
Configurable data structure layout

for memory hierarchies

Máté Karácsony
kmate@elte.hu

Máté Tejfel
matej@elte.hu

ELTE Eötvös Loránd University
Faculty of Informatics

Budapest, Hungary

Abstract

Developments of the last decades resulted in an increasing gap between
processor and memory speeds. Therefore in high-performance compu-
tations the main bottleneck is memory access. A practical solution
to this problem is to implement memory hierarchies utilizing multiple
levels of memories with different capacities and access profiles. For
embedded and low-power systems it is more beneficial to apply pro-
grammable scratchpad memories instead hardware controlled caches.
The overall performance of scratchpad-aware software heavily depends
on how the data is distributed and accessed in different memory layers.
Choosing the data layout for optimal performance is a set of non-trivial
design decisions. This paper introduces configurations over data struc-
tures to enable deferring these decisions, by making it easier to change
the data layout of existing programs.

1 Introduction

Even the smallest computer systems have multi-layer memory hierarchies nowadays. One purpose of these
hierarchies is to reduce the effects of the speed difference between processing units and storage devices [Car02].
Quick execution of data load and store operations is critical, while they could stall the execution until the
requested memory operation is done. For this reason, many architectures are using hardware controlled cache
memories between registers and the main memory. These caches provide quicker access to copies of data, however,
their implementation usually requires sophisticated algorithms and circuitry. In these systems, the programmers
have no explicit control over the contents of the caches.

In real-time and embedded systems, where the unpredictability of hardware controlled caching is not ac-
ceptable, or physically feasible, it is common to use software controlled, explicitly programmable scratchpad
memories [Pan97]. These are also preferred over complicated caches to reduce energy consumption [Ban02].
Scratchpad memories are usually very fast compared to the main memory, but they are also very limited in
capacity. Deciding which data should be kept in these memories is crucial for optimal performance. There were
several attempts to aid optimal mapping of data to scratchpad memories either statically [Ver02] or dynami-
cally [Ver04], the validation of these choices is usually possible only by profiling the software. Therefore further
optimizations or feature extensions often lead to changes in these design decisions.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: E. Vatai (ed.): Proceedings of the 11th Joint Conference on Mathematics and Computer Science, Eger, Hungary, 20th – 22nd of
May, 2016, published at http://ceur-ws.org

119

kmate@elte.hu
matej@elte.hu

Scratchpad-aware systems are usually programmed using low level languages. In these languages, the distribu-
tion of data in different memory layers is reflected by the data structure definitions and the operations on those
structures [Nie97]. Changes in data layout will be reflected in the source code as well, often causing significant
non-trivial modifications. To make these modifications easier, we define configurations over data structures.
Configurations enable fine-grained description of data layout of an application. They were first introduced as
built-in language constructs in Miller [Nem13], a domain specific language for multi-core router programming.
By reusing the key ideas behind these constructs, it is also possible to synthesize data structure definitions and
accessing code through implementations consisting of C macros and C++ templates. Configurations could also
be used to control and parametrize source-to-source transformations.

The organization of this paper is the following. The next subsection presents related work. Section 2 introduces
and describes configurations. Different implementations of configurations are detailed in section 3. This is
followed by a comparison of the implementation techniques in section 4 . Finally, section 5 concludes the paper.

1.1 Related work

Miller is a domain-specific language focused on the development of performance-critical applications for
scratchpad-aware architectures. As it was presented earlier by other members of our research group in [Nem13],
it supports stackless programming using execution units called bubbles instead of regular functions. Therefore
the control flow is based on continuation passing instead of call stacks. The other specialty of this language is
the built-in support for configurable data layout, that is presented in this paper. Miller was implemented in
Haskell, first as an embedded language. Later a custom C-like syntax was developed with a standalone compiler.
The compiler supports a general MIPS32 architecture, and one of its proprietary derivatives. The generated
output is optimized assembly text. The applied optimizations include peephole and prefetch optimizations. The
implementation of prefetch optimization is based on memory access profile descriptions.

There are data structure transformations that increase performance both on hardware-cached and scratchpad-
aware architectures. In [Pra14], several such transformations are presented over the Low Level Virtual Machine
(LLVM) framework. Structure peeling and splitting is intended to improve performance by the separation of
”hot” and ”cold” fields of structures, that is, the frequently and infrequently used parts of the data. These
transformations could also need structure field reordering. Other presented techniques for improving cache
locality is struct-array copy, instance interleaving and array remapping. The execution of these transformations is
planned to be automatic, based on profiling data and static code analysis. However, currently no implementation
is available yet for these techniques in the public LLVM code base.

Data layout transformations are very common to support vectorization. [Šin16] shows a data layout inference
technique that identifies layout transformations that convert data into a format favorable for SIMD instructions.
The presented inference algorithm is based on a type system for layout transformations, and enables the auto-
vectorization of programs.

Scout [Krz11] also supports automatic vectorization. It is a source-to-source transformation tool based on
the Clang compiler infrastructure. Scout supports several different loop transformations to achieve optimal
conditions for applying SIMD instructions. It supports several widely used SIMD instruction sets like SSE or
AVX, but it is also extensible.

2 Configurations

The memory hierarchy of the target architecture must be taken into account to achieve optimal performance on
scratchpad-aware systems. The data layout of an application could change for several reasons, for example in
order to always store the most frequently accessed data in the fastest memory. When a new system is under
development, usually not all factors affecting performance are known in advance. Fine-tuning of the application
requires consecutive measurements and changes in the memory mapping of data. Requirement changes could
also have the same effect. A more drastic reason is a change in the underlying memory hierarchy, for instance
when an existing application is ported to a different target architecture. In this case, new capacity and speed
relationships must be considered for performance.

These changes could produce two different kinds of transformations in the data layout. When the space
available for a given type of objects is decreased, either because the capacity of the memory is decreased, or
the number of objects is increased, it could be necessary to place the less frequently used data members into a
different memory layer. The original data fields will be transformed into pointers. The indirection introduced

120

here will increase the access time of these members, but the more frequently accessed data parts are still in the
faster memories. This transformation is called data outsourcing.

In the opposite case, when the amount of free space available in faster memories increases, indirections that
are pointing to data in different layers could be eliminated. This enables the placement of less frequently used
data members into faster memories, thus increases the average memory access speed. Complementary to the
previous technique, this transformation is called data inlining.

The role of configurations is to describe the data layout of types and objects across the memory hierarchy.
Therefore changes in configurations enable the description of the previous transformations.

2.1 Architecture-independent memory model

As there are many scratchpad-aware architectures with very different memory hierarchies, we decided to describe
data layout configurations in an architecture-independent way over a simplified memory model. In practice, the
architecture-specific information could be added to the model easily when implementing configurations with a
given technique, as it will be detailed in various subsections of Section 3.

By forgetting the architecture-dependent memory information, the mapping of data layouts to concrete mem-
ory layers is lost. The only significant property is whether the value of a data member is directly available as an
integral part of the structure, or only indirectly through a pointer. The latter case makes it possible to store a
part of an object in a different memory than the object itself.

2.2 Description of configurations

As most of the scratchpad-aware systems are programmed in low level languages, especially in some dialect of C,
we decided to derive configurations from the type constructions of the C language. Enumeration types, function
pointer types and type aliases have nothing to do with data layout in general, thus the interesting ones are
pointer, array and record (struct and union) constructions. In the following, let T be the set of all types, and
TB ⊂ T is the set of configuration base types, that is, all scalar and record types. TB does not contain any
pointer or array types.

According to the transformations described in the beginning of the section, only data outsourcing could be
applied on a given scalar element of type τ ∈ TB . Using the C language notation ∗ for pointer types, this
transformation could be described as τ 7→ τ∗ between the types. Let the source of this transformation, that is,
the primitive configuration corresponding to a directly contained scalar data member, denoted by scalar ∈ C,
where C is the set of all configurations. Furthermore, denote the previous transformation that introduces an
indirection level with a pointer type constructor as ptr : C → C. These two constructors generate the following
configurations:

scalar, ptr(scalar), ptr(ptr(scalar)), . . . , ptr(· · · (ptr(scalar)) · · ·)

Let us introduce the type generator function G : C × TB → T , that generates a configured data type from a
configuration and a base type. Using a base type τ , these previous configurations are generating the following
types:

G(scalar, τ) = τ

G(ptr(scalar), τ) = τ∗
· · ·

G(ptr(· · · (ptr(scalar)) · · ·), τ) = τ ∗ · · · ∗

Layout configuration of arrays requires the configuration of two properties. First, the skeleton of the array
needs to be accessed to index a specific element, and second, the access of the selected element itself is needed
to be configured. These are both possible by introducing a third configuration constructor, array : C → C. The
parameter of this constructor specifies how the elements are configured at each index, relative to the skeleton.
The configuration of the array skeleton could be specified by applying more configuration operations around this
constructor. Figure 1 shows the application of this constructor in various cases, using [] array type constructor
on application of array in G, with the notation of the C language.

All fields of record types could be configured in the similar way as independent objects, so there is no need to
define a separate configuration constructor for this case. However, we can define a compound configuration for

121

Figure 1: Examples of different configurations for array A of base type τ

a record. Let crec = 〈 f1 = c1 ; · · · ; fn = cn 〉 denote a compound configuration for a record rec with fields
f1, . . . , fN , and c1, . . . , cn ∈ C. As configuration operations will not be defined over compound configurations,
crec /∈ C.

A configuration is valid for an object, when it contains as many array constructors applied as the dimension-
ality of the object requires. For scalar values, it is zero, for one dimensional arrays it is one, and so on. The
innermost constructor of a valid configuration is always scalar. Denote the dimension or array rank of a valid
configuration with D : C → N, that gives the number of array constructors applied in it. Important to note,
that TB does not contain array types. It implies that all array dimensions must be visible in configurations.

The minimal configuration of an object is a valid configuration that contains no ptr constructors. It is easy to
see that data inlining could not be applied on a minimal configuration, as it would involve the removal of a ptr
constructor. It means when an object has a minimal configuration, it is only possible to store the whole object
in the same memory layer.

Two configurations are compatible, when they only differ in the application of ptr constructors. This require-
ment is fulfilled for configurations C1 and C2 exactly when D(C1) ≡ D(C2). Compatible configurations could be
transformed freely into each other by adding or removing ptr constructors – therefore by applying data outsourc-
ing or inlining. It is obvious that valid(c1, o) ∧ compatible(c1, c2) =⇒ valid(c2, o), where c1, c2 ∈ C and o is an
arbitrary configurable object.

Define the extension function Ec : C → C corresponding to a configuration c ∈ C by replacing the innermost
scalar constructor of c with a variable. For example, let c = ptr(array(ptr(scalar))). Then replacing the
innermost scalar with a new variable x in c gives the extension function Ec(x) = ptr(array(ptr(x))).

Consider configurations c1 and c2 as structurally equivalent, also denoted as c1 ≡ c2 when c1 and c2 was
created using the same constructors in the same order. The length of a given configuration is L : C → N that
gives the number of constructor functions used to create it. Of course, L(c1) = L(c2) is implied by c1 ≡ c2.
L(c) could also be denoted as Lc.

Note that all of the configuration constructors are extensible with arbitrary information. For example,
the scalar and ptr constructors could be extended with references to memory layers. This enables to inject
architecture-specific information into a configuration.

2.3 Operations over configured objects

As the previous subsection presented, function G can be used to generate a configured data type τc = G(c, τ) ∈ T
where c ∈ C and τ ∈ TB . To access data in objects defined with type τc, we need operations that could follow
the changes of their data layout configuration.

First, an operation is needed to declare an object with type τc. Let declare : C × TB × Id→ Decl, where Id
is the set of valid identifiers, and Decl denotes the set of all valid declarations of a given programming language.
It is easy to see that declare can be built trivially when an implementation of G is available.

Since it is allowed to modify a configuration by adding or removing ptr constructors at any time, the memory
management of configured objects could be changed drastically. As a consequence, explicit memory allocation
and deallocation operations are needed at the beginning and at the end of the lifetime of configurable objects.
For instance, take the following declaration in the C language: declare(int, scalar, ”x”) ⇒int x. By default,
x will have an automatic storage, that means its lifetime will be bound to the surrounding block. There is

122

no need for explicit allocation or deallocation of x in this case. However, if we apply data outsourcing to the
configuration, which is completely valid in this case, it gives declare(int, ptr(scalar), ”x”) ⇒int* x. To store
any value at the memory location pointed by x, we need to implement explicit memory management. It implies
that explicit allocate : C × Id→ Stmts and deallocate : C × Id→ Stmts operations must be used every time
to initialize and finalize storage for configured objects, where Stmts is a list of statements in a given program-
ming language. Following the previous example, allocate(scalar, ”x”) ⇒{ } and deallocate(scalar, ”x”) ⇒{ },
where { } is an empty list of statements, but allocate(ptr(scalar), ”x”) ⇒{ x = malloc(sizeof(x)); } and
deallocate(scalar, ”x”)⇒{ free(x); }. These are the most complex operators, as they must be able to derive
the allocation and deallocation statements for any objects with valid configurations, including multi-dimensional
arrays with several layers of indirection.

Accessing the value of a configured object could also change with the configuration. It is evident that all
pointers must be dereferenced to access a value. Fortunately, configurations contain all the information needed
to achieve this. Let valueOf : C × Expr → Expr be an operation over a configuration and an object that
generates an expression ∈ Expr the set of all expressions in a given language, to access a configured object. To
continue our previous example, valueOf can be implemented for the C language to give valueOf(scalar, x)⇒x,
and valueOf(ptr(scalar), x)⇒*x.

Similarly, when the base type of an object τ ∈ TB is a record type, and a field of this record object is accessed,
the object must be dereferenced first. Assume we have a projection function ρ : Expr× Id→ Expr that selects
a given member from an object. Let memberOf : C × Expr × Id → Expr, and memberOf(c, o,m) ::=
ρ(valueOf(c, o),m) ∈ Expr, where c ∈ C, o ∈ Expr and m ∈ Id. In an example, when we have an
object x of a record type that has a field named y, then the following could be implemented for the C
language: memberOf(scalar, x, ”y”) ⇒x.y, and memberOf(ptr(scalar), x, ”y”) ⇒x->y, that is equivalent
with ρ(valueOf(ptr(scalar), x), ”y”) ⇒(*x).y, given that ρ(o,m) ⇒ (o).m. Note that when field y is
also a configured data type, then it must be accessed with the appropriate operation, for instance using
valueOf(cy,memberOf(cx, x, ”y”)), where cx, cy ∈ C and x ∈ Expr with a record base type having a field
named y.

The last operation needed for configured objects is array indexing. An array configuration has a dual role:
it describes not only how to access the elements, but it also describes the array skeleton itself. These could be
done in the following steps. First, the configuration needs to be split into two parts. Let split : C → C × C
be a function that returns two configurations, split(carr) = (cskel, citem) when D(carr) ≥ 1 is satisfied. Re-
quire that D(cskel) ≡ 0 and D(citem) ≡ D(carr) − 1. The first requirement implies that cskel contains only a
scalar constructor and an arbitrary number of ptr constructors. Take the extension function Ecskel

: C → C
of cskel by replacing the innermost scalar constructor with a variable. Then the following structural equiv-
alence must be satisfied between the previous configurations: carr ≡ Ecskel

(array(citem)). The first part
of the configuration, cskel is needed to dereference the array object itself before indexing. It could be done
easily with the previous valueOf operation. After selecting the required element using an index function
ν : Expr × N → Expr, configuration citem must be considered similarly to dereference the element data.
Therefore operation valueAt : C × Expr × N → Expr could be defined as follows: valueAt(carr, arr, idx) ::=
valueOf(citem, ν(valueOf(cskel, arr), idx)) ∈ Expr, where split(carr) = (cskel, citem). Configuration citem
could also be referred as the item configuration of carr. For example, assume we have an array x with con-
figuration cx = ptr(array(ptr(scalar))). Then the value of ν(x, 3) ⇒x[3] as in C language, could be ac-
cessed as valueAt(cx, x, 3) ≡ valueOf(cx−elem, ν(valueOf(cx−skel, x), 3))⇒*((*x)[3]) in C. Splitting cx gives
cx−skel ≡ ptr(scalar) with extension function Ecx−skel

(c) = ptr(c) and also cx−elem ≡ ptr(scalar).

3 Implementation techniques

This section details techniques that we used to implement configurations for data type layout. Four solutions
will be evaluated: the integration into a domain-specific language; implementation with C preprocessor macros
and C++ template metaprogramming; and finally source-to-source transformations. The following subsections
describe these implementations independently, while a comparison could be found in Section 4. As most of their
implementation details are out of the scope of this paper, the complete source code for the C and C++ libraries
could be found at https://github.com/kmate/configurable-data-layout.

123

Table 1: Summary of constructors, properties and operations defined for configurations. C is the set of all
configurations, T and TB are the set of types and base types, Decl, Expr and Stmts are declarations, expressions
and statement lists of a programming language.

Sets Description
C Configurations
TB Base types without configuration
T Configured types
Constructors Description
scalar : C Scalar configuration without indirection
ptr : C → C Introduce indirection to the parameter configuration
array : C → C Use parameter as an element configuration of an array object
Properties and utilities Description
≡: C × C → L Structural equivalence
L : C → N Length (Lc ≡ L(c))
D : C → N Dimension or array rank (Dc ≡ D(c))
E : C → (C → C) Extension function (Ec ≡ E(c))
G : C × TB → T Type generator function
split : C → C × C where D(carr) ≥ 1 Splitting and item configuration citem, where split(carr) = (cskel, citem)
Operations Description
declare : C × TB × Id→ Decl Declare an object with a configured data type
allocate : C × Id→ Stmts Memory allocation for configured object
deallocate : C × Id→ Stmts Memory deallocation for configured object
valueOf : C × Expr → Expr Value dereference
memberOf : C × Expr × Id→ Expr Record member dereference
valueAt : C × Expr × N→ Expr Array indexing

3.1 Domain-specific Language: Miller

First we developed and implemented data layout configurations in a domain-specific language named Miller.
Miller was designed for efficient multi-core router programming over complex multi-layer, scratchpad-aware
memory hierarchies. The language has a C-like syntax and type system. It supports various fixed-width integer
scalars, enumeration types, type aliases, bit sets, records, and arrays. Pointers are treated specially in the
language: they are split into two separate types. Sharing of data is expressed with references. They are very
similar to ordinary C pointers with two exceptions: it is not possible to do pointer arithmetic on references, and
they cannot be used for expressing optionality. For the second use case, there is a different optional type in the
language, that can be used in a special case construction to deal with the absence of a value. Reference types
are introduced with a ref keyword, while option types are marked with a question mark. Arrays and records
have similar syntax as in C. For instance, in the following listing bucket is a reference to an array of 32 optional
values with type elem. It is able to store a single line out of 256 possible such entries of table.

struct elem

{

int32 key;

int32 value;

}

elem in;

elem ?[32][256] table;

ref elem ?[32] bucket;

Miller has a language construction to provide information about the memory hierarchy. The memory keyword
introduces a new layer with the given name and size. It is also needed to provide an access profile, that can be
used by the prefetch optimizer of the compiler. In the following example it is omitted, as this information is
irrelevant for configurations. The listing below defines two memory layers named dram and spad, with 256 and

124

8 megabytes of total size.

memory dram (256MB) { /* access profile omitted */ }

memory spad (8MB) { /* access profile omitted */ }

Once the memory types are given, it is possible to define locations where objects can be stored. There are
two different kinds of location definitions: registers and locations in one of the memory layers.

register r1(4B);

register r2(4B);

// ...

location table_loc (256KB) on spad;

location in_loc (8B) on dram;

After memory types and locations are given, configurations can be provided for each object independently
from the algorithms working with them. In fact, there are two types of configurations in Miller. There are type
configurations to determine how objects of a given type should be stored in the hierarchy, and there are object
configurations for specifying location and type configuration of individual objects.

typeconfig elem_conf {

key;

value -> dram;

};

elem conf shows a possible configuration for record type elem. Field key has an empty configuration. It
means that all data referred by key will be stored in the same memory as the containing object, so it represents
a scalar configuration constructor. This is the default behavior, so this entry is optional. The value field has
a type configuration built with operator ->. It introduces an indirection into the configuration: the containing
object will only have a pointer to the value stored in the dram memory. Hence the configuration of value is
ptr(scalar). Note that for algorithms working with the value field this indirection is invisible. This guarantees
that the configuration could easily be changed independently from other parts of the code.

An object configuration consists of a location and a type configuration. In the following listing some of the
irrelevant syntactical parts are omitted – the ones that are only required to unambiguously map the names in
configurations to the object declarations.

in : in_loc;

table : table_loc elem_conf [][] ?> dram;

bucket : r1 :> spad elem_conf [] ?> dram;

The simplest object configuration only specifies a location for the given object. The configuration for in could
be described with a single scalar constructor, along with the meta-information about the location. As table

refers to a two-dimensional array, its configuration must be constructed using two array constructors. Because
the elements of the array are optional, and this is implemented with pointers under the hood, it is possible to
store the elements of this two-dimensional array in another layer. The ?> operator configures an optional type
to store the values in the memory given on its right hand side. The configuration of table can be described as
array(array(ptr(scalar))). The outer array constructors have associated meta-information about the location
table loc, and the ptr constructor refers to dram. Similarly to ?>, operator :> can be used to configure a
pointer, but under a reference type instead of an optional. It means that bucket will be stored as a pointer in
register r1 to an array of pointers on spad. The pointers in the array are referencing values stored on the dram.
Both of the last two configurations refer to elem conf, to specify how the structure fields are stored.

Operations defined for configurations in Section 2.3 are built-in into the Miller compiler. As configurations
can also be stored separately, it is possible to have multiple different configurations for the same program. The
configurations are read from source files, and connected implicitly and unambiguously with the types and objects
found in the program by their qualified names. The user does not have to explicitly use different operations
on objects with configured data types, as all objects are configurable in the language. Of course, there is a
validation phase in the compiler, that checks the configurations of each type and object before compilation. Type
configurations are allowed to be under-specified: when no configuration is provided, a default configuration takes
places that stores everything in the same memory as its container object. The details of the target architecture
were adjustable through memory and register configuration to a given extent, but still some information was
built into the compiler, especially about how the data access code should be generated for particular layers.

125

Table 2: Summary of type configuration operators available in Miller and their corresponding configuration
constructors. c1 and c2 are also type configuration elements themselves.

Type configuration element Configuration constructor Description
〈Empty configuration〉 〈None〉 Used to terminate configuration chains,

or explicitly state default scalar configuration
〈Type configuration name〉 scalar Specifies storage of data members
c1 :> 〈Memory name〉 c2 ptr Configures storage for a reference type
c1 ?> 〈Memory name〉 c2 ptr Configures storage for an optional type
c1 -> 〈Memory name〉 c2 ptr Introduces indirection without change in type
c1 [] c2 array Configures storage for array elements

3.2 C Preprocessor Metaprogramming

Even though Miller implemented configurations perfectly – as it was explicitly designed for them –, it is always
hard to introduce a new domain specific language instead a well-known industrial standard. This lead us
to experiment with the embedding of configurations into C, that is already widely used on scratchpad-aware
architectures.

The most convenient option was to implement configurations and their operations as a preprocessor macro
library. Despite the high expressiveness of preprocessor macros, it is very hard to build and debug really complex
libraries. To ease the development, we have chosen an implementation strategy based on modeling the macros
with simple purely functional programs in Haskell [Kar14]. Finally, these definitions were translated back to the
preprocessor macro language, using the Boost Preprocessor Library [Bpl].

In this system, the configurations are represented internally with a parenthesized sequence of tokens instead
a chain of constructor applications. It means that configurations in the form C1(C2(C3)), where each Ci is a
constructor of configurations, is expressed as (T1)(T2)(T3), where each Ti is the corresponding token to constructor
Ci. The exact definition of these tokens is not important, only the fact that each different constructor has a
different, unique token that makes it possible to pattern match on the value during processing. Although the
internal representation is not a chain of constructor applications, it is possible to define builder macros that
support chained application.

#define SCALAR (SCALAR)

#define PTR(tokens) (PTR)tokens

#define ARRAY(tokens) (ARRAY)tokens

As macro expansions are not recursive, tokens on the right hand side will not be re-expanded af-
ter substitution. For example, the configuration PTR(ARRAY(PTR(SCALAR))) will build the token sequence
(PTR)(ARRAY)(PTR)(SCALAR). This sequence can be effectively processed with a fold-like construction, up to a
predefined maximum length (that is currently 64 using the Boost Preprocessor Library). The library defines the
following macros corresponding to properties of configurations. Macro ARRAY RANK calculates Dc, the number
of array dimensions for a given c ∈ C. ITEM CONFIG returns the item configuration of a given configuration. It
is used to implement split. Utility HAS PTR ITEM gives a macro representation of a boolean value. When the
configuration passed to HAS PTR ITEM has a (PTR) item it returns true, and false otherwise. This utility is useful
when implementing memory allocation and deallocation operations, as it determines whether it is needed to
generate dynamic memory allocation code or not.

The macro library is implemented with two different interfaces. The first version requires the configurations
to be passed as an argument for every operation. The second version uses a lookup mechanism to retrieve config-
urations for objects by their name. This works as the following. The user has to declare their configurations as
macros according to a naming scheme. Then the GET OBJECT CONFIG utility macro could retrieve the appropriate
value for a given object identifier:

#define CONFIGURE__input PTR(SCALAR)

#define CONFIGURE__table ARRAY(PTR(ARRAY(SCALAR)))

The above snippet defines configurations for two objects. They can be retrieved by expanding
GET OBJECT CONFIG(input) and GET OBJECT CONFIG(table). The naming scheme is also configurable in the

126

library. In the second version of the interface, this utility macro is called automatically by the operations, so
they only take an object identifier instead of a configuration. In the following, this interface will be presented.

Each operation on objects from configured data types is implemented with a specific macro. Thus for the
declare operation there is a corresponding macro named DECLARE, for valueOf there is VALUE OF and so on. An
interesting difference, that comes from the characteristics of the C language, is that the declaration of arrays
need a different treatment. This is because they contain the length of each array dimension. This is implemented
with a DECLARE ARRAY variadic macro. Unfortunately, it is problematic to handle the zero parameter-case of
variadic arguments. This is the main reason for this solution.

struct input_t { uint32_t a, b; };

DECLARE(struct input_t , input); // struct input_t * input;

DECLARE_ARRAY(char , table , 8, 32); // char ((*(table [8])) [32]);

The comments after each macro invocation are showing their expansion results. Under normal circumstances,
the result of the preprocessing phase is not directly visible to the user. It is not formatted by the compiler, and
the macro library does not try to eliminate unnecessary parentheses. The configurations defined earlier are used
to assemble the final declarations. Of course, it is not enough to declare these objects before using them. As
the configurations could contain ptr constructors, explicit allocation and deallocation is needed at the beginning
and at the end of their lifetime. This could be achieved as the following.

ALLOCATE(input); // do { input = malloc(sizeof (*(input))); } while (0);

ALLOCATE(table);

// do { for(int i0 = 0; i0 < sizeof(table) / sizeof ((table)[0]); ++i0) {

// (table)[i0] = malloc(sizeof (*((table)[i0])));

// } } while (0);

// ...

DEALLOCATE(table);

// do { for(int i0 = 0; i0 < sizeof(table) / sizeof ((table)[0]); ++i0) {

// free((table)[i0]);

// } } while (0);

DEALLOCATE(input); // do { free(input); } while (0);

The expansions in comments clearly show the complexity of the generated code for allocation and deallocation.
Bodies of do-while blocks are only running once, and the loop structure will be optimized out by the compiler.
They are only needed to suppress the semicolon at the end of the macro invocation when multiple statements
are generated.

Of course, the data stored in the configured objects should be accessed only with the appropriate operations,
instead of directly operating on them. This ensures the correct access event when the configuration is changed
between compilations.

strcpy(VALUE_AT(table , 0), "Zero");

// strcpy (*((table))[0], "Zero ");

// ...

scanf("%d %d", &MEMBER_OF(input , a), &MEMBER_OF(input , b));

// scanf ("%d %d", &(*(input)).a, &(*(input)).b);

uint32_t key = (MEMBER_OF(input , a) + MEMBER_OF(input , b)) % 8;

// uint32_t key = ((*(input)).a + (*(input)).b) % 8;

printf("%s\n", VALUE_AT(table , key));

// printf ("%s\n", *((table))[key]);

Note that address-of operator & can safely be applied on the result of MEMBER OF, as it will alway result in a
value selected from a structure. It is clearly visible, that the macro library does not try to simplify the syntax
tree, as it generates (*(input)).a instead of the equivalent input->a. It is also worth to note that fields of
struct input t are not configurable. In that case, the value access of the fields must apply an additional
VALUE OF operator around MEMBER OF.

127

Unfortunately, the case of configurable records fields is even more complicated. As there is no compile
time reflection information behind the macro system, it is impossible to automatically determine the fields of
a structure. However, when the structure declaration itself is built up with macros as a preprocessor data
structure, there is a hope to share its field information. Although, the current version of this library follows a
simpler implementation. The following example shows how to use named configurations with structure fields.

#define CONFIGURE__t0 PTR(SCALAR)

#define CONFIGURE_MEMBER__test_t__x PTR(SCALAR)

#define CONFIGURE_MEMBER__test_t__y PTR(ARRAY(SCALAR))

typedef struct

{

int id;

DECLARE_MEMBER(test_t , bool , x);

DECLARE_MEMBER_ARRAY(test_t , char , y, 8);

} test_t;

DECLARE(test_t , t0);

ALLOCATE(t0);

ALLOCATE_MEMBER(test_t , VALUE_OF(t0), x);

ALLOCATE_MEMBER(test_t , VALUE_OF(t0), y);

MEMBER_OF(t0, id) = 0;

VALUE_OF_MEMBER(test_t , VALUE_OF(t0), x) = true;

strcpy (& VALUE_OF_MEMBER(test_t , VALUE_OF(t0), y), "test");

printf("t0: { %d, %d, \"%s\" }\n",

MEMBER_OF(t0, id),

VALUE_OF_MEMBER(test_t , VALUE_OF(t0), x),

VALUE_OF_MEMBER(test_t , VALUE_OF(t0), y));

DEALLOCATE_MEMBER(test_t , VALUE_OF(t0), y);

DEALLOCATE_MEMBER(test_t , VALUE_OF(t0), x);

DEALLOCATE(t0);

This listing shows how the complexity of the macro system explodes when there are configured record fields.
In case of named configurations, different macros needed to be used for the operations on members, because
they need to use a different name-lookup algorithm. This is why all * MEMBER macro receives the name of the
encapsulating struct, and the name of the actual member. This information is used to assemble a macro name
where the required configuration can be looked up. When the user chooses the alternative interface, where
configurations are directly passed to operation macros, there is no need for defining separate * MEMBER macros,
but the original ones could be used everywhere. It is also important to see, that the encapsulating struct object
must be resolved to its value with its own configuration before any member operations could be applied to it.

While it is possible to implement configurations in the C preprocessing system, it is not very practical. The
configuration changes are propagated easily, once the code is appropriately prepared, but unfortunately that
requires a huge effort, and is highly error-prone.

Architecture specialization could be done by extending the configuration builder macros with additional
parameters. For instance, PTR can be extended to hold additional value to identify the target memory of
a pointer. In the implementation of operations, this information can be extracted and used for example to
generate different allocation or dereference code for different pointers.

3.3 C++ Template Metaprogramming

While the previous subsection showed that it is possible to implement configurations in the preprocessing phase,
there is still space for improvement. Some of the scratchpad-aware systems also have C++ compilers available.
It is a known result that template metaprograms are Turing-complete in absence of instantiation limits [Vel03].
Their integration in the C++ language, along with other language features like operator overloading, provide a

128

good basis for implementing configurations. The library presented in this section is implemented using the Boost
MPL Library [Abr04].

As template metaprogramming also has its roots in functional programming, like preprocessor metaprogram-
ming, the representation of configurations follows a similar strategy: configurations are stored as type-level lists
of configuration tokens, where tokens themselves are types. Most of the operations are processing these type
level lists with folds and pattern matching on the tokens.

typedef struct {} T_SCALAR;

typedef struct {} T_PTR;

typedef struct {} T_ARRAY;

struct SCALAR : mpl::vector <impl::T_SCALAR > {};

template <typename Tokens >

struct PTR : mpl:: push_front <typename Tokens ::type , impl::T_PTR > {};

template <typename Tokens >

struct ARRAY : mpl:: push_front <typename Tokens ::type , impl::T_ARRAY > {};

Builder constructions for these list are provided too, thus the user can easily define named configurations as
type aliases:

typedef PTR <SCALAR > input_config;

typedef ARRAY <PTR <ARRAY <SCALAR >>> table_config;

These configurations are essentially the same as we used in the previous subsection. An interesting aspect
of this technique is that the configuration chain is built up from nested template applications. Declarations of
configurable objects is done in the following way:

configured <struct input_t , input_config , true > input;

configured_array <char , table_config , false , 8, 32> table;

Declarations for scalar and array objects are different, like it was with preprocessor macros. However, the
reason for this is different here: it is to improve type safety. Array-like configured objects support indexing, while
others do not. Both of the types are parametrized with a base type, a configuration, and a boolean value, that
indicates whether automatic allocation and deallocation should be done for these objects. Configured arrays also
need to provide sizes for each dimensions, this makes configured array a variadic template. While input will
be automatically allocated and deallocated, this has to be done explicitly for table (hence the false parameter
value above):

table.allocate ();

// ...

table.deallocate ();

As the above listing shows, allocation and deallocation operations become instance methods of configured
objects in this system. This allows the implicit sharing of the underlying configuration. Other configuration
operations are also implemented with instance methods, and some of them with operator overloading:

strcpy(table[0], "Zero");

// ...

scanf("%d %d", &input ->a, &input ->b);

uint32_t key = (input ->a + input ->b) % 8;

printf("%s\n", table[key]());

The valueAt operation is simply implemented with the operator[] of configured array objects. Also,
operation memberOf is mapped to operator-> of configured objects. The valueOf operation is implemented
with overloaded cast operators, and constructors. When it is not possible to infer the required type cast, like in
case of a printf parameter, explicit execution of valueOf could be requested by using the object as a functor –
that is, calling operator().

129

Similarly to the preprocessing library, utilities for configurations are also provided with templates: array rank,
item config and has ptr item are defined to produce the same result as their macro counterparts, but now as
type-level values.

To understand how the library works, take a look at the hierarchy and the internal structure of configurable
objects.

Figure 2: Class hierarchy of configurable object templates

The data wrapped by a configurable object is stored in a member named value. Its type is derived using a
template metaprogram implementation of generator function G. For instance, the type of this member could be
defined as typedef struct input t *real type for input, and typedef char (*real type[])[] for table.
The type casting operator and the functor implementation returns an object of value of type. This type is
derived from the configuration after removing its outer ptr constructors, if any. This ensures that these operations
implement the valueOf operation, by dereferencing the outer layer of pointers in the representation. Result of
array indexing is value at type, that is a type derived from the item type of the corresponding configuration. For
multi-dimensional arrays, indexing an outer dimension will return another object of type configured array,
with decreased rank and shorter configuration. Utility methods rank and size are returning the number of
dimensions and the length of the outer dimension, respectively.

typedef PTR <SCALAR > CFG_t0;

typedef PTR <PTR <SCALAR >> CFG_tx;

typedef PTR <ARRAY <SCALAR >> CFG_ty;

typedef struct test_t

{

int id;

configured <bool , CFG_tx > x;

configured_array <char , CFG_ty , true , 8> y;

} test_t;

configured <test_t , CFG_t0 > t0;

t0 ->id = 0;

t0 ->x = true;

strcpy(t0 ->y, "test");

printf("t0: { %d, %d, \"%s\" }\n", t0 ->id , t0 ->x(), t0 ->y());

Configuration of record fields is also very easy with this library. The user can reuse the configured and
configured array templates to declare arbitrary fields of records. When the automatic allocation and dealloca-
tion is turned on, the lifetime of the fields will be bound to the containing objects. As this is the default setting,
the declaration of field x omits this parameter entirely.

Transforming existing software to use configurations only needs a little effort: the declaration of configurable
objects should be replaced. Adaptation to operations is simple, thanks to operator overloading. Type checking
will ensure that each access of the configured objects is correct.

Architecture specialization could be done similarly as in the previous technique. Every configuration builder
template can be extended with meta-information about the memory hierarchy, and this can be processed in the
implementation of the operations.

130

3.4 Source-to-source Transformations

The previous two implementations are intrusive: they require the modification of existing sources when applied.
Using the C macro library requires to replace all declarations and operations where configurable objects involved.
Working with the C++ template solution needs much less effort, but still, configurable objects have to be treated
differently from ordinary data types.

This subsection shows a technique where applying configurations requires no preliminary changes on the
source code. The idea is to use automated source-to-source transformations, that are parametrized with config-
urations. In this paper we focus on the description and validation of configurations, and not on the execution of
transformations themselves. Although the presented method could be applied to any appropriate programming
language, to make the results comparable with the previous sections, we decided to work on C source code.

The role of configurations is to describe the data layout of types and objects across the memory hierarchy.
This information is actually represented in the existing source code as types. The key to generate configurations
from C types, is to implement the inverse of generator function G. Denote this function with G−1C : T → C ×TB ,
where T is the set of all possible C types, C is the set of configurations over a representation, and TB is the set of
C base types. The latter set contains all scalar, enumeration and record types (introduced either with a struct

or union keyword). Type aliases should be fully resolved before applying G−1C . This is a partial function, as C
function pointer types are not supported by configurations.

G−1C (τ) =

scalar, when τ ∈ TB
ptr(G−1C (τ ′)), when τ = τ ′∗
array(G−1C (τ ′)), when τ = τ ′[]

Once this function is available, the question is, how should these configurations be stored and presented for
the C programmer, and how the changes will be given as instructions to the transformation tool. The solution
is to create a configuration skeleton for the source files. The skeleton file will have the same structure as the
input file, and is also a valid C source file, but contains no statements at all. To create a skeleton, process the
input file as the following. Keep all type declarations, global objects and functions. For functions, only keep
their local variable configurations in their outermost blocks. Drop all function parameters, and change return
types to void. The preservation of the structure is needed to uniquely identify each type and object declarations
in the source file later. As inner blocks of function bodies are dropped, the identification will not be available
for local variables declared there, but the practice shows that being configurable is not a concern for short-living
deeply nested locals. What remains in the skeleton file, is essentially a set of configurations, if we apply G−1C

on the types in the remaining declarations. The user can rewrite the types in the skeleton file, and use it as a
parameter to the transformation tool.

The transformation starts with an analyzer phase. Both an input file and a configuration file (possibly a
modified skeleton) is parsed using a C parser, and a semantic analysis is executed to create a type-annotated
abstract syntax tree of the sources. Function G−1C is applied on each type found in the configuration file. At the
same time, the structurally corresponding declaration is looked up in the input file for each declaration in the
configuration file. This makes it possible to apply G−1C also on the types found in the input declarations, and
compare the old and the new configurations.

Each of the compared configurations must be compatible, that is, they must only differ in the number of ptr
constructors applied. This restricts the changes to execute only data outsourcing or data inlining transformations.
Base types corresponding to the two configurations must also be the same. As changes restricted to compatible
configurations, there is no way to enforce an invalid configuration for an object. When there is no corresponding
declaration found in the input file for an element in the configuration file, or the compatibility check fails, the
transformation could signal an error and terminate.

For each of the compatible configurations, the differences can be collected. These differences will control the
transformations executed on the input syntax tree. According to the old configuration, that is read from the input
file, it could be checked that the objects are only used according to the operations of configured objects. When
any non-matching access pattern is found, it can not be guaranteed that the transformation will be successful.
This restriction is needed because C enables pointer arithmetics and other special ways to work with data. The
modified code for the operations can only be derived correctly when it is ensured that in the input code the given
object is used like an object configured previously with its old configuration.

131

Unfortunately, correct source-to-source transformations of C programs is highly non-trivial. Preservation of
preprocessing structure, comments and formatting is very difficult. Type aliases in configured types are need to
be handled with care. Consider the following:

// input file

typedef int speed;

typedef int* place;

speed vertical_speed;

// modified configuration file

speed *vertical_speed;

The old and new configurations of vertical speed are scalar and ptr(scalar), which are compatible. Ap-
plication of G−1C resolves all type aliases to produce the configurations and examine the base types, thus giv-
ing int *vertical speed when re-synthesized with G. It is incorrect, as picking another alias, like place

vertical speed would also be. To transform the declaration correctly, the new type should be written exactly
in the same way as it was in the configuration file. Detection of incorrect access patterns and synthesizing the
transformed code with the minimal amount of changes is also a challenging problem. For these reasons, we only
implemented a few special cases in a tool based on the Clang compiler infrastructure.

4 Comparison of implementation techniques

This section contains a comparison of the previously presented configuration implementation techniques. The
comparison is made based on the following 6 + 1 aspects.

Reconfiguration

Shows how much code is needed to be modified manually by the user when a configuration changes. For the next
example, take a data outsourcing on the elements of an array, thus the configuration changes from array(scalar)
to array(ptr(scalar)).

Miller: elem config [] ⇒ elem config [] -> dram

C macros: ARRAY(SCALAR) ⇒ ARRAY(PTR(SCALAR))

C++ templates: ARRAY<SCALAR> ⇒ ARRAY<PTR<SCALAR>>

Source transformations: elem type arr[]; ⇒ elem type *arr[];

Storage of configurations

Describes where and how the configurations are stored and what is their relationships to other parts of the code.

Miller Configurations are an integral part of the language. They can be stored in the same files as in
the corresponding program code, or in separate files. In that case, configurations can be included into the
program with a standard C preprocessor command. Configurations can be named and referenced later.
Objects and configurations are loosely-coupled.

C macros The user can make her own configuration definitions as macros. This enables to store them
either together with other parts of the code or separately. However, configuration of record fields is much
less advanced as they can not belong together structurally as in the previous case.

C++ templates This solution has almost the same properties as C macros from this perspective. The
only difference is that user-defined configurations can be defined as type aliases instead of macros. This
helps to group related configurations together.

Source transformations Configurations are stored in separate files. They are valid C files, to ease their
handling and processing both for the users and the tools. The structure of configurations follow the structure
of the original code. Objects and configurations are tightly-coupled, as the configuration file must follow
the structure of the original code. However, it is usually not a problem, as configurations can be deleted
after the desired transformations are executed.

132

Syntax of configurations

Miller introduces a custom syntax for describing memory layers, locations and configurations, that the user
must learn in the beginning.

C macros and C++ templates use almost the same syntax. The macro library uses a chain of macro
invocations, while the other uses nested template applications. The low number of configuration constructors
makes it easy to master it in minutes.

Source transformations use configuration files where each configuration is described as a standard C
declaration. This is the most natural and straightforward way to express the changes in types, as it uses
the same syntax to describe the transformation as the transformed language itself.

Amount of syntactic noise

What is the price of configurability in terms of readability and maintainability of code.

Miller has built-in construction to support configurations. Basically, every object is configured in the
language, and the default operations are working accordingly. Configurability “comes for free” in this
manner.

C macros add huge syntactic noise. Every declaration gets replaced by a syntactically more complicated
one. This is also true for all operations done with these objects.

C++ templates add less noise than macros, thank to their better integration into the language and to
operator overloading. However, non-trivial changes should be done when turning a non-configurable object
into a configured one.

Source transformations have no syntactic noise at all, if the transformation engine is implemented well
and could preserve all the appropriate comments and formatting of the original source.

Re-usability of configurations

How easy it is to re-use an existing configuration for a new piece of code.

Miller, C macros and C++ templates provide the ability to give names to configurations. They can be
referenced later in any other configurations or get assigned to newly defined objects.

Source transformations use separate configurations for each declaration explicitly. However, as configu-
ration files are C source files, it could be possible to use preprocessor macros to produce the configurations.
Using single configuration file to transform multiple input files is also feasible.

Applicability to existing code base

Difficulties that arising when turning non-configured objects to configured ones.

Miller is a domain-specific language that was designed with memory hierarchies and configurability in mind
from the very beginning. Every object and type expressed in Miller is configurable.

C macros may require a huge amount of highly error-prone, non-trivial modifications of the original code
to turn a single object into a configured one.

C++ templates reduce the drawbacks of macros, by using operator overloading and instance methods.
The type checker also ensures that the programmer rewrites them correctly.

Source transformations were designed especially to be applicable on existing code bases, so their cost is
zero from this perspective.

133

Other benefits and drawbacks

Miller provides built-in configurations, and gives outstanding support for programming complex memory
hierarchies. However, it is always hard to introduce a new language when there is an industrially accepted
standard or a huge existing code base.

C macros are simple enough for demonstration and prototyping purposes, but are very impractical to use
in real software.

C++ templates are completely acceptable, when the target platform provides a C++ compiler – which
is not always the case. When the number of configurable variables is small, and the library is introduced
at the beginning of the development, it could be a practical solution. Type safety of templates helps a lot
compared to macros, but the template instantiation errors could be very long and confusing.

Source transformations are trying to combine the benefits of the built-in constructions with an already
known language. However, implementing a transformation tool that handles all cases automatically and
correctly, is a great challenge for difficult to refactor languages like C.

5 Conclusion

We introduced configurations to ease the change of data layout over different memory layers. The programmer
only needs to change these configurations of the data structures, and the required highly non-trivial modifications
will be propagated automatically over the algorithms. This makes data layout changes less error-prone and more
efficient. This is especially important for performance tuning of applications on scratchpad-aware architectures.
Four different implementation techniques were shown: one with built-in constructions of a domain-specific lan-
guage, one with a C preprocessor library, a solution based on C++ template library, and a source-to-source
transformation tool. The comparison shows that in practice, as it is expected, the C preprocessor metaprograms
are not really usable. However under specific circumstances a C++ template metaprograms could implement
configurable objects adequately. The real solution is a domain-specific language like Miller, or a sophisticated
source-to-source transformation tool. The former is unfortunately difficult to introduce in industrial scenarios,
while the latter is a great challenge to implement correctly for languages with a rich syntactic structure and
complex semantics like C.

Acknowledgements

We wish to thank the current and former members of the research group at ELTE Software Technology Lab,
including Gergely Dévai, Boldizsár Németh, Zoltán Csörnyei, Zoltán Kelemen and Dániel Leskó. Their useful
and constructive work on this project made our publication possible.

References

[Abr04] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison Wesley Professional, 2004.

[Ban02] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan and Peter Marwedel. Scratch-
pad memory: design alternative for cache on-chip memory in embedded systems. Proceedings of the tenth
international symposium on Hardware/software codesign. ACM, 2002. 73–78

[Bpl] The Boost Library Preprocessor Subset for C/C++.
http://www.boost.org/doc/libs/1_60_0/libs/preprocessor/doc/index.html

[Car02] Carlos Carvalho. The gap between processor and memory speeds. In Proceedings of IEEE International
Conference on Control and Automation, 2002.

[Kar14] Máté Karácsony. Modeling C preprocessor metaprograms using purely functional languages. Proceedings
of the 9th International Conference on Applied Informatics, 2014. Vol. 2. 85–92.

[Krz11] Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn and Wolfgang E Nagel. Scout: a source-to-source
transformator for SIMD-optimizations. Euro-Par 2011: Parallel Processing Workshops, 2011. 137–145.

134

[Nem13] Boldizsár Németh and Zoltán Csörnyei. Stackless programming in Miller. Acta Universitatis Sapientiae,
Informatica 5.2, 2013. 167–183.

[Nie97] Jarek Nieplocha, Robert Harrison, and Ian Foster. Explicit management of memory hierarchy. Advances
in High Performance Computing. Springer Netherlands, 1997. 185–199.

[Pan97] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient utilization of scratch-pad memory
in embedded processor applications. Proceedings of the 1997 European conference on Design and Test. IEEE
Computer Society, 1997.

[Pra14] Prashantha NR., Vikram TV. and Vaivaswatha N. Implementing Data Layout Optimizations in LLVM
Framework. LLVM Developers’ Meeting, October 28-29, 2014. http://llvm.org/devmtg/2014-10/#talk14

[Šin16] Artjoms Šinkarovs and Sven-Bodo Scholz. Type-driven Data Layouts for Improved Vectorisation. Con-
currency and Computation: Practice & Experience, 2016. 2092–2119.

[Vel03] Todd L. Veldhuizen. C++ templates are turing complete.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.3670, 2003.

[Ver02] Manish Verma, Stefan Steinke and Peter Marwedel. Data partitioning for maximal scratchpad usage.
Proceedings of the 2003 Asia and South Pacific Design Automation Conference. ACM, 2003. 77–83.

[Ver04] Manish Verma, Lars Wehmeyer and Peter Marwedel. Dynamic overlay of scratchpad memory for en-
ergy minimization. Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2004. 104–109.

135

	Introduction
	Related work

	Configurations
	Architecture-independent memory model
	Description of configurations
	Operations over configured objects

	Implementation techniques
	Domain-specific Language: Miller
	C Preprocessor Metaprogramming
	C++ Template Metaprogramming
	Source-to-source Transformations

	Comparison of implementation techniques
	Conclusion

