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Abstract

Model driven development approaches help to alleviate the abstraction
gap between high-level design and actual implementation, to aid design,
development and maintenance of industrial scale software systems. To
provide automatic, easily usable tools for stakeholders, model driven
development essentially relies on efficient and expressive translations
between the program source code and the model.

We present a declarative, rule-based approach to deterministically
transform Erlang program sources that satisfy a certain syntactical
constraint, into valid UML models of state machines. The transforma-
tion relies only on static analysis techniques, and the produced model
conforms to the state machine metamodel defined in OMG UML 2.0.

1 Introduction

In industrial settings there is an always present necessity to use large software applications with over millions
of lines of source code. During design, development and maintenance of software, managing the complexity
emerging from these large volumes becomes a critical issue in order to realise a successful product lifecycle. The
most important resource needed to manage complexity is relevant, up-to-date information, commonly manifested
as the design, development and user documentations. As the software evolves during its development and usage,
documentations also have to be actualised to mirror the collective knowledge that was incorporated in the
system during its changes. To implement this resource intensive process with the highest efficiency, organisations
concerned with software development employ various automatic software analysis tools and machine processable
documents to support the developers in creating documentations and keeping them up to date. These tools can
also be extremely useful in cases of undocumented legacy systems, where maintainers have to collect information
about the inner workings of the system from scratch. One of the more successful methodology to develop,
analyse, store and process this kind of information is Model Driven Development (MDD) [20], which utilises
models specified by both human and machine readable documents in order to represent the various aspects of
these systems. MDD methodology uses sophisticated software solutions to create these models, and to aid in
querying valuable information during the analysis of these models and the system itself.

In this paper, we concern ourself with state machine models, that can be used to model event-driven systems.
Specifically, we introduce here a method to generate formal UML [7] state machine models from executable Erlang
state machine source code. Formal UML models can be readily transformed into human readable diagrams,
they are suited to calculate various model metrics on them, and there exist extensions of UML that can be
used to specify executable models [20]. First, this transformation makes use of the RefactorErl static analysis
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framework [16, 11, 24] to analyse the application source code, then it will transform and synthesise the program
representation resulting from the analysis, into an UML state machine model. We specified the transformation
by defining an algorithm that utilises backtracking and graph pattern matching of certain sets of transformation
rules. To generalise the algorithm, we encapsulated all the RefactorErl specific logic into the transformation
rules, thus separating the general operation principles of the method from the implementation specific details.
This approach also makes it easier to extend the capability of the algorithm by adding more rules. To test
our design in practice we also created a reference implementation, and, as presented in Section 6, used this to
successfully transform several Erlang state machines selected from the source code of large, popular, open source
Erlang applications.

The rest of this paper is structured as follows. At first, Section 2 describes UML and Erlang state machines.
Sections 3 and 4 introduce the methodology and the transformation rules to generate UML state machines. In
Section 5 we explain the transformation starting from an example Erlang source code. Section 6 presents the
evaluation of our work on several open source projects. Finally, Sections 7 and 8 present related work and
conclude the paper.

2 Background

One way to represent the execution history of a computer program is to take snapshots of the state of the program
memory. State machines can be used to abstract away this low level representation. With state machines these
memory snapshots are taken upon the occurrence of certain events, and instead of storing the content of the
memory, we just store descriptive labels, called states. Therefore, a state describes a segment of the program
behaviour, while a state transition describes a change in such behaviours, usually triggered by an event [21].

2.1 Our target metamodel: UML state machines

Among many others, Unified Modeling Language (UML) [7] is one of the more accepted standards to represent
state machines. UML itself is a family of various languages (metamodels) suitable to represent various aspects
of large software systems. The UML state machine language can be used to formally describe event-driven
systems, i.e. systems that wait for certain events, and upon the occurrence of these events, they change their
behaviour and wait for a possibly different set of events. The state machine metamodel of UML is a more
general representation of computation than the classical models of finite state machines, since it provides several
extensions to the classical model, like embedded state machines, assignable variables, branching states with
guards, etc.

Figure 1 depicts the UML state machine language with a metamodel diagram. The root container object
is always an instance of the StateMachine class. The root object contains a Region object, which in turn
contains Vertex and Transition objects, that can be used to denote states and state transitions respectively.
Pseudostate vertices can be used to denote initial states and choice states, FinalState vertices to denote stop
states, and State vertices to denote ordinary states. The transitions can be assigned events (Trigger), guards
(Constraint) and actions (Behavior).

2.2 State machines in the Erlang language

Erlang [12, 14] is a general purpose, functional, dynamically typed, open source programming language, mostly
used to develop multithreaded, real time, fault tolerant applications, like telecommunication systems, web servers,
or distributed databases. The language provides various abstractions to support these applications. For example,
the event handler (gen event), thread monitor (supervisor), server (gen server), and state machine (gen fsm)
behaviours, provided by the built-in OTP library [17, 14]. Behaviours have similar roles to abstract classes in
the object oriented paradigm: to implement a behaviour, we have to implement certain functions, called callback
functions, specified by the behaviour semantics. The complex, behaviour specific background logic connecting
these callbacks together is provided by Erlang. This way, we only have to implement the logic specific to our
application, but not the logic specific to the behaviour semantics. For example, the requirements of the gen fsm

behaviour are to implement a callback function, named init, and any number of transition functions. The
function init will designate, at a minimum, the initial state of the state machine. The transition functions will
designate, at a minimum, the next state the state machine will be in when it receives a specific event, while in
a specific state. All the logic necessary to handle multiple threads, messages, events, etc. will be handled by
Erlang in accordance to the gen fsm semantics [14].
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Figure 1: The UML state machine metamodel [7]

In our research, we use the RefactorErl static analysis framework [11, 24] to analyse Erlang source code. The
RefactorErl tool first analyses the source code, and then stores the discovered lexical, syntactic and semantic
information in a database. This information can be accessed through various user interfaces, and the framework
provides several feature to run refactorings on the source code, to perform further analyses – like data flow, and
dynamic function call analysis –, to execute various queries, to calculate certain metrics, and many other features.
To transform Erlang state machines to UML state machines, we based our definition of the transformation on
the data structure RefactorErl uses to represent the lexical, syntactic and semantic information it gathers. This
data structure will be described in more detail in Section 3.

3 Methodology

In this section we first describe the main entities and their related notations involved in the transformation
of Erlang state machines (i.e. Erlang modules implementing the gen fsm behaviour), and then we give the
algorithm that realises this transformation.

3.1 Internal program representation of RefactorErl

The RefactorErl analysis framework stores all information it gathers about Erlang programs via static analysis
in a special data structure, called semantic program graph (SPG) [11]. In this paper, we show how the SPG
can be transformed into a state machine, which corresponds to the original state machine described by the
original Erlang source code. As the SPG is based on a syntax tree and extended with various semantic elements,
it represents the lexical, syntactic and semantic structure of one or more Erlang applications. Syntactic and
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Figure 2: A simpler metamodel for describing abstract state machines

semantic elements of a program are mapped to nodes in this graph, while their relationships are mapped to
edges between the corresponding nodes. In the following sections the set of all nodes in a specific SPG instance
will be denoted as VSPG, while set of all edges will be denoted as ESPG.

A small Erlang program and a segment of its SPG can be observed in Figure 3 and Figure 4 in Section
5. Apart from the special node called root, all nodes in the SPG correspond to lexical, syntactic, or semantic
elements in the Erlang source code. The root node is the only node without incoming edges, and serves as the
common ancestor for all nodes of the SPG. Edges of the SPG are ordered.

RefactorErl supplies various tools for discovering and analysing the SPG, such as a user friendly query lan-
guage, and several useful library functions that can be used in more complex programmed queries [26]. Refac-
torErl also performs special predefined semantic analyses on the SPG. One of these is the zeroth and first order
dataflow analysis that discovers how data can flow between the syntactical elements of an Erlang program and
marks these dataflow relations as edges between the corresponding SPG nodes [25, 11]. Another one is dynamic
function call analysis that discovers the functions called by dynamic function calls, and represents this relation-
ship with an edge in the SPG between the corresponding function node and the node of the dynamic caller
expression [15].

3.2 A simpler metamodel for describing abstract state machines

In this section we will describe a simple state machine metamodel, depicted by Figure 2, with which we represent
the target state machines of the transformation. We showed in [19] that this metamodel (and its instances)
can be mapped onto the UML state machine metamodel (and its instances). This intermediate state machine
language explicitly highlights the elements we utilise from UML. Later in this section we will introduce a notation
for these elements. For implementation purposes, the intermediate state machine can be omitted altogether, by
substituting the UML state machine element descriptions for the corresponding elements in our notation.

The target state machines will basically consist of states (AnyState) and transition (Transition) elements
between those states. There are four kinds of states: ordinary states (State), the initial state (InitState), stop
states (StopState), and choice states (ChoiceState). Every transition may have exactly one source and one
target state. States may have arbitrary number of incoming and outgoing edges, including zero. Transitions
may have trigger and guard attributes, depending on whether their source state is an ordinary state or a choice
state, respectively. In this paper, triggers and guards will be represented as simple strings constructed from
events and guard expressions in the Erlang source code. In order to make the target state machines executable,
further research could extend this approach to include a more sophisticated representation for trigger and guard
elements. In the following sections the set of all states in a specific state machine instance will be denoted as
VFSMG, while the set of all transitions will be denoted as EFSMG.
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Let Init be the following set of gen fsm callback functions:

Init
def
= {init/1, handle event/3, handle sync event/4, handle info/3, code change/4}

As per the specification of the gen fsm behaviour, the functions in Init, when triggered, can put the state
machine in any arbitrary state, independently of the actual state. If we only consider the behaviour of an
Erlang state machine in terms of states and transitions, but do not consider the memory changes (side effects)
accumulated during the execution, then it can be said that these functions effectively restart the state machine.
Therefore, it makes sense to model these as initial states, i.e. states from which the state machine execution can
be started.

To describe the transformation rules we will use a textual notation to denote a mapping from nodes in the
SPG and states in the state machine, and also its inverse, a mapping from states to nodes. Since we previously
distinguished four types of states, we will use a different function for every type: each of these maps a node to
a state with the associated state-type. All these functions can be defined to be invertible.

• state ∈ VSPG → VFSMG maps nodes to ordinary states. The nodes mapped to ordinary states will precisely
be the semantic nodes representing transition functions, i.e. the user defined callback functions of the gen -

fsm behaviour, bearing the name of a state. We chose these nodes, since they have a 1:1 correspondence
with the states of the state machine implemented by the analysed Erlang module.

• choice ∈ VSPG → VFSMG maps nodes to choice states. The nodes mapped to choice states are either
representing functions with multiple clauses, or they are representing branching expressions. For brevity,
in this paper we only touch upon the latter – and simpler – case: branching expressions. We presented
handling of the former case in [18].

• stop ∈ VSPG → VFSMG maps nodes to stop states. Following the specification of the gen fsm behaviour, the
nodes mapped to stop states will precisely be those representing tuple expressions, that are return points of
a transition function, and have the stop atom as their first element.

• init ∈ VSPG → VFSMG maps nodes to initial states. Following the specification of the gen fsm behaviour
and our previous remark, the nodes mapped to initial states will precisely be those representing the functions
in Init.

After applying the transformation, every state in the target state machine will correspond to a node in the
SPG, and every transition in the target state machine will correspond to an edge sequence in the SPG. In Section
4 where we describe the transformation rules we will denote this state-node correspondence relation with the
function node : VFSMG → VSPG. The node function is defined as the inverse of the node-state mapping described
earlier. Thus, if we regard the earlier functions as relations, i.e. sets of ordered pairs, then

node
def
= (state ∪ choice ∪ stop ∪ init)−1

Since the range of these functions are pairwise disjoint, and all four functions were invertible, node always exists.

In the definition of the transformation rules, we also use a textual notation to denote the trigger and guard
labels of the transitions. As mentioned earlier, we represent these as simple human or machine-readable strings.
The set of all strings will be denoted by S.

• trigger ∈ VSPG → S maps nodes representing the first parameter pattern of a transition function to a string.
For example, the string may consist entirely of the Erlang term denoting this parameter.

• guardbranch, guardif , guardtry, guardcatch,guardafter and guardclause ∈ V n
SPG → S functions map nodes

representing the pattern and guard expressions of the clauses of the various branching expressions can be
found in the Erlang programming language. Since it may be necessary to use more patterns and guard ex-
pression to uniquely identify a state machine guard, we assume these functions can handle more parameters.
The exact value of n depends only on the guard function it describes.
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3.3 An algorithm for transforming program graphs to state machines

In this section we present an algorithm, that – with the help of a predefined set of transformation rules –
transforms the semantic program graph of any Erlang state machine adhering to the specification of the gen fsm

behaviour, to a state machine model described in UML or the simple state machine language we introduced in
Section 3. Since most of the application specific logic (the logic related to the RefactorErl semantic program
graph) of the transformation are encoded in the transformation rules, the algorithm itself is relatively simple.
Basically it is an extended depth first search, that selects the neighbouring nodes to discover, based on predefined
rules.

This approach has several advantages. To extend the transformation for currently unhandled cases, we do
not have to modify the procedural algorithm, we only have to add more rules to the transformation sets. For
example, UML offers several state machine features (e.g. embedded state machines, variables, effects) that could
be utilised by the transformation, after the rule set were to be appropriately extended to handle these cases.
Also, the rule sets encapsulate the RefactorErl specific logic, which means we could use the same algorithm with
other static analysis frameworks too. We just have to swap the RefactorErl specific rule sets to the rule sets
specific to the other static analysis framework. It is worth noting though that devising a rule set, in general, is
not a trivial task. Finally, this approach opens up the possibility to execute rules in parallel, to achieve better
runtime performance.

Informally, our transformation algorithm, together with the rules presented in Section 4, will perform the
following tasks:

1. Starting with the transition functions in Init, the algorithm analyses the return point of each transition
function it visits.

2. If during the analysis, it discovers an branching expression or a function with multiple clauses, denoted as b,
the corresponding choice(b) choice state will be added to the state machine. Then the algorithm continues
by analysing the return points of each clause of the b branching expression or function.

3. If during the analysis a t tuple is discovered, it will further analysed t to decide whether it indicates a stop
state, or an ordinary state. In the former case, the corresponding stop(t) stop state will be added to the
state machine, and the algorithm backtracks. In the latter case, it will analyse the appropriate element of
t (see the gen fsm specification [14]), to find out the f name of the target state of the currently analysed
transition function. If found, the algorithm will continue to analyse the transition function with name f .

4. For any other node type, the algorithm will proceed in way specific to this node type. In most cases it
will utilise the dataflow analysis provided by the RefactorErl tool [25, 11]. Since the dataflow analysis may
abstract away information necessary to analyse gen fsm modules, we require node type specific analysis in
some cases.

5. When the algorithm adds an s state to the state machine, it will also have to add an appropriate transition
between s and the old state o, which corresponds to the transition function named o, that was analysed as
s was discovered.

More specifically, our algorithm will perform these generic tasks in three separate stages: an analysis stage, a
transformation stage, and a synthesis stage. In the analysis stage, our goal is to discover precisely those nodes
and edges in the SPG that will be mapped to state machine elements in later stages. The result is a filtered
SPG, called the analysed SPG, consisting only these nodes and edges. The edges are relabelled with semantic
information about their role in the future state machine. The transformation stage eliminates nodes and edges
from this analysed SPG, so as to obtain a reduced SPG that can be mapped to a state machine instance with
relative ease. The synthesis stage will map the reduced SPG to a state machine instance, producing the final
result of the transformation.

The general algorithm with the three stages is denoted on Figure 1. All three stages will start a depth first
algorithm from the function nodes in the Init set or, in the case of the synthesis stage, init(Init), the set of the
initial states corresponding to the nodes in Init. For certain edges we will not continue the analysis, i.e. will not
extend the target nodes of these edges. The types of these edges are listed in the Exclude1 set.

Later in this paper we will define separate rule sets for each of these stages. Rule sets R1 and R2 – corre-
sponding to the analysis and synthesis stage respectively – are side-effect free. By matching the left hand side
of the rules to a graph, their right hand side can be used to construct another graph. Rules in rule set R3 –
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Algorithm 1 DiscoverFSMG(SPG,R1, R2, R3)

1: Init← {init/1, handle event/3, handle info/3,
handle sync event/4, code change/4}

2: Exclude1 ← {
trigger
; ,

cond∗
; ,

fsmguard
; }

3: RelationGraph← discover(Init, R1, Exclude1, SPG)
4: TRelationGraph← transform(Init, R2, RelationGraph)
5: FSMG← discover(init(Init), R3,∅, TRelationGraph)
6: return FSMG

corresponding to the transformation stage – are not side-effect free. By matching their left hand side in a graph,
their right hand side can be used to modify this same graph.

The analysis stage and the synthesis stage will make use of the same backtracking algorithm, that tries to
pattern match every rule to an environment of the current node, and determines the next neighboring nodes to
visit using the matching rules. The transformation stage makes use of a slightly modified backtracking algorithm.
This one will try to apply a rule to a node as many times as possible, before moving on the next node. After
it visited every node, it will proceed to repeat this procedure with the next rule. The stage ends when the last
rule was applied as many times as possible to every node in the graph.

4 Specification of the transformation rules

As mentioned earlier, the transformation is realised by two backtracking algorithms, that are performing pattern
matching on their respective input graphs with the left hand side (LHS) of certain set of rules, and then apply
the right hand side (RHS) of the matching rules to construct an output graph, or – in case of the transformation
stage – to modify the input graph. This section describes the algorithms referenced by Figure 1 and outlines
the rule sets utilised by the analysis, transformation and synthesis stages. The keep the discussion concise, we
only selected a few rules to present here, and these can only be used to transform small, simple state machines,
like the one demonstrated in Section 5. We presented more elaborate rule sets capable of transforming large,
complex state machines, in the appendices of [18]. Our reference implementation is also based on these larger
rule sets, and, as described in Section 6, it was successfully tested on state machines, selected from the sources
of large, open source, widely used Erlang applications.

First, we introduce a notation that will be used to denote these rules. The LHS of the rules will consist of edge
patterns and logical expressions, featuring relations between nodes of the input graph. In these rules, x always
denotes the node that the pattern matching must start on, while other variable names are arbitrary. For example,

if a rule has the pattern x
def−−→ y ∈ SPGE as its LHS, then the rule matches on some x0 node of the input graph if

and only if there is an edge, between the nodes x0 and some arbitrary y0, with the label def. We use a shorthand
notation for connecting relations: we write x −→ y −→ z ⊂ SPGE instead of x −→ y ∈ SPGE ∧ y −→ z ∈ SPGE .
Edges in the semantic program graph are ordered: we denote restrictions on the sequence number of an edge

by denoting the number after the edge label. E.g. a rule with x
clause/2−−−−−−→ y ∈ SPGE in its LHS matches on

x0 only if there is an edge with the label clause and the sequence number 2 between x0 and some other node.
Unnumbered edges in the patterns may match edges of the input graph with arbitrary sequence numbers. Nodes
in the semantic program graph can also possess various properties: we denote restrictions on a property of a node

with an equality expression between braces after the node. E.g. x[type = tuple]
elem/1−−−−−→ y ∈ SPGE matches on

some node x0 only if the pattern x
elem/1−−−−−→ y ∈ SPGE matches and the type property of x0 is of the value tuple.

Pattern nodes without property restrictions may match nodes with arbitrary values on their properties.

4.1 Analysis stage

In the analysis stage we traverse part of the semantic program graph of RefactorErl to identify all the nodes used
by the following stages, and to attach transformation-specific semantic information to the edges by relabelling
them. This traversal is done by the backtracking algorithm described in Figure 2, utilising the rules collected in
Table 1.

The backtracking algorithm in Figure 2 starts by visiting and expanding the nodes in the Init set. To expand
a node x0, it iterates over all the rules in Table 1, and tries to pattern match these rules on x0. For any matching
rules, it adds the RHS of the matching rule to the node in the output graph, corresponding to x0, and puts the
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Algorithm 2 discover(Init, Rules, Exclude,G)

1: V ← Init
2: E ← ∅
3: V isited← ∅
4: S ← stack(Init)
5: while S 6= ∅ do
6: v ← S.pop()
7: if v 6∈ V isited then
8: V isited.add(v)
9: NEdges← ∅

10: for r ∈ Rules do
11: NEdges.add(r.match(G, v))
12: end for
13: for e ∈ NEdges do
14: E.add(e)
15: V.add(endpoint(e))
16: if e.edgetype() 6∈ Exclude then
17: S.add(endpoint(e))
18: end if
19: end for
20: end if
21: end while
22: return (V,E)

endpoint, denoted in the rules by y, in the stack to expand later. If the type of the edge in the RHS of the
matching rule is featured in Exclude, then the y endpoint will not be expanded. As both the input graph and
the rule sets are finite, the backtracking algorithm is guaranteed to terminate, and operates in polynomial time.

Apart from identifying the neighbouring nodes to be visited by the backtracking algorithm, the rules in Table
1 describe how certain edge sequences encountered in the semantic program graph will be labelled in the analysed
semantic program graph. These labels indicate the semantic roles of the endpoints of their respective edges, and
these roles will determine how each node will be treated in the subsequent stages. Labels

s0
; and

s
; denote a

transition function node at their source,
nameof
; connects an atom with a function with the same name as the

value of that atom, and the edges with
trigger
; and

cond
; labels point to nodes that will be used to construct

trigger and guard labels in the final state machine. The
fsm0
; label is a special label that needs to substituted

to other labels as specified by Table 2. This substitution only serves to make our definition more compact: it
can be eliminated in design time by adding new rules by combining the conditions of the rules in Table 1 and
Table 2. Because of this, the substitution step does not need to appear in the algorithm either. As for the labels
appearing in Table 2,

c
; denotes a branching expression at its source,

a0
; and

a
; denote ordinary functions,

e
;

points to a tuple that will be mapped to a stop state, and
t
; points to a tuple which contains the name of a state

in the state machine. The label
0
; does not convey any specific semantic meaning, it is only used to specify the

next nodes to be visited by the backtracking algorithm.
In later stages, transition functions will be mapped to states, and each function clause will correspond to a

state transition leading out of that state, with a trigger label constructed from the first parameter (the event)
of the clause. Since the gen fsm specification allows for multiple clauses to have the same event, this mapping
could results in non-deterministic state machines. To avoid this, we introduce a choice state for every group
of clauses with the same event. This way there will be only one transition for each event between the original
state and the choice state, and we will use guard labels on the transitions leading out from the choice states to
distinguish between clauses in the same group. Ordinary functions with multiple clauses, similar to branching
expressions, will be mapped to choice states, while those with single clauses do not have to be denoted in the
resulting state machine.

In Table 2, the predicate multiclause(x) is true iff the node x is a node in the semantic program graph,
representing a function with multiple clauses. Let ∼ denote a relation between function clauses, and let c1 ∼ c2
be true for c1, c2 of a function iff their first parameter patterns are identical. As ∼ is an equivalence relation,
it partitions the clauses of a function into equivalence classes. In Table 1 the predicate multiclausegroup(x) is
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true iff the node x represents a transition function with multiple clauses and there is at least one class of ∼ with
at least two elements, i.e. the function has at least two clauses with identical first parameter patterns. If x is an
atom, find(x) denotes the set of all functions with the same name as the value of x.

Table 1: Rules for the analysis stage
LHS RHS

§1
x

def−−→ y ∈ SPGE ∧ multiclausegroup(y) x
s
; y

§2
x

def−−→ y ∈ SPGE ∧ ¬ multiclausegroup(y) x
s0
; y

§3
x

def−−→ y
fclause/i−−−−−−→ cl

pattern/1−−−−−−−→ patt ⊂ SPGE x
trigger/i

; patt

§4
x[type=atom] ∈ SPGV ∧ y ∈ find(x) x

nameof
; y

§5
x[type=func|fun expr]

fclause/i−−−−−−→ clause
cret−−−→ y ⊂ SPGE

x
fsm0/i
; y

§6

type(x) ∈ {if expr|case expr|try expr|receive expr} ∧

x
(exprcl|catchcl|aftercl)/i−−−−−−−−−−−−−−−−−→ cl

cret−−−→ y ∈ SPGE

§7

type(x) ∈ {case expr|try expr|receive expr} ∧

x
exprcl/i−−−−−→ cl

pattern/1−−−−−−−→ patt ⊂ SPGE x
condbranch/i

; patt

§8

x[type=case expr|try expr]
exprcl−−−−→ cl1 ∈ SPGE ∧

x
headcl/i−−−−−−→ cl2

cret−−−→ y ⊂ SPGE x
condhead/i

; y

§9

x[type=tuple]
elem/1−−−−−→ z ∈ SPGE ∧

z
flow

;atom[value=′next state′|′ok′] ∈ SPGE ∧

x
elem/2−−−−−→ y ∈ SPGE

x
fsm0
; y

§10

x[type=tuple]
elem/1−−−−−→ z ∈ SPGE ∧

z
flow

;atom[value=′reply′] ∈ SPGE ∧

x
elem/3−−−−−→ y ∈ SPGE
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Table 2: Substitution rules for x
fsm0
; y

Condition (x, y)
fsm0
;

type(y) = if expr|case expr|try expr|receive expr c
;

type(y) = func|fun expr ∧ ¬ multiclause(y)
a0
;

type(y) = func|fun expr ∧ multiclause(y)
a
;

type(y) = atom
e
;

type(y) = tuple ∧

y
elem/1−−−−−→ z ∈ SPGE ∧

z
flow

;atom[value=′stop′] ∈ SPGE

e
;

type(y) = tuple ∧

y
elem/1−−−−−→ z ∈ SPGE ∧

z
flow

;atom[value=′next state′|′reply′|′ok′] ∈ SPGE

t
;

otherwise
0
;

4.2 Transformation stage

In the transformation state we reduce the analysed semantic program graph to acquire a graph that can be easily
mapped to a state machine. For this stage we slightly modified the backtracking algorithm. This algorithm
iterates over all the rules in a predetermined order, and in each iteration it visits the nodes of the analysed
semantic program graph to apply the actual rule as many times as possible. Since the matching rules specified
in Table 3 always eliminate some of the edges from their LHS, the algorithm is guaranteed to terminate. Since
eliminated nodes will not be visited again, this algorithm also operates in polynomial time.

Algorithm 3 transform(Init, Rules,G)

Require: Rules is ordered according to the transformation rule set
1: for r ∈ Rules do
2: V isited← Init
3: S ← stack(Init)
4: while S 6= ∅ do
5: v ← S.pop()
6: if v 6∈ V isited then
7: V isited.add(v)
8: do
9: success← r.execute(G, v)

10: while success
11: S.add(G.children(v))
12: end if
13: end while
14: end for

We used a procedural approach to describe the rules for this stage: the RHS of these rules contains simple
statements that are inserting or removing edges to or from the input graph. If the LHS of a rule matches, the
modifications specified in the RHS are performed on the input graph. As mentioned previously, we only included
in this paper those rules that are necessary to demonstrate the transformation of a small example state machine,
and a more elaborate extended rule set capable of transforming any Erlang state machines is presented in the
appendices of [18]. While the rules presented here could have been expressed with a declarative approach, it
would have been more difficult to express declaratively those in the extended transformation rule set. The rule

§11 contracts
nameof
; edges, while §12 contracts

s0
; edges. The rule §13 contracts

t
; and

0
; edges in a way that

the new edge inherits the edge sequence number of the contracted edge. With the exception of the placeholder
0
;, all these edges can be used to eliminate unnecessary or unwanted segments from the analysed program
graph. For example, branches that would be mapped to a choice state with only one outgoing transitions, or for
example dead ends, i.e. paths that would be mapped to transitions without a target state. We also described
these eliminations in [18].
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Table 3: Rules for the transformation stage
LHS RHS

§11

∃i1, ..., in (n ≥ 1) :

x
e/i1
; yi1

nameof
; z ∧

...

x
e/in
; yin

nameof
; z ∧

@j : j 6∈ {i1, ..., in} ∧ x
e/j
; yj

nameof
; z

∀k ∈ {i1, ..., in} (insert(x
e/k
; z)) ;

∀k ∈ {i1, ..., in} (

remove(x
e/k
; yk

nameof
; z)

)

§12

∃i1, ..., in (n ≥ 1) :

S ∈ {t, 0, a, c, e, s} ∧

x
s0
; y

S/i1
; zi1 ∧

...

x
s0
; y

S/in
; zin ∧

@j : j 6∈ {i1, ..., in} ∧ x
s0
; y

S/j
; zj

∀k ∈ {i1, ..., in} (

insert(x
S/k
; zk) ;

remove(y
S/k
; zk)

) ;

remove(x
s0
; y)

§13

R ∈ {t, 0} ∧
S ∈ {a, c, e, s} ∧

x
R/i
; y

S
; z

insert(x
S/i
; z) ;

remove(x
R/i
; y

S
; z)

4.3 Synthesis stage

In the last stage we map the reduced analysed semantic program graph to a state machine. The purpose of the
previous transformation stage was to make the rules in the synthesis stage simpler. As shown in Figure 1, this
stage reuses the backtracking algorithm in Figure 2 with the rules specified in Table 4. This time the algorithm
expands states instead of program graph nodes. In the analysis stage, the LHS of the rules were pattern matched
to the input semantic program graph, and the news edges identified by the RHS were added to the output
analysed program graph. In the synthesis state, the input graph is the reduced analysed program graph and
output graph is a state machine, thus the LHS pattern matching is performed on the reduced analysed graph,

while the new edges in the RHS are transitions, which are added to the state machine. Similar to the
fsm0
; label

of the first stage, the
lab−−→ labels in the RHS of the rules in Table 4 can be substituted according to Table 5.

Again, this label substitution is only required to keep the description concise, and it can be accomplished during
design time by adding new rules that combine the corresponding conditions and rules of the two tables.

Table 4: Rules for the synthesis stage
LHS RHS

§14
node(v)

e
; y[type6=tuple] v

lab−−→ state(y)

§15
node(v)

e
; y[type=tuple] v

lab−−→ stop(y)

§16
node(v)

c
; branch v

lab−−→ choice(branch)
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Table 5: Substitution rules for v
lab−−→ u

Condition (v, u)
lab−−→

node(v)
fsm0/i
; node(u) ∧

node(v)
trigger/i

; patt
trigger(patt)

node(v)
fsm0/i
; node(u) ∧

node(v)[case expr|try expr]
condbranch/i

; patt1 ∧

node(v)
condhead

; hd guardbranch(hd, patt1)

5 Demonstration of the state machine transformation

In this section we demonstrate the transformation method previously introduced, by presenting the intermediate
results of the transformation of a small Erlang state machine. Although we intentionally selected a simple
state machine for this example, an implementation of the transformation was also successfully tested on large
state machines selected from open source Erlang applications. The code of the example state machine shown in
Figure 3 describes the language of identifiers: words starting with letters and proceeding with letters, numbers
or underscores. We omitted from the source code some of the callbacks required by the gen fsm specification,
and also those functions that can be used to interact with the state machines to initialise the state machine,
and to send events to it. In this example events could be letters read from some input word. The state machine
accepts identifiers ending with the line ending character ($\n), and rejects every other words. The initial state
of this state machine is pos1, where it transitions to a rejecting state upon receiving a non-letter character, and
transitions to posOther state upon receiving a letter. In posOther, it transitions to an accepting state upon
receiving a line ending character, stays in posOther upon receiving alphanumeric characters or underscores, and
transitions to a rejecting state upon receiving any other event.
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1 −module( i d v a l i d a t o r ) .
2 −behaviour ( gen fsm ) .
3
4 %% The s t a t e machine t ha t accep t s i d e n t i f i e r s , d e s c r i b ed
5 %% by the r e gu l a r expres s ion ˆ [A−Za−z ] [A−Za−z0−9 ] ∗$
6
7 [ . . . ]
8
9 i n i t ( ) −>

10 {ok , pos1 , [ ]} .
11
12 pos1 ( $\n , , ) −> {stop , normal , { [ ] , r e j e c t } , [ ]} ;
13 pos1 (X, , ) −>
14 case alpha (X) of
15 true −> { rep ly , { [X] , s t ep} , posOther , [ ]} ;
16 fa l se −> {stop , normal , { [X] , r e j e c t } , [ ]}
17 end .
18
19 posOther ( $\n , , ) −> {stop , normal , { [ ] , accept} , [ ]} ;
20 posOther (X, , ) −>
21 case ( alphanumeric (X) or X == $ ) of
22 true −> { rep ly , { [X] , s t ep} , posOther , [ ]} ;
23 fa l se −> {stop , normal , { [X] , r e j e c t } , [ ]}
24 end .
25 [ . . . ]

Figure 3: The state machine that recognizes the language of identifiers
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Figure 4 depicts parts of the semantic program graph created by the RefactorErl framework by analysing the
program in Figure 3. While the full program graph is a lot larger, the graph shown on this figure is the precisely
the subgraph the backtracking algorithm of the first state will traverse and analyse. On top of this graph is the
root node, below the root is the semantic node representing the id validator module, and below the module
node are the semantic nodes representing the functions in this module. Each function has a form node, and under
the form nodes are the nodes corresponding to the clauses of the function. Finally, the subtrees determined by
each clause represent the expressions in the clause bodies. The node with the value “10” represents the line
ending character.

Figure 5: Analysed semantic program graph, resulting from the analysis stage

5.1 Demonstration of the analysis stage

The first stage of the transformation applies the algorithm in Figure 2 to the semantic program graph. The
result of this analysis stage is shown in Figure 5. This stage identifies all the nodes used by the following stages
and attaches transformation-specific semantic information to the edges by relabelling them.

The first node to analyse is the init/1 function node, since init/1 is element of the Init set. This function
has only one clause, thus the first rules that match are §2 and §3. At this point the resulting graph consists of

the edges
s0
; and

trigger/1
; , and their nodes. Since

trigger/1
; is a member of Exclude1, we will not expand the
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target node of this edge. The next node to expand, as specified by §2, is the form node. The rule §5 matches,

thus we add an
fsm0
; edge to the result graph. We may choose to do the substitution of

fsm0
; right now, based on

Table 2, swapping it to
t
;. The left hand side of §9 matches the tuple node, thus after substituting

fsm0
; , we add

an
e
; edge to the result. Finally §4 matches on the atom node, thus we add to results a

nameof
; edge, pointing

to the semantic node of the pos1/3 function. At this point the analysis of the init/1 function concludes, since
we found the name of the first state, and the next function to analyse.

On the pos1/3 function node we can match §2 and §3 again, since all the clauses of pos1/3 have different
events. Now, we can match §5 on two branches, one for each clause. The first tuple represents a stop state, thus

we have to substitute
fsm0
; by

e
;. There are no rules matching on this branch, thus the algorithm backtracks to

the other branch. In the other branch
fsm0
; is substituted to

c
;. We can match §6, §7, and §8 on the case expr

node and its clauses. Again,
condhead

; , and
condbranch

; are in Exlcude1, thus their target nodes – used in later
stages to construct guards for the state machine – will not be expanded. In the left branch that matched §6, we

substitute
fsm0
; by

t
;, and then continue the analysis of this branch by matching §10 on the tuple, and swap

fsm0
;

with
e
;. Finally, we find the posOther/3 function node by matching §4. The analysis of posOther/3 is almost

identical, except that the last matching of §4 will result in a
nameof
; edge pointing back to the posOther/3 itself.

With this the analysis stage concludes.

Figure 6: Reduced analysed semantic program graph, resulting from the transformation stage

5.2 Demonstration of the transformation stage

In the transformation stage we start with the analysed program graph, resulting from the analysis stage, shown
in Figure 5, and reduce it to graph, that can be mapped to a state machine model relatively easily. The result
of the transformation stage is depicted by Figure 6.

Since in this example the state machine we transform is small, we only have to use a few reductions. To reduce
the analysed semantic program graph of larger state machines may require more kinds of reduction rules, which

are described in the appendix of [18]. The first step is to contract every
e
;,

nameof
; edge pairs into an

e
; edge by

applying §11. Next we contract the
s0
; edges by applying §12. While the

s
; edges highlight transition functions

with multiple clauses, each having the same event parameter, this small program did not have these kinds of

functions, therefore the analysed program graph features only
s0
; edges. We could use the

t
; edges to recognise

and eliminate branches that violate the syntactic convention about tuples in function return points, containing
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the atom with the name of the next state, specified in the gen fsm specification. The example program graph
follows the specification, therefore these edges are not needed anymore, and can be contracted, by applying §13.
As a result we get the reduced analysed program graph shown in Figure 6.

5.3 Demonstration of the synthesis stage

In this stage we map the reduced analysed program graph, shown in Figure 6, unto a state machine model,
depicted by Figure 7. First, we add init(init/1) (the initial state created from the function node of init/1)
to the state machine, since init/1 is the only element of Init in this example. The rule §14 matches the node
corresponding this state (i.e. init/1) with the function node of pos1/3, thus we add state(pos1/3), and a

transition to the state machine. We may choose to do the substitution of
lab−−→ right now based on Table 5,

swapping it to trigger label constructed from the joker pattern pointed by the
trigger/1

; edge. Next, we can match
both §15 and §16 on the pos1/3 node. The former results in adding a stop state to the state machine, while

the latter results in adding a choice state. To substitute
lab−−→ for a trigger, as specified by the substitution rule,

we have utilise the edge numbering to select the pattern nodes corresponding to each transitions: the pattern

pointed by
trigger/1

; will be used to label the transition of the stop state corresponding to the tuple node pointed

by
e/1
; , and

trigger/2
; for the choice state corresponding to the branching expression pointed by

e/2
; . Next, §14

and §15 matches on the node of the choice state. This time,
lab−−→ is substituted to a guard, constructed with

the appropriate expressions pointed by the
condhead

; and
condbranch

; edges. With the match of §14, we added
state(posOther/3) to the state machine. The corresponding posOther/3 node can be analysed similarly to
pos1/3. Finally, we get the result of the transformation, a complete state machine, as shown in Figure 7.

Figure 7: The state machine resulting from the synthesis stage

6 Evaluation

To test and measure the previously presented transformation method during actual physical execution, we also
created a reference implementation in Erlang. Instead of creating an application that communicates with a
RefactorErl instance via some remote communication protocol, we realised the implementation by extending
the source code of the open source RefactorErl framework to eliminate the need of creating a bridge, and to
minimise the number of dependencies. To implement the matching rules, we were able to make use of the function
clause pattern matching in the Erlang language, and used memoisation technique to avoid repetitive evaluation
of functions called from multiple places in the source code. We also implemented a few small extension not
mentioned in this paper. For example, initialising special states to stand in place of undiscoverable states, or the
recognition of a state machine based on the functions calls that start that state machine. We also used Erlang
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to generate the XMI files storing the resulting UML state machines, and used txtUML [13], also developed at
the Eötvös Loránd University (ELTE) to generate graphical diagrams from these UML state machine models.

We executed the implemented algorithm on Erlang state machines found in large, popular, open source Erlang
applications. Our sample state machines are from the sources of the Ejabberd communication server [6], the
Riak distributed NoSQL database [9], and the Erlang OTP library [14]. Unfortunately, the more general state
machines are less commonly used than the more specialised behaviours, like gen server, and gen event, which
means we had to test on a smaller sample. Still, the selected sample of state machines seems to have a nice
enough variety both in length and complexity.

Our results are summarised in Table 6, containing, for each Erlang state machine module the number of
lines of code in the module, the number of discovered states and transitions in the resulting state machine,
and the runtime of the transformation (minimum, maximum, average, median runtimes in microseconds). To
measure runtime, we repeated every measurement 500 times for each file, thus creating a 500 element sample for
each Erlang state machine. The runtime data does not include the time needed to load the respective Erlang
applications in the RefactorErl databases, since this operation only has to be performed once for every software
application, and in general, the size of the complete application source code is expected to be independent from
the size of the individual Erlang state machines the application contains. Since the resulting state machines
usually contain choice states, the measured number of states and edges are expected to be higher than the
(ordinary) states explicitly defined by the Erlang state machines.

Table 6: Runtime test results of the implemented algorithm
File name Lines of code States Transitions Min (µs) Max (µs) Avg (µs) Med (µs)

Ejabberd
ejabberd c2s 3128 50 79 321354 519876 339679 343389

ejabberd http bind 1236 28 44 137083 170189 144412 144956
ejabberd http ws 355 22 25 52735 72020 58953 58706

ejabberd odbc 692 17 27 46294 64307 50179 51069
ejabberd s2s in 712 38 54 91495 126085 99134 99422

ejabberd s2s out 1367 84 113 201523 242354 209178 210240
ejabberd service 404 26 30 51757 91737 58527 58115

eldap 1196 23 39 106526 123567 113383 113893
mod irc connection 1581 30 41 108223 150603 116199 116257

mod muc room 4501 35 81 164997 280537 172017 173004
mod proxy65 stream 291 33 37 51259 69289 58666 58485

mod sip proxy 458 23 28 40422 61556 44489 45057
Riak

riak kv 2i aae 695 19 31 77877 193215 80248 83386
riak kv get fsm 787 20 17 31662 58225 33244 35118
riak kv put fsm 1055 29 40 81231 148422 83690 87103
riak kv mrc sink 439 25 41 79229 147276 81694 85265

Erlang OTP
ssh connection handler 1721 56 131 3941 19818 4222 5200

tls connection 975 72 103 3197221 3438752 3290901 3292256

Taking our use case into account, fast runtimes are not of critical importance to the success of the transforma-
tion. However, even the slowest execution time, measured with tls connection module in Erlang OTP, is quite
small with 3 seconds. We have to remind the reader though, that we used memoisation in the implementation
to optimise the runtime: without the elimination of repetitive SPG branch evaluations, the algorithm would be
noticeably slower.

According to Figure 8 (after eliminating the outlier tls connection), the number of lines positively correlates
with time needed to execute the transformation. This phenomenon can be explained by the fact, that the
algorithm needs more time to analyse deeper function return points, and the depth of these return points
are likely correlated with the length of the source code of the module. Although not shown here, the same
connection can be observed between the states in the resulting state machines and the transformation execution
time. Since we mapped branching expressions to choice states, and deeper function return points are more
likely to contain such branching expressions, it is also more likely that we will create more choice states for
those state machines with deeper return points and longer transformation execution times. Figure 9 also shows
a positive, although less definite correlation between the number of lines and the number of states. Using the
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Figure 8: Algorithm execution times in terms of LoC Figure 9: No. of states in results in terms of LoC

same reasoning, we conjecture that deeper function return points will have more lines, and are also more likely to
contain branching expressions. Conversely, Erlang state machines with more states, and therefore more transition
function definitions, are also more likely to contain more lines of code. Still, because of the low number of state
machine modules in the samples, these assertions probably require more thorough research with a bigger sample
size, and perhaps with the use of more advanced metrics.

7 Related work

While most CASE tools support source code generation from UML models, the inverse operation, generation of
UML models from source code (code-model transformation) is less prevalent. This is probably explained by that
code-model transformation requires complex static and/or dynamic analysis tools. For the most popular object-
oriented languages, industrial tools suitable for this task usually support the discovery of UML class diagrams
and sequence diagrams from the program sources. Such tool are for example ObjectAid [8] and Eclipse MoDisco
[5] for Java, Microsoft Visio [3] and Altova UModel [1] for C# s Visual Basic, Visio and Doxygen [2] for C++.
Another interesting approach makes use of static and dynamic analysis techniques to detect design patterns in
object-oriented source code [23].

Model transformations, a recent, but well researched area can also be of interest concerning state machine
transformations. While this methodology is mostly used to specify and execute transformations between models,
it can be extended to also handle entities not usually considered to be models, such as syntax trees. Closely
related to the topic of our current paper, we presented a procedure to map a subgraph of the SPG of RefactorErl
to an SPG model by utilising triple graph grammars [22] to transform this SPG model to a valid UML state
machine model [19]. By employing a formal mathematical theory, this approach provably obtained advantageous
properties concerning among others the correctness and completeness of its results and the efficiency of its
execution. On the other hand, since it utilises high level model transformation concepts, implementations of
that procedure are expected to be a magnitude slower than the directly implementable approach presented in
our current paper.

Similarly to the tool introduced in the present paper, Erlesy [4] is another tool that can be used to visualise
Erlang state machines. Instead of utilising a powerful, but complex static analysis framework, Erlesy uses
standard Erlang tools to parse state machine source code. Erlesy does not include choice states and guards in its
output, thus the results will possibly represent non-deterministic state machines. Unlike our approach, Erlesy
uses loop edges to model the handle callbacks of the gen fsm specification: an advantage of this approach is that
it follows gen fsm semantics more closely, a disadvantage is that it inevitably clutters the resulting state machine
graphs with loop edges. Erlesy is a readily usable, lightweight solution to visualize Erlang state machines in
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various output formats, like Graphviz, PlantUML or D3.js.
There is also a mature methodology for discovering deterministic finite state machines using dynamic code

analysis, called state machine induction and behavioural inference. Procedures applying this methodology ex-
ecute the analysed program based on specific use case scenarios (e.g. a sequence of function calls), and collect
information to generate a state machine model. This task requires the elimination of non-deterministic transi-
tions, and transitions featuring recurring execution traces. Such state machine reducing methods are the k-tail
algorithm, and the QSM algorithm. QSM offers the user various valid reductions, and proceeds to perform the
reductions chosen by the user. Later methods can eliminate the need for these user dialogues by utilising static
source code analysis to find good answers automatically and with high precision [27]. The Erlang language is
also well suited for this task due to its statelessness and advanced program execution tracing facilities [10].

While the dynamic approach to state machine discovery enjoys benefits from the well defined methodology,
the requirement for use case scenarios hinders its usability for large systems. With static analysis, it is possible
to discover the complete state machine, relying only on the source code. One of the difficulties arising from
using static analysis is identifying the relation between the implementation level programming patterns and high
level state machine concepts. And even if we solve this problem, in some special cases it is still impossible for
pure static analysis to filter out components (e.g. states, transitions) that can be never reached during program
executing (e.g. because of conditions that can only be evaluated to false). Thus, it can be stated that both
the dynamic and static analysis approaches have their advantages and disadvantages, therefore the choice is
dependent upon the goals and requirements of the task at hand. Our approach strongly relies on static analysis,
since the requirements of the gen fsm behaviour [14] makes it easier to identify and analyse the programming
constructs relevant to state machines, and the RefactorErl framework provides the means to perform deep and
comprehensive static analysis on Erlang source code.

8 Conclusions

In this paper, we introduced a method to transform Erlang state machines, implementing the gen fsm behaviour,
to state machines described by UML, or similar state machine languages. To analyse Erlang programs, we used
the RefactorErl static analysis framework. We also defined an UML-compatible state machine representation
to denote the target state machines of the transformations. The presented method consists of three stages: an
analysis stage, a transformation stage, and a synthesis stage. In each stage, a backtracking algorithm is executed
on the output of the last stage (or, in the case of the first stage, the RefactorErl Semantic Program Graph),
and each stage utilises a separate set of transformation rules by means of pattern matching. The algorithms
themself are general enough not to depend on any static analysis framework, only the presented transformation
rules depend on the structural details of the RefactorErl Semantic Program Graph. By separating the algorithm
and the rules, we made it more easier to the extend of the transformation: one just has to add more rules to
the rule sets. By specifying the bulk of the transformation logic by rules, we also made it possible to parallelise
the algorithm to optimise it for environments with multiple processing units. We demonstrated the execution
and the results of each stage by a small example. We were able to realise a relatively fast implementation
of the algorithm. After testing our implementation on state machines selected from the source code of large,
popular, open source Erlang applications, we concluded that the time needed to perform the transformation on
an Erlang state machine is positively correlated with the number of lines of code in the program code of the state
machine. We also found similar correlation between the transformation execution time and the states created by
the transformation. We explained both phenomenon by conjecturing that deeper return point expressions need
more time to be analysed, probably have more lines of code, and contain more branching expressions.

The evaluation of our implementation evidences that the method presented in this paper can be used to
construct UML state machine models, even from large and complex Erlang state machines. Still, several oppor-
tunity remains for improvement, for example by extending the analysis with more elaborate RefactorErl queries
to discover even more state machine elements, or by targeting an even larger subset of all the features provided
by the UML state machine language, or even by preparing the method to generate executable state machines.
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