_g.
When the emit() method of a Sender instance is called, it sends a new instance of signal s to one of the Receiver
instances which are accessed by the aforementioned association. The arrival of the signal triggers a reflexive
transition in the receiver which — as its effect — increments the counter containing the number of received
signals.

One of the main design concepts of XtxtUML was to provide a clean and intuitive, Java-like syntax both for
structural entities and action code. We believe that using this approach, not only is it easier for Java developers
to become familiar with the language but the mapping to JtxtUML can be defined in a more straightforward
way as well.

The next two subsections present interesting extensions of Xtext which have been used to implement our
standalone syntax.

3.1.1 Handling package annotations

JtxtUML requires a eModel annotation on the root package of each model. As the Java specification allows only
one annotated package declaration for a given package, this is conventionally done in a separate package-info.java
source file. In the standalone syntax, we use a model-info.xtxtuml for the same purposes, that only contains a
model declaration. Unfortunately — as of version 2.8.4 — Xtext does not support the mapping of language
constructs into Java packages, so the model declaration could not be associated directly with a package info file.
Instead, we infer a Java type from the model declaration and mark it with special meta-information. A modified
version of Xtext’s code generator handles this case to generate an annotated package description instead of a
regular class.

3.1.2 Propagation of custom markers

Xtext is able to propagate errors and warnings from the generated Java code back to the original source element
in the domain-specific language. As JtxtUML comes with its own validation rules and engine, it would be
beneficial to use it also for validation of XtxtUML models. By default, Xtext propagates back only Java error
and warning markers but not JtxtUML ones. Therefore, in XtxtUML a modified version of this mechanism was
implemented by overriding the original marker propagation behavior.

The main problem with this approach is that due to Xtext’s code generation policies, XtxtUML source files and
their generated Java equivalents are mainly out of sync during editing, thus preventing the JtxtUML validator
from issuing errors and warnings instantly. It is still an open question whether we should continue providing
real-time XtxtUML validation at the expense of keeping two separate validators synchronized, or settle for the
less user-friendly backpropagation solution.

3.2 Embedded Language

JtxtUML, our second syntax, is embedded in pure Java without any extensions or modifications to the host
language, enabling users to write their models using only well-known language constructs and our API. The
current implementation is based on Java SE 8, the newest version of Java, as we aimed to provide a convenient,
fast, easy-to-read syntax and for this reason, we were ready to take advantage of any features that are provided
by the Java SE.

As it was mentioned in previous sections, a JtxtUML model is also a runnable Java program in itself, therefore
speed is indeed an important aspect here. Although creating a user-friendly API sometimes requires slight
compromises on runtime performance, our experience so far is that the achieved performance is more than good
enough for testing and debugging purposes.

67

The following short example is the same that is shown in section 3.1 but this time in JtxtUML.

1 || package examples.counter;

2

3 || import hu.elte.txtuml.api.model.*;

4

5 || class S extends Signal {}

6

7 || class Sender extends ModelClass {

8 public void emit () {

9 Action.send(new S(), this.assoc(S_R.r.class).selectAny());
10 }

11 ||}

12

13 || class Receiver extends ModelClass {

14 private int count;

15

16 class Init extends Imnitial {}

17 class Accepting extends State {}

18

19 @From(Init.class) @To(Accepting.class)
20 class Initialize extends Tramnsition {}
21

22 @From(Accepting.class) @To(Accepting.class) @Trigger(S.class)
23 class Accept extends Transition {

24 @Override

25 public void effect() {

26 count ++;

27 }

28 }

29 || }

30

31 class S_R extends Association {

32 class s extends HiddenOne<Sender> {}
33 class r extends Many<Receiver> {}

34 (|}

As it can easily be noticed, JtxtUML is more verbose than its counterpart, the XtxtUML syntax, but being an
embedded language it has many advantages that make it a reasonable option to choose, like the aforementioned
familiarity of Java developers or the off-the-shelf massive language support.

The example also shows the similarity of JtxtUML and XtxtUML which was an aim of our project as they
are only syntactic variants of the same language with the ability to switch from one to the other, learning only
minimal extra information.

In case of becoming familiar with JtxtUML, this extra information is mainly about the Java language elements
we use to represent those UML features that are not present in Java.

To describe the structure of a model, no mutable language constructs (like variables) are used to prevent
accidental modification of the model structure at runtime. This approach resulted in the fact that almost all
model elements are represented by a Java type — a Java class, in most cases — with a special super type to show
the kind of the particular element and also to inherit behavior which becomes important when executing models.
To keep JtxtUML code free from string literals referencing model elements by name — making refactoring really
hard —, we take advantage of Java reflection which let us refer to a type at runtime through its associated
java.lang.Class object.

Annotations and generics (type arguments) are widely used as well to write static information in JtxtUML
models. Annotations are suitable for adding data that is not always required (e.g. the trigger of a transition),
explicitly naming properties (e.g. the eFrom and eTo annotations) or containing primitive values (e.g. the eMin
and eMax annotations which are used to write custom association end multiplicities; this feature is not presented
in the above example). Generics can help to reference types when this information is also required at compile
time, like in the case of association ends, as the this.assoc call has to return a collection of the desired type.
These type parameters are retrievable at runtime as well because they are set in the declaration of a type and
that can be inspected with Java reflection.

Despite these powerful features of Java, some limitations of the language proved extremely hard to overcome.
Type erasure, to begin with, deprived us of many possibilities to write things in a simpler way. The lack of
value types forced us to use immutable classes which can be inconvenient for the users too, as they also have to

68

manually implement custom value types in an immutable and therefore verbose way. Garbage collection gives
us no opportunity to force the deletion of objects from the heap or at least to check whether the user’s code
holds any references to them which would be helpful to effectively implement and dynamically validate model
object deletion. The parameter passing rules of Java will make it challenging to implement UML’s out and inout
parameter passing modes. However, the greatest limitation seemed to be the single inheritance of Java, which
made us unable to introduce multiple inheritance between model classes, which is allowed in UML. The default
Java solution for this problem, the usage of interfaces, could not be applied here because Java interfaces are too
limited in features to be used instead of classes and it would be very inconvenient for a user to create both the
interface and the implementing class for a single model class.

In case of the action code, both our opportunities and requirements proved to be much less than in the case
of the model structure. It is simple Java action code with the extension of public and protected methods of API
types, most importantly, the class Action, whose static methods implement basic operations of JtxtUML, like
sending signals, linking associations or deleting model objects.

3.2.1 Static Validation of the Embedded Language

Enhancing Java with the required UML features is only part of the task when defining an embedded language
like JtxtUML as Java provides many tools that cannot be translated to UML at all or only if they are used with
certain restrictions. Examples include casting, threading and synchronization, local and anonymous classes; not
to mention the various features of the standard library or any other libraries written in plain Java which may
only be accessed from JtxtUML in a well-controlled way, through external classes'.

For this reason and to ensure the semantical correctness of the models as well, a validator is provided which
uses the Java Development Tools [JDT] Eclipse plugin to parse and check JtxtUML models. The use of JDT
instead of standard Java reflection is an unfortunate necessity which is further explained in the next section as
we first faced the decision between these two options during the implementation of the model exporter.

3.3 Exporting UML2 models

For visualizing and compiling the models we decided to export them into standard UML model format. The gen-
erated UML models are used as an intermediate representation for compilation to other programming languages
and they can also be processed by external tools.

The export process is currently implemented as a batch operation converting the whole model at once. It
parses all Java source files and outputs an EMF-UML2 model. We tried two approaches for extracting information
from txtUML models:

e Java reflection and AspectJ: This solution uses standard Java reflection to analyze the structural elements
(for example classes, method signatures) of the code. However, Java reflection cannot provide information
on method internals. Therefore we experimented with AspectJ to export operations. AspectJ can inject
aspects (additional method calls) to predefined points in the Java code, and these aspects can collect the
necessary information to complete the export.

e Parsing: In this case we parse the Java code using JDT [JDT] and walk through the abstract syntax tree
in order to translate the txtUML model to an EMF-UML2 model.

We have found out some drawbacks of the first solution: In that case the system has to run methods to
analyze their body, and each time a method call has parameters, dummy values need to be produced, which
complicates implementation and makes it fragile. Furthermore, AspectJ caused inconveniences while running the
Java debugger on the model, and interfered with debugging features provided by Xtext/Xbase for the XtxtUML
syntax. As these problems became unmanageable, we switched to the second, JDT-based solution.

Another dilemma is about the representation of action code in the UML model. One possibility to encode
behavior in UML is using opaque behaviors: These are just strings labeled with the name of the language they
are written in. We decided not to use opaque behaviors for two reasons: Polluting the UML model with action
code in XtxtUML or JtxtUML syntax would introduce non-standard elements, limiting the compatibility with
third party tools. Also, a model compiler would have to parse and type check these opaque behaviors and do
reference resolution, which introduces a lot of complexity. Therefore we have chosen the other possibility, namely
UML activities. This provides standard and language-independent action code format. On the other hand, it

IExternal classes are not explained in detail in this paper for brevity.

69

requires nontrivial translation logic both in the exporter module and in the model compiler. It is also a threat
that UML activities are extremely verbose, and this might lead to scalability problems in case of large models
with much action code.

3.4 Diagram Generation

While textual modeling is beneficial in several aspects, we consider graphical diagrams extremely important
for understanding models. For this reason we included a diagram generation module into the toolchain, which
produces Papyrus diagrams on top of the exported EMF-UML2 models. As of now, class diagrams and state
machine diagrams are supported.

The most important question of visualization is the layout. A popular solution is the application of autolayout
algorithms. However, that is not ideal if users want to control the layout, possibly partially, and would like to
store layout information under version control. To solve this problem we have created a small DSL, embedded in
Java, to define diagram layout concisely. The following example shows a layout definition for the model presented
earlier in sections 3.1 and 3.2:

1 || public class ExampleDiagram extends ClassDiagram {
2 @Left (val = Sender.class, from = Receiver.class)
3 public class MyLayout extends Layout {3}

41}

This description requests the sender class to be the left neighbor of the Receiver class. The resulting, generated
Papyrus diagram is shown on image 4.

Figure 4: Generated class diagram

We have published the layout definition DSL and the diagram generation algorithm in [GGK™15]. Here we
give a short overview only: The language includes constructs to define the relative positioning of boxes on the
diagram. The constraints are transformed to a linear inequality system of special form, that can be solved by
the Bellman-Ford graph algorithm. Once the boxes are placed on the diagram, the links are laid out on a grid
using the A* algorithm with a cost function that minimizes length, number of crosses and turns.

3.5 Execution, Debugging and Animation

The architecture presented in this paper provides model-level execution for models written in any of the two
syntactic variants. In case of the embedded language, the models are Java programs using the txtUML API and
runtime library, therefore these can be executed and debugged in any Java development environment. For models
in the standalone syntax, execution and debugging controls are provided by Xtext, based on the transformation
to the embedded language. This includes breakpoint support, variable view, and session control functions like
step over, step into, step out, resume and stop.

The model execution runtime library adds two useful features: runtime validation and state machine diagram
animation. Runtime validation generates warnings, for example, when multiplicity constraints are violated or
signals are dropped. This feedback helps the modelers to find bugs early in the development process, even
without generating code and deploying it on a target platform.

The runtime behind txtUML API does have sophisticated tracing capabilities. These are switched off by
default when the program is run as a plain Java application. If the extra functionality is switched on, the
Eclipse-side plugin makes a connection towards the runtime in order to receive trace information. Data is
provided even about individual object states and are fully kept track of.

The trace data is on one hand used to provide the user with sophisticated warnings, and, on the other hand
to animate the generated state machine diagrams. This is achieved by the CSS capabilities of Papyrus. Because
normal debugging features still work in this mode, breaking or reaching a breakpoint gives the possibility to
examine various model states on the paused animation (see on Fig. 5, 6).

70

(Receiver
Init

Figure 5: State machine is residing in a state

(Receiver

Init

Accepting

Figure 6: State machine is taking a transition

3.6 Compilation

We made a significant design choice by compiling from EMF-UML2 instead of using the original XtxtUML/Jtx-
tUML code. The EMF-UML2 representation created from XtxtUML/JtxtUML code is a de facto standard and
gives enormous flexibility for our tool. By using EMF-UML2 directly, compilation fits into the general exporting
framework and can use all the benefits and generality of other export methods. Support for a new language, a
new tool or even a graphical representation can be easily added the same way because the exporting mechanism
does not rely on any specifics of the Java code. This gives a true independence between model execution/testing
and the compiled code which makes the development more robust. Currently we support compilation to standard
C++11 (tested on gee, clang, msvc).

Despite the generated code being standard compliant, there are target deployment scenarios where the
code generation has to be adjusted to certain needs. This includes inter-process/inter-machine set up, intra-
process/thread pooling settings and also target platform capabilities. We have separated the compiled code into
3 different parts to support these:

e Code generated from models
e Support runtime
e Generated deployment configuration settings

By keeping these isolated, the generated code is practically easier to integrate. Deployment settings reside in
a few specific files and do not pollute the model code which stays clean this way. Settings can be easily changed
in the configuration files without recompilation. The support runtime can be freely interchanged by an other
one.

We plan to support the versatile usage of the compiled code by spending efforts on adding more runtimes and
developing a rich deployment configuration for multiple target platforms.

4 Conclusion

Figure 7 shows the main features of the proposed toolchain and the way they are connected to each other. The
core functionality is the txtUML Java API and the underlying runtime library. This feature can be used in
any Java development environment to build and execute models. Static validation rules check the soundness
of the model structure and give instant feedback to the user. This feature is already dependent on the Eclipse
framework. The same holds for the standalone syntax of the language and its editor, based on Xtext and Xbase.
Export to EMF-UML2 representation and code generator uses certain Eclipse modules like JDT and the EMF-
UML2 API, but it is possible to package these features into a command line tool. The diagram generation feature
also builds on the generated EMF-UML2 model and it requires Eclipse and Papyrus.

71

Visualization
on diagrams

Java API
+

runtime

pilation

validation

Figure 7: Features and their dependencies

This modularity of the architecture allows cherry-picking of the needed features for users and opens up
replacement possibilities for the developers of the toolchain. For example, Papyrus, which is a graphical UML
editor, is currently used only for visualization purposes. It would be simpler to use a UML library that generates
read-only images: In fact, using the Papyrus APIs involves technical challenges. On the other hand, the emerging
community around Papyrus and a future possibility to enable round-trip-editing are good reasons to use the UML
editor for visualization.

A first step towards round-trip-editing, i.e. changes in text or on diagrams are seamlessly propagated to the
other format, would be to make the generation of the EMF-UML2 model and the Papyrus diagrams incremental
instead of the current batch transformation. This is one important future work.

Another open question is related to the two alternative text frontends we provide: Will users prefer one of
those over the other one? If there is need only for the embedded Java syntax, then we can simplify the toolchain
by removing the standalone syntax and its editor. On the other hand, if only the standalone syntax is preferred,
then we can make the Java API internal, and gain much more freedom to simplify its implementation and boost
performance. The third option is mixed usage or keeping the Java frontend as fall-back option. In this case a
reverse transformation from embedded to standalone syntax will be useful.

After analyzing the available open source modeling tools described in the related work section, and experi-
menting with other possible architectures for executable modeling [DKN'15], we came to the conclusion that
the solution proposed in this paper is lightweight and modular enough to meet industrial needs. The first pilot
projects are now ongoing in collaboration with our industrial partner. By making the toolchain open source [txt)
we intend to make a useful contribution for the modeling community.

References

[DKNT15] Gergely Dévai, Maté Kardcsony, Boldizsar Németh, Rébert Kitlei, and Tamds Kozsik. UML Model
Execution via Code Generation. In Ist International Workshop on Ezxecutable Modeling, 2015.

[eTr] eTrice. http://www.eclipse.org/etrice/.
[Exe] Executable Translatable UML Open Source Editor. https://www.xtuml.org.

[FBL10] Andrew Forward, Omar Badreddin, and Timothy C Lethbridge. Umple: Towards combining model
driven with prototype driven system development. In Rapid System Prototyping (RSP), 2010 21st
IEEE International Symposium on, pages 1-7. IEEE, 2010.

[GGKT15] Baldzs Gregorics, Tibor Gregorics, Gabor Ferenc Kovécs, Andras Dobreff, and Gergely Dévai. Tex-
tual Diagram Layout Language and Visualization Algorithm. In Model Driven Engineering Lan-
guages and Systems (MODELS), 2015 ACM/IEEE 18th International Conference on, pages 196-205.
IEEE, 2015.

[GKR*07] Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Vélkel. Textbased
modeling. In jth International Workshop on Software Language Engineering, 2007.

72

http://www.eclipse.org/etrice/
https://www.xtuml.org

[Jav]
[JDT]
[MLMK13]

[Mok]
[Obj13a]

[Obj13b]

[Obj15a]

[Tec12]

[txt]

[Xbal
[Xteal]
[Xteb]

Java--. http://javamm.sourceforge.net.
Java Development Tools. http://www.eclipse.org/jdt/.

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A Framework for Testing UML
Activities Based on fUML. In Proceedings of the 10th International Workshop on Model Driven
Engineering, Verification and Validation (MoDeVVa) co-located with 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2013), pages 1-10, 2013.

Moka. http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution.

Object Management Group. Action Language for Foundational UML (ALF), standard, version 1.0.1.
http://www.omg.org/spec/ALF/, 2013.

Object Management Group. Semantics of a Foundational Subset for Executable UML Models
(fUML), standard, version 1.1.
http://www.omg.org/spec/FUML/1.1/, 2013.

Object Management Group. Precise Semantics of UML Composite Structures (PSCS), standard,
version 1.0.
http://www.omg.org/spec/PSCS/1.0/, 2015.

Object Management Group. Unified Modeling Language (UML), standard, version 2.5. http:
//www.omg.org/spec/UML/2.5/, 2015.

OneFact. BridgePoint xtUML tool. http://onefact.net.
Papyrus. http://wiki.eclipse.org/Papyrus.

Sally Shlaer and Stephen J. Mellor. The Shlaer-Mellor method. Project Technology white paper,
1996.

Ed Seidewitz and Jérémie Tatibouet. Tool paper: Combining alf and uml in modeling tools—an
example with papyrus—. In OCL 2015-15th International Workshop on OCL and Textual Modeling:
Tools and Textual Model Transformations Workshop Proceedings, page 105, 2015.

Technical Committee ISO/IEC JTC1, Information technology, in collaboration with the Object Man-
agement Group (OMG). Object Constraint Language (OCL). Standard, International Organization
for Standardization, Geneva, Switzerland, April 2012.

txtUML: Textual Executable Translatable UML — Open source repository.
https://github.com/ELTE-Soft/txtUML.

Xbase. https://wiki.eclipse.org/Xbase.
Xtend. http://www.eclipse.org/xtend/.

Xtext. http://www.eclipse.org/Xtext/.

73

http://javamm.sourceforge.net
http://www.eclipse.org/jdt/
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://www.omg.org/spec/ALF/
http://www.omg.org/spec/FUML/1.1/
http://www.omg.org/spec/PSCS/1.0/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://onefact.net
http://wiki.eclipse.org/Papyrus
https://github.com/ELTE-Soft/txtUML
https://wiki.eclipse.org/Xbase
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/

	Introduction
	Overview

	Related Work
	Executable UML
	Textual modeling and Xtext

	Architecture
	Standalone Syntax
	Handling package annotations
	Propagation of custom markers

	Embedded Language
	Static Validation of the Embedded Language

	Exporting UML2 models
	Diagram Generation
	Execution, Debugging and Animation
	Compilation

	Conclusion

