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Abstract

Nowadays, it is difficult to describe any algebraic dynamic structures
that usually includes the notion of state. A suitable structure for de-
scribing these systems can be a coalgebra, properties of which are dual
to algebraic by their modeling in terms of category theory. This paper
presents our approach for a formal description of a program system be-
havior based on category theory, coalgebræ and coalgebraic logic. At
the beginning, we briefly present basic notions from mentioned formal
methods, and then we present motivation example from the area of the
operating system GNU/Linux by its system calls.

1 Introduction

Coalgebræ are useful categorical structures with many applications in computer science. In our approach, they
are used for modeling state oriented behavior of program systems.

Many logical systems, which are used in computer science, are derivations of modal logics. In our paper
we present one of them, which is based on category theory and coalgebræ, named coalgebraic logic. Its first
definition came from Moss [Mos97]. It is necessary for definition of this logical system to define category of
classes and polynomial endofunctor over such a category.

Coalgebraic logic, with its expressive power, has a wide use in computer science through its formulæ, for exam-
ple, specifying non-well founded abstract data structures [Kur01], infinite data structures [Kur00], or observation
of program systems behavior [Mih14].

Our recent works regarding coalgebræ [Mih12], [Mih14], [Per15] were oriented to modeling of intrusion
detection system behavior as coalgebra for an appropriate endofunctor over category of infinite packet stream.
We present in this work several fruitful aspects about coalgebraic logic and its role in a formal description of
program behavior.

2 Basic notions

Definition of the coalgebraic logic is based on category theory and coalgebræ [Mos97], therefore we briefly
introduce basic notions from mentioned mathematical structures in this section. First, we bring definition of
category theory, and second, we define basic notions from coalgebræ , which are based on this theory.
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2.1 Category theory

Category theory was founded in 1945 by Eilenberg’s and MacLane’s work as a part of their research in the field of
algebraic topology [Mac45], where they formulated a notion of categories, functors and natural transformations
of functors, as a formalism for describing mathematical structures. Nowadays [Mih10], category theory is a
universal abstract mathematical frame used for description of various structures as mathematical, algebraic, or
abstract data structures used in computer science.

According to [Bar98], [Jac97], a category C is a mathematical structure which consists of:

• a class of objects Co ∈ C, where Co = {X,Y, Z . . . } and

• a class of morphisms between objects Cm ∈ C, where Cm = {f, g, h . . . }.

Every category C possesses the following well defined properties:

• If there is a morphism f ∈ Cm between two objects X,Y ∈ Co from the object X to the object Y it is
denoted as f : X → Y .

• Lets have a morphism f ∈ Cm defined as f : X → Y . Then object X ∈ Co is a domain of a morphism and
object Y ∈ Co is its codomain.

• For every object X ∈ Co there is an identity morphism idX ∈ Cm defined as: idX : X → X, where domain
and codomain of such a morphism is X.

• The most important property of every category C is that morphisms are composable i.e. lets have X,Y, Z ∈
Co and two morphisms f, g ∈ Cm define as follows:

f : X → Y and g : Y → Z, then there is a morphism g ◦ f : X → Z.

Typical example of a category is the category of classes SET, where objects are represented as sets and
morphisms as functions between them.

2.2 Functors

Many mathematical structures can be modeled as categories [Ste14]. Since categories are also mathematical
structures [Kur01], one should consider a category of categories, where objects are categories and morphisms of
such a category are a structure preserving maps between categories, called functors.

Let C and D be categories and F : C→ D be a functor. Then F is a morphism from the source category C
to the destination category D [Kur00]. A functor F assigns to every object X ∈ C an object F (X) ∈ D. Also a
functor F assigns to every morphism f : X → Y ∈ C a morphism F (f) : F (X)→ F (Y ) ∈ D satisfying following
conditions:

• for every object X ∈ C and its identity object morphism idX : X → X there is

F (idX) = idF (X);

• for every two morphisms f, g ∈ C a functor F preserves composition properties (g ◦ f) such as:

F (g ◦ f) = F (g) ◦ F (f).

This kind of functors is called simple [Bar98]. Another examples of simple functors are:

• identity functor IDC : C→ C;

• endofunctor E : C→ C, where source and destination category are the same.

In our approach, we use a special kind of endofunctor called polynomial endofunctor [Per15], [Mih12], [Slo11].
A polynomial endofunctor over category C is an endofunctor formed by polynomial operations shown in Backus-
Naur form (BNF) production rule as follows:

F (X) ::= X|X × Y |X + Y |XY . (1)
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2.3 Coalgebra for a polynomial endofunctor

Coalgebræ are useful categorical structures in computer science [Mac11], [Sma11]. In our approach we use them
for modeling state oriented behavior of program systems.

Lets have a category C and polynomial endofunctor F [Kur01], [Mos97], [Kur00], then a coalgebra for a
polynomial endofunctor F (sometimes also called F -coalgebra) is formally an ordered pair:

(X , ζ), (2)

where

• X is a coalgebra’s state space of objects of category C and

• ζ is a morphism of category C such as ζ : X → F (X).

The morphism ζ is also called a structural function of a coalgebra.

3 Coalgebraic logic

A plethora of current system behavior researches had shown the importance of choosing a suitable logical lan-
guage. Those formulæ are used to logical reasoning over the states of the dynamic system. The states are
captured by the coalgebra of an appropriate polynomial endofunctor.

Based on our previous work, in this chapter we present logical system based on multimodal language. It
is suitable for description of the behavior of infinite data structures. This logic is called the coalgebraic logic
introduced by Moss in his work [Mos97]. For its definition, it is necessary to define the category of classes SET
and polynomial endofunctor over it as F : SET→ SET.

Note 3.1: Since we won’t be manipulating only with formulæ and sets of formulæ [Bil13], but also with
elements of FωLω, it is beneficial to use the convention of notations from the table 1. To be more transparent,
we will use notation Fω for polynomial endofunctor instead of F .

Table 1: Conventions of notations in coalgebraic logic

Set Elements
Lω ϕ,ψ, . . .
FωLω Φ,Ψ, . . .

3.1 Syntax of coalgebraic logic

Kurz in his work [Kur01] says that the main reason for introduction of the coalgebraic logic is to find a modal
language Lω for every coalgebra (X, ξ) and to specify its satisfiability relation as follows

�Fω⊂ X × Lω, (3)

where

• if Φ ⊂ Lω, then ∧Φ ∈ Lω;

• if Φ ⊂ Lω, then ¬ϕ ∈ Lω;

• if ϕ ∈ FωLω, then ϕ ∈ Lω.

Based on the definition above, it is clear that the ∧{} ∈ Lω, the clause ∧{} denotes true and Lω is a proper
class [Kur00]. We abbreviate ∧{} as >. The last clause uses fact that the Fω is a functor over SET.

The modal language Lω of coalgebraic formulæ can be expressed by following production rule in Backus-Naur
form:

ϕ ::= ⊥ | > | ¬ϕ |∧Φ | ∇Φ, (4)

where ϕ ∈ Lω and Φ ∈ FωLω.
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From the production rule (4), it is clear that formulæ of coalgebraic logic are ordered pairs or their infinite
conjunctions [Mih10]. While the modality ∇Φ means shorthand notation

∇Φ ≡ �∨Φ ∧∧♦Φ, (5)

where ∧,∨ are infinite forms of conjunction and disjunction. The following equivalences are valid:

♦ϕ ≡ ∇{ϕ,>}
�ϕ ≡ ∇Φ ∨∇{ϕ} (6)

Example 3.1.1 Let FωX = A×X and ai ∈ A, i ∈ N.
Then the formulæ

(>), (a0,>), (a0(a1,>), . . . ,∧{(a0, a1, . . . , an,>) | n ∈ N} (7)

are formulæ of coalgebraic logic.

3.2 Semantics of coalgebraic logic

Let (X, ξ) be a coalgebra and x ∈ X. Then according to [Kur00] the semantics of coalgebraic logic can be
expressed by the following satisfiability relation

�Fω⊂ X × Lω, (8)

as follows:
x �Fω ϕ,∀ϕ ∈ Φ,Φ ⊂ Lω then x �Fω ∧ϕ
x 2Fω ϕ then x �Fω ¬ϕ
∃w ∈ Fω(�Fω) so, Fωπ1(w) = f(x), Fωπ2(w) = ϕ then x �Fω ϕ

(9)

where π1, π2 are projections of product X × Lω.

4 Motivation example

We present traceability of intrusion system calls of a running functional program under the OS GNU/Linux as a
demonstration example [Mra13]. We understand system calls as infinite stream, therefore it is suitable to model
them as coalgebra for a polynomial endofunctor. We also specify system calls as formulæ of coalgebraic logic.

4.1 Many-typed coalgebraic signature of system calls

First, we define many-typed coalgebraic signature of system calls. Formally it is an ordered pair

Σ = (T ,F), (10)

where

• T is a class of types names and

• F is a class of names of operations over types.

244



BEGIN Signature
Σs

Begin types
T = {action, char, hex, int, nat}

end
Begin opns
F = {alert, access, overflow :→ actions,
name :→ char,
arguments :→ char,
rt sigproc : char × nat× char × nat→ int,
rt sigprocmask :→ int,
clock gettime :→ int,
clone : char × char × char → nat,
timer set : int× int× char × char × char → int,
mmap : char × nat× char × char × nat× int→ hex,
munmap : hex× nat,
wr rd : nat× char × nat→ int,
open : char × char × nat→ int,
setuid : int→ int,
returnV alue :→ int,
nReturnV alue :→ nat,
hReturnV alue :→ hex }

end

END

The names of basic types from the class T in signature Σs define types of observed system calls [Mra13].
Operational specifications, from the class F in signature Σs, define the structure (syntax) of individual system
calls. The description of individual system calls is specified in the table 2.

Table 2: System calls specification

Name Description
name name of the system call
arguments the system call arguments
rt sigproc structure of the system call for working with memory
rt sigprocmask examine and change blocked signals
clock gettime get the current time
clone structure of the system call to create a new process
timer set structure of the system call for the time of process
mmap structure of the system call to initialize memory
munmap structure of the system call to release memory
wr rd structure of the system call for working with the files - read/write
open structure of the system call related to open file operation
returnValue system call return value (integer)
nReturnValue system call return value (non-negative integer)
hReturnValue system call return value (hexadecimal number)

4.2 Category of system calls

In the second step, we construct a category of system calls Scalls [Mra13], where

• objects are system calls s1, s2, . . . ;

• morphisms next : si → si+1 are transition into the next system call of a given stream.

4.3 Polynomial endofunctor over category of system calls

We specify a polynomial endofunctor over a category of system calls Scalls [Mra13] as follows

E : Scalls→ Scalls. (11)

We define actions of the endofunctor as follows

E(s) : O × s, (12)
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Figure 1: Category of infinite stream of system calls Scalls

E(next(s)) : O × next(s), (13)

where O denotes observable values of a given system call.

4.4 System calls as coalgebra

Finally we model a stream of system calls as a coalgebra for a polynomial endofunctor. For demonstration we
present two intrusion system call sequences.

A denotes Overloading of HW resources in this case by fork processes [Mra13]. Symptoms of this disrup-
tion are placed in a generated stream of system calls, where the system calls are repeated sequentially:

name = rt sigprocmask ; nReturnValue = 0

name = clock gettime ; nReturnValue = 0

name = clock gettime ; nReturnValue = 0

name = clock gettime ; nReturnValue = 0

name = rt sigprocmask ; nReturnValue = 0 . . . .

B denotes Permission denied i.e. security violation of the stored data. Symptoms of this disruption are placed
in the following generated stream of system calls.

name = open, nReturnValue = -1 access to file

name = write; wr rd = nat, char, 4 ;

nReturnValue = 63 unauthorized writing to file

name = read; wr rd = nat, char, 2 ;

nReturnValue = 68 unauthorized reading to file

Coalgebra (system) observes a stream of system calls and if it detects symptoms of disruption, then it responds
by making one of the following preferred (re)actions (actions from the Σs) [Mra13], such as:

• Alert - generates attention on the screen;

• Wrong - unauthorized access, which saves output into appropriate log file and

• Overflow - indication of the resource misuse, i.e. termination of whole implementation (EXIT FAILURE).

In the last step [Mra13], we define coalgebra with the detection of intrusion system activities as follows

(ss, 〈hd, tl,N signal〉), (14)

which is characterized by the following operations

• hd : ss → s – immediate observation of the given system call in actual state;

• tl : ss → ss – state modification and
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• generation of appropriate action (N signal : ss → sactions) in the from

〈hd, tl,N signal〉 : ss → s× ss × sactions
N

(15)

where sactions
N

expresses the generation of the appropriate reaction based on the given intrusion N e.g. A or B.

4.5 Specification of the stream of system calls by coalgebraic logic

The formulæ of coalgebraic logic are used for logical reasoning over states of a dynamic system that is captured by
the coalgebra for a polynomial endofunctor [Mih14]. Now we specify infinite stream of system calls as formulæ of
the modal language defined in the section 3.

The application of coalgebraic specification creates an infinite sequence of coalgebraic formulæ

(>)
(s1,>)

(s1, (s2,>))
(s1, (s2, (s3,>)))

. . .
∧{(s1, (s2, (s3, (. . . , (. . . ,>) . . . ))))}

(16)

where the first line (>) denotes an empty sequence, which is the initial state of the system. The second line rises
after the first application of coalgebraic specification. It specifies the initial (starting) system call. The next
lines describe iterative application of coalgebraic specification up to a possible infinite sequence.

4.6 Example of detected intrusion system call

Behavior of the system can be modeled step by step by the following sequence

(sstart, s . . . ) 7→
7→ ((srt sigproc, sclock gettime, sclock gettime, sclock gettime, srt sigproc), ε) 7→10

7→ ((srt sigproc, sclock gettime, sclock gettime, sclock gettime, srt sigproc),A 7→ Alert) 7→
7→ . . .

In this example, stream starts with the system call s start . . . , which represents initialization system calls of
a real system tool for system calls tracing (Strace) [Mra13]. Next system calls s timer set, s clone are specific
types of system calls. The coalgebra observes the stream and detects intrusion of the type A and responds by
the action Alert). The appropriate sequence of a real system calls is:

...

Initialization of Strace system calls.

...

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

clock_gettime(CLOCK_THREAD_CPUTIME_ID, {0, 4854270}) = 0

clock_gettime(CLOCK_MONOTONIC, {2935465, 569821866}) = 0

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, {0, 4817026}) = 0

rt_sigprocmask(SIG_BLOCK, [INT], [], 8) = 0

...

Similarly, we can model the B or any known intrusion system call.

5 Conclusion

In this contribution we briefly present basic notions from category theory, coalgebræ and coalgebraic logic. We
demonstrate our approach of a formal description of program systems behavior on the example from operating
system’s GNU/Linux detection and handling of intrusion system calls.

We see a possibility in creating verifiable model, using mathematical formal methods to develop intrusion
detection systems by observing their behavior. Based on this, it is possible to eliminate undesirable behavior
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and, with a combination of host and network intrusion detection systems, to create a complex security for
program systems.

In the future, we would like to extend our approach by joining the network intrusion detection systems with a
host-based one. A combination of both types of IDSs will allow us to secure computer systems even more. Next
step in our work will be extending IDS by applying the resource oriented Belief-Desire-Intention logical system,
that will allow automated IDSs reactions, instead of a system administrator intervention. Another idea for our
future work is an application of a self-healing code procedures, which would allow a detection and handling of
even new and unknown intrusions.
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