
Benefits of implementing a query language

in purely functional style

Artúr Poór, István Bozó, Tamás Kozsik, Gábor Páli, Melinda Tóth

poor_a@inf.elte.hu, bozo_i@inf.elte.hu, kto@inf.elte.hu, pgj@inf.elte.hu,
toth_m@inf.elte.hu

ELTE Eötvös Loránd University
Faculty of Informatics

Budapest, Hungary

Abstract

Software maintenance can be significantly facilitated with a source code
analyser tool. Such a tool is even more powerful, if it provides a full-
fledged query language to express queries over the static analysis infor-
mation collected by the tool. This paper recommends an approach, and
good practices, for the design of a query language for static source code
analysis, with aims to intuition, consistency and reliable implementa-
tion. The approach is presented for querying information about Erlang
source code. The characteristics of the proposed query language are its
purely functional style, easy-to-learn syntax, and its formal definition
in Haskell.

1 Introduction

Software developers use various programming language processing tools, which are invaluable during the devel-
opment and maintenance of reliable software and high-quality source code. Such tools have different capabilities,
ranging from style checking (e.g. coding conventions) to bug forecast to complexity measures to bad smell detec-
tion to code comprehension. Code comprehension tools allow users discover and investigate dependencies among
source code entities, and help understand how the small pieces fit together.

Typically, the behaviour of code comprehension tools boils down to two phases. First, an analysis phase
builds an internal data structure (e.g. a graph). Users then collect information from the data structure (e.g.
traverse the graph) in an exploration phase. When it comes to the exploration phase, the flexibility of the user
interface is greatly enhanced with an expressive query language. An easy-to-learn and intuitive query language
can significantly reduce the time needed to gather information about a program. For instance, using the query
language, a programmer is able to trace back the origin of an invalid actual parameter in the source code,
or search for leftover debugging messages before software release. In the end, programmers can understand the
source code faster with the query language, because they are not restricted to a set of predefined queries; instead,
they can easily write queries that yield exactly the desired information.

This paper reports on our experiences with the design of a query language for static source code analysis. This
query language is specific to a programming language: information about source code written in that particular
language can be collected with the query language. On the one hand, we believe that the usability of the query

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: E. Vatai (ed.): Proceedings of the 11th Joint Conference on Mathematics and Computer Science, Eger, Hungary, 20th – 22nd of
May, 2016, published at http://ceur-ws.org

250

poor_a@inf.elte.hu
bozo_i@inf.elte.hu
kto@inf.elte.hu
pgj@inf.elte.hu
toth_m@inf.elte.hu

language is improved due to its dependence on the programming language under consideration. On the other
hand, similar programming languages yield similar query languages, so the technique presented here is quite
generic and applicable to a wide range of programming languages.

The programming language used for our query language is Erlang [Arm13]. A brief summary of Erlang is
given in Section 2.1. However, the code examples presented in the paper are quite straightforward, and can
be understood with general programming skills, without prior knowledge of Erlang. Our query language is, in
fact, a domain-specific language for traversing graphs with labelled nodes and edges, which represent static (i.e.
compile-time) information about some Erlang source code.

The main contributions of this paper are a query language design practice and a systematically designed query
language that has the following properties:

• The language is simple and intuitive. Queries make use of the set builder notation, which is well-known for
everyone from high-school mathematics. Most of the syntax (function application and list comprehension,
the latter also known as ZF-expression, after Zermelo-Frankel set theory) is borrowed from the Haskell
programming language [Jon03], and is fairly lightweight. This idea of relying on Haskell syntax is proven to
be helpful in creating a simple, easy-to-extend language. The syntax with descriptive examples is presented
thoroughly in Section 3.

• The language is strongly typed, which makes it possible to report errors in queries before execution. Fur-
thermore, programmers get friendly and self-explanatory error messages. Typing is discussed in more detail
in Section 4.

• The language has well-defined semantics. A denotational semantics has been designed for the language,
and expressed in Haskell, the implementation language of our choice. In Haskell, the executable denotation
semantics of language features can easily and clearly be defined. The formal semantics of the query language,
however, is out of the scope of this paper.

• The implementation of the language is reasonably fast in spite of the fact that it has to communicate with the
back-end of a code comprehension tool written in Erlang, and thus it has to take care of the (de-)serialization
of Erlang data. Section 6 reports on our related experiences.

• The language is lazy, which facilitates minimizing communication between the Haskell front-end and the
Erlang back-end. Thanks to pipes1, a stream processing library for Haskell, practically any function could
easily be turned into lazy.

2 Preliminaries

Before presenting our query language for collecting static source code analysis information on programs written
in Erlang, some introduction is given to the necessary background. First the main characteristics of the Erlang
programming language are highlighted (Section 2.1). Then RefactorErl [BHH+11], a source code analysis and
transformation tool for the Erlang language is briefly described (Section 2.2). RefactorErl serves as the back-end
to our query language, providing the static source code analysis information to work on. Finally, Section 2.3
explains how querying in RefactorErl looked like earlier, and why it was necessary to design the query language
described in this paper.

2.1 What is Erlang?

Erlang is a general purpose dynamically typed functional programming language with built-in primitives for
concurrency, distribution and message passing communication. The language was originally designed for the
telecommunication application domain. Nowadays, the Erlang Open Telecom Platform (OTP) framework with
the Erlang Virtual Machine (VM) is used for building highly available, robust, fault tolerant systems in various
domains. The Erlang source files are compiled to bytecode (BEAM), which run on the Erlang VM. The VM is
responsible for process scheduling and garbage collection as well.

There are several built-in data types in Erlang. Besides the primitive data types (e.g. number, atom etc.)
there are four compound data types, namely tuple, list, record and map. The usual constructs for functional

1https://hackage.haskell.org/package/pipes

251

https://hackage.haskell.org/package/pipes

programming, i.e. pattern matching, branching expressions, recursion (with tail-call optimization), higher-order
functions and lambda-expressions are also available in this call-by-value, impure functional language.

Erlang is a single assignment language, that is, once a variable is bound it cannot be changed. Variables can
be bound with match expressions (e.g. Palindromes = ...) and with pattern matching. Note, however, that if
a bound variable occurs either in a match expression or a pattern, the construct behaves as an equality assertion.
Variable names always start with a capital letter, while function names and so called atoms (for instance boolean
values true and false) always start with a lowercase letter.

The most important building block of Erlang is the function definition. Similarly to many other functional
languages, functions can be defined with pattern matching, and hence the definition of a function may be split
up into multiple function clauses. The body of a function is a sequence of expressions, the last of which providing
the result of the function. Function names can be overloaded on the arity, therefore we refer to functions with
name/arity syntax, such as is palindrome/1.

Function definitions are organized into modules. A module can export functions: these functions can be called
from other modules. A module can also import functions from other modules, which allows those functions to be
called like functions defined in the same module. Otherwise, a function from another module must be called with
a module qualifier, such as in lists:reverse([1,2,3]) (reversing the list [1,2,3] by calling the reverse/1
function from the standard library module lists). Erlang OTP also supports the organization of modules into
applications, which are reusable components that can be started and stopped as single units. An Erlang OTP
system may contain multiple applications.

As an example, let us consider the following Erlang code. The palindrome:main/0 function prints out
racecar and madam, the two palindromes from the three words tested.

-module(palindrome).
-export([main/0]).

main() ->
Palindromes = [Word | | Word <- ["racecar", "owl", "madam"], is palindrome(Word)],
io:format("Palindromes: ~p", [Palindromes]).

is palindrome(Text) ->
Text == lists:reverse(Text).

The Erlang compiler has a preprocessor, which allows us to define and use macros, as well as to textually
include header files, as we shall see in forthcoming examples.

2.2 What is RefactorErl?

RefactorErl is a static source code analysis and transformation tool for Erlang with the following main features:

• a semantic query language, to gather information about the source code

• more than twenty (semantics preserving) refactoring transformations

• computation and visualisation of dependencies

• duplicated code detection

• investigation tracking

• component clustering

The functionality of RefactorErl is available through several interfaces. It has a web-based graphical user
interface, plug-ins for several editors, and a command-line interface as well.

RefactorErl represents the source code of an Erlang program in a graph data structure with labels attached
to nodes and edges. This data structure, the Semantic Program Graph (SPG) contains the abstract syntax tree,
as well as semantic information (like variable scoping, function call graph, data-flow, process structure etc.) and
lexical information (sufficient for reproducing the source code verbatim). Hence, the SPG is made up of lexical,
syntactical and semantical nodes, and lexical, syntactical and semantical edges.

The SPG is an extremely rich representation of source code. The Erlang module shown in Section 2.1 generates
a Semantic Program Graph that would not fit on one page. Figure 1 shows a fragment of the SPG, focusing
on the semantic information related to the is palindrome/1 function only. Semantic nodes and edges are

252

Figure 1: Semantic and syntactic nodes and edges of the SPG of is palidrome/1.

drawn as hexagons and coloured edges, respectively. Some syntactic nodes and edges are also included, they are
represented by rounded rectangles and black edges. Lexical information is completely omitted here.

The collection of information on the Erlang source code can be accomplished by traversing the SPG. Such a
traversal may start from the ROOT node, and visit other nodes through the labelled edges relevant from the point
of view of the searched information. Working directly with the data structure, however, may be uncomfortable
for an Erlang software developer. Therefore, the Semantic Query Language was designed [TBKH] to provide
a user-level querying interface for RefactorErl. The queries refer to Erlang language concepts, thus it is easy
to use for Erlang developers even without any knowledge on the internal structure of SPGs. Unfortunately, as
Section 2.3 reveals, the Semantic Query Language has a number of drawbacks, therefore the design of a new
query language, NequeLace, became necessary.

2.3 The Need for a New Query Language

First of all, let us have a glance at the original Semantic Query Language. The basic building blocks in this
language are the selectors, the filters and the properties. Selectors identify semantic entities, such as modules,
functions, variables etc., and they can be combined with the dot operator to express containment with respect
to program structure. The result of the selection is a set of semantic nodes in the SPG. For example, to select all
the functions from all of the modules, the query mods.funs can be used. Filters narrow the result set based on
some predefined properties. For example, we can filter out expressions based on their type and possible values.
Filters are denoted with square brackets. To obtain all the foo functions from all of the modules, we can write
the following query: mods.funs[name=foo]. Other advanced features, like iterations, closures, property queries,
variables, set operations etc. allow us to write more advanced queries. For instance, we can check whether a

253

function foo depends on another function bar with the following query (“+” denotes the transitive closure of a
selector, in this case that of calls, which is the selector to operate on the function call graph).

mods.funs[name=foo and .(calls)+[name=bar]]

The Semantic Query Language has turned out to be suboptimal in two major aspects: maintainability of the
implementation and readability. Let us consider first the maintainability of the implementation. Although the
language was designed to be easily extensible with new selectors and properties, adding new language features is
not at all straightforward. For example, originally the query language did not have variables to store temporarily
the results of sub-queries. When the decision has been made to add them to the language, it turned out that
variables cannot be implemented orthogonally, they affect all other features of the language. Finally, it took cca.
5 person months to implement this feature. This was considered as a clear sign of the necessity of a complete
language redesign.

The other problematic aspect of the Semantic Query Language is readability. The queries expressed in this
language tend to be very terse, which can have a negative impact for average users. Furthermore, sometimes
quite strange, or ambiguous, expressions arise, for instance when property names overlap with atoms used in the
analysed Erlang programs. Consider the following record declaration in an Erlang program, which introduces a
new record type, the name of which is name (and the field names are surname and given name).

-module(person).
-record(name, {surname, given name}).

A query which collects every reference to this record would look as follows.

mods[name=person].records[name=name].refs

The filter part of the query, name=name, can easily be (mistakenly) seen as a tautology. The advanced user of the
Semantic Query Language, of course, will know that the first occurrence of name is the name of a property (an
edge label in the SPG), while the second occurrence is a value used in the analysed Erlang program. To avoid
confusion for average users, however, a syntax that makes clear distinction between the two uses of the same
word would be advantageous. For example, a list comprehension expression in Erlang would use the following
syntax to describe this query.

[Refs | | M <- modules(), name(M) == "person",
R <- records(M), name(R) == "name",
Refs <- references(R)]

This more verbose syntax is probably more readable for most software developers. There is no dot-operator
(which can also be mistakenly interpreted as a record field selection for novice users), and the ambiguities
illustrated above are also resolved. This observation influenced the design of the syntax for NequeLace, the new
query language.

3 NequeLace: the New Query Language

The set builder notation is often used in mathematics classes in high-school, therefore it excels at being the
fundament of the syntax of a query language. List comprehensions, providing similar notation, are widely used
in functional programming languages (including Erlang), although with slightly different concrete (or surface)
syntax in different languages. Set builders in NequeLace resemble most to Haskell list comprehensions.

The next important language construct in NequeLace is function application. Again, we opted for the Haskell-
like, juxtaposition syntax for this construct. The core of the language is defined as a set of functions, many of
them corresponding to the selectors of the Semantic Query Language. These functions are all provided by
RefactorErl, which acts as the back-end for the query languages.

We shall discover NequeLace through a series of interesting example queries. Let us consider again the
palindrome module.

-module(palindrome).
-export([main/0]).

main() ->
Palindromes = [Word | | Word <- ["racecar", "owl", "madam"], is palindrome(Word)],
io:format("Palindromes: ~p", [Palindromes]).

254

is palindrome(Text) ->
Text == lists:reverse(Text).

The lists:reverse/1 function operates on lists. If the argument is of some other type, a runtime exception is
raised. Since Erlang is dynamically typed, such exceptions may show up quite often. This happens, for instance,
if we replace the string literal owl with the number literal 3.1415927. In order to find and correct a type-related
bug, the software developer may want to know all the possible values which are used as actual parameters to a
given function. The following query traces back origins of the parameter Text of the is palindrome/1 function
above.

{(p,o) | m <- modules, name m == "palindrome",
f <- functions m, name f == "is palindrome",
p <- parameters f,
o <- origin p}

The result of the query is a set of pairs, where the first element of the pair is (the SPG node representing) the
parameter Text, and the second element is (the SPG node representing) an Erlang expression that can flow into
this parameter. If owl is replaced with 3.141592, the result of the query is the following.

p o

Text Word
Text "noon"
Text 3.141592
Text "racecar"
Text Word
Text Text

In terms of the semantic program graph in Figure 1, a query performs a depth-first traversal, starting from
the ROOT node. The modules function selects and traverses outgoing edges labelled module. For each module,
the functions function selects and traverses edges labelled func.

Some functions exhibit a more complex behaviour. The origin function takes the node of an Erlang expression
or parameter (e.g. parameter Text), and traverses edges labelled flow in opposite direction transitively. This
way, it reaches points in the code where the value of the expression or parameter originates from.

Before introducing the next example, we extend the analysed Erlang codebase with the function
prop palindrome/0, which tests the correctness of is palindrome/0. It uses PropEr [PS11], a testing tool, to
randomly generate test input to is palindrome/0.

-include lib("proper/include/proper.hrl"). % textually include a header file which
% provides definition to the FORALL macro etc.

prop palindrome() ->
?FORALL(Chars, list(range($a, $z)),

is palindrome(Chars ++ lists:reverse(Chars))).

Let us imagine for a moment that a PropEr upgrade introduces API changes (for instance, range/2 now excludes
the upper bound, and list/1 is renamed to list of/1). Applications of PropEr functions which are involved in
API changes need adjustments. For this reason, a systematic approach which finds all applications of functions
of some module becomes necessary. Lexical search (e.g. using grep) which looks for a module name in the
source code does not work properly, because imported functions may be invoked without qualification, similarly
to list/1 above (the include lib directive automatically imports many commonly used functions, including
list/1). In this case, semantic analyses offer a better alternative. Once the code is analysed, the query that
collects all invocations of PropEr functions may be formulated as follows. We can filter functions by name if we
are looking for a specific function (such as list/1).

{(f, app) | m <- modules,
m ~= "ˆproper",
f <- functions m,
app <- references f}

255

The operator ~= matches a regular expression against a string. In this example, it is used to filter out modules
which are not part of the PropEr library, i.e. names of which do not start with proper (note that in our regular
expression the symbol ˆ matches the beginning of a string).

As the third example, consider again the problem of collecting references to the record called name from
Section 2. The NequeLace query for this problem can be written in the following way.

{refs | m <- modules, name m == "person",
r <- records m, name r == "name",
refs <- references r}

Set builders are not the only form of queries. Function applications per se are also valid. As an extreme
example, consider a query to list every module in the analysed code.

{m | m <- modules}

A query with the same effect can be written without the set-builder notation as well.

modules

More interesting examples of queries without set builders will appear in Section 3.1. In NequeLace, there is a
definite improvement on the effort needed to understand queries compared to the Semantic Query Language.
However, there is another area where the new query language falls a little short: compactness. Writing a query
which spans many lines tends to be tedious. Fortunately, user-defined functions can address this problem, as
discussed in Section 3.2. The full syntax of NequeLace is presented in Section 3.3 in more detail.

A subtle point in the above queries is that functions such as name and references may be applied to values
of various types. This is because these are polymorphic functions. Section 4 elaborates on the type system.

3.1 Implicit query parameters

It must be clear from the examples presented so far that queries are implicitly parametrized with an SPG, namely
the semantic program graph of the Erlang code which is loaded into an instance of RefactorErl. A NequeLace
interpreter connects to, and communicates with, a running instance of RefactorErl, and the queries are executed
against the SPG loaded into that particular instance. Moreover, NequeLace is typically used inside a program
development environment (such as an IDE or an editor), which can provide a context to queries. Most notably,
queries can make use of code position information. To achieve this, the implementation of NequeLace should be
able to cooperate with the given program development environment, e.g. through an IDE plug-in. If a certain
row/column position of a certain source file is selected in the editor, the position information can be passed to
the NequeLace interpreter, and can be used to identify an SPG node in the back-end.

With the above mechanism, NequeLace supports position-based queries, viz. queries that rely on implicit
position information. We can refer, for example, to the Erlang function opened in our editor when the query is
executed using the atFunction primitive of NequeLace (or @fun in the original Semantic Query Language). To
refer to the record selected in our editor, the atRecord primitive can be used. If the current position in the editor
is not a record, an error message is generated by atRecord. One can utilise this feature to find all references
to a given record (the one selected in the editor) with the following code, which also gives a nice example of a
query not using set-builder notation.

references atRecord

This query is not only shorter than the one using set-builder notation, but also slightly more effective. On the
one hand, the query with the set-builder notation starts from the ROOT node, and proceeds towards the record
declaration node along edges in the semantic program graph. Once found, it collects expression nodes at the
end of incoming recref edges. The position-based query, on the other hand, starts directly from the record
declaration node, and can avoid searching for the record in the SPG.

3.2 Query Functions

In order to avoid long queries, and to encourage query reuse, user-defined functions have been introduced into
NequeLace. There are at least two use cases where such query functions excel. First, the programmer may create
a function from many similar, frequently used queries, and so the function acts as a parametric query. Second,
a function may be defined as a shorthand for a standard library function.

256

A query function is very similar to a function in Haskell, and in the same time it is considerably simpler, since
it lacks several language features. Namely, pattern matching, branching, local bindings in a let or where clause
and recursion have so far turned out to be unnecessary, and hence are currently not supported.

As an example, consider function lookup, which returns a set of functions with a specified name and module.
There could be more than one such function, as overloading is allowed in Erlang. Function params returns the
set of parameters of a function specified by module name, function name and number of parameters.

lookup mod fun = {f | m <- modules, name m == mod,
f <- functions m, name f == fun}

params mod fun n = {p | f <- lookup mod fun, arity f == n,
p <- parameters f}

Similarly to many declarative languages, such as Erlang and Haskell, there is no need to specify the types of
parameters. The type inference algorithm, in these cases, can infer that the type of both mod and fun is string,
and n is an integer.

User-defined functions can be saved into NequeLace source files. The with keyword followed by a filename
brings the function definitions stored in the file into scope. For instance, we can save the lookup and params
functions in the file functions.sq, and then make the first example from the previous section shorter.

with "functions.sq"
{o | p <- params "palindrome" "is palindrome" 1

o <- origin p}

3.3 Formal Syntax

The core of NequeLace is very small, and contains only essential features: iteration over sets, and function
application. All other language features are implemented as functions, laid on top of the core. This makes the
query language easy to extend: when a new language feature is needed, it is presumably sufficient to define one
or more functions — it is unnecessary to modify the parser (unless we introduce an infix operator), change the
type inference algorithm or the evaluation.

Following the principles advocated by APL [Ive62] and other, more modern languages such as Agda [BDN09],
Unicode symbols are also included in the syntax. Consequently, queries become terse and intuitive at the same
time, especially in the case of set operations. The operators ∪, ∩, ∈, ⊆, and the function composition operator ◦
are all valid infix binary operators. With a modern text editor it should not impose any problems to enter these
symbols, and we can also introduce ASCII synonyms (such as union for ∪) using user-defined functions.

The abstract syntax of NequeLace is as follows.

e := n numeric literal
| str string literal
| dataConstr str data constructor
| (~e) tuple
| v identifier
| e e′ function application
| λv.e function abstraction
| e >>= e′ bind
| return e lift
| guard e filter

| with ~f e function import
f := v = e function definition

Data constructors are represented as plain strings, and the type of a data constructor is determined during type
checking (see Section 4 for details). Furthermore, operations are represented as ordinary function applications.
Also, the nodes “bind”, “lift” and “filter” constitute the backbone of set builder expressions. The way set builders
are parsed into combination of these nodes is similar to the way Haskell list comprehensions could be written
using >>=, return and guard. Let us consider the query function from Section 3.2:

257

query = with | expression;
with = ’with’, string literal, expression;
expression = application

| operation | tuple
| identifier | constructor
| numeric literal | string literal
| set builder | ’(’, expression, ’)’;

application = expression, expression;
operation = expression, operator, expression;
operator = ’==’ | ’/=’ | ’<’ | ’=<’ | ’>’ | ’>=’

| ’~=’ | ’∪’ | ’∩’ | ’∈’ | ’⊆’ | ’+’
| ’-’ | ’*’ | ’◦’ ;

identifier = lowercase letter, {letter | number | ’ ’};
constructor = uppercase letter, {letter | number | ’ ’};
set builder = ’{’, expression, ’|’, builder elem, {’,’ builder elem}, ’}’;
builder elem = generator | expression;
generator = identifier, ’<-’, expression;
function = identifier {identifier} ’=’ expression

Figure 2: EBNF specification of the concrete syntax

lookup mod fun == {f | m <- modules, name m == mod,
f <- functions m, name f == fun}

The abstract syntax of the function body is the following. We regard >>= as a right-associative binary operator.

modules >>= λm.
guard ((==) (name m) mod) >>= λx.
functions m >>= λf.
guard ((==) (name f) fun) >>= λy.
return f

Note that the parameters x and y are introduced because patterns, such as wildcard pattern, are not supported
by the syntax. The type of both parameters is the unit type.

The formal EBNF specification of the concrete syntax is shown in Figure 2. It is worth noting that the syntax
is fairly general. It seems as if it is taken from a general-purpose high-level functional language like Haskell.
Apart from the operators it does not contain anything related to RefactorErl or Erlang, which makes it highly
reusable. When another query language in different context is needed, all needed to do is replacing the set of
built-in functions. Therefore, even the parser can be reused with slight modifications, e.g. replacing the set of
infix operators.

4 Type Checking Queries

The language is designed to be strongly typed from the ground up. Types are inferred, so it is unnecessary to
specify types of expressions and functions, which leads to a more convenient and compact query language. Type
inference is performed before evaluation, and an error is reported if type inference does not succeed. A separate
typing mechanism is not only necessary in case of a stand-alone language such as NequeLace, but also useful in
presenting friendly error messages to the user. We give examples of error messages at the end of this section.

This section elaborates on the type inference mechanism that supports bounded and unbounded parametric
polymorphism. The type system is based on System F [Har16], and it additionally includes type classes. We
rely Simon Peyton Jones and other’s work [HHJW94] on formal definition of Haskell type classes.

Figure 3 shows the syntax of types. There are three variants of types: simple, polymorphic and bounded
polymorphic. In a polymorphic type the value of a type variable may or may not be constrained, depending
on the context. Quantified type variables in the context have a constrained set of values, whereas the rest of
quantified type variables have no such constraints. For instance, the function null, which checks whether a set
has any element, is polymorphic. Its type is written as follows in Haskell notation:

null :: Set a -> Bool

258

Type variable α
Type constructor χ
Type class κ
Context θ := 〈κ α〉
Type σ := α

| χ σ1 . . . σn
| σ′ → σ′′

| 〈κ σ〉 ⇒ σ′

Polymorphic type | ∀α.θ ⇒ σ

Figure 3: Syntax of Types

It means that null takes a set as argument, and the type of elements in the set (the type variable a) may be
chosen freely. In contrast, the type of name is the following:

name :: Named a => a -> String

In this polymorphic type Named is a type class, a is a type variable, and String is a type. The type variable a
is constrained to the types that belong to the Named class (e.g. Module and Function). This is indicated by the
Named a context.

In this section we use a slightly different notation in which Greek letters denote all types except type con-
structors, to be consistent with Figure 3. We also omit the pair of angle brackets when the context is empty.
For instance, types of null and name are written as follows:

null : ∀α. Set α→ Bool

name : ∀α. 〈Named α〉 ⇒ α→ String

In order to make type inference feasible, several environments are introduced. The following table summarizes
the environments, and gives examples for each environment. During type inference these environments are
populated with more elements, of course.

Environment Notation Example

Type variables TV ar {α, β : Named}
Free variables V ar {x : α, y : Module}
Type constructors TCons {String : 0, Int : 0, Set : 1}
Type classes TClass {Named, Ord}

Functions Fun

functions : Module→ Set Function
null : ∀α. Set α→ Bool,
name : ∀α. 〈Named α〉 ⇒ α→ String

Roles of the environments may be summarized as follows.

• The type variable environment stores free type variables. If a type variable has a constrained set of values,
then the environment associates the type variable with a type class.

• The free variable environment associates each free variable with a type.

• The type constructor environment maps type constructors (such as String and Set) to the number of their
type arguments. It has a fixed size, since user-defined types are not supported.

• The type class environment comprises the pre-defined type classes. It also has a fixed size, since user-defined
classes are not supported.

• The function environment associates all known (built-in and user-defined) functions with their type. Initially,
it consists of the standard library, and user-defined functions are added when the with construct is used.

In the typing rules E name = inf denotes that the environment E associates name to the information inf .
If the information is not relevant, and we are only interested in whether the name is in the environment, we
write E name.

259

(Γ.TV ar)α

Γ ` α
[Type α]

(Γ.TCons)χ = k
Γ ` σi

Γ ` χ σ1 . . . σn
[Type χ]

Γ ` σ Γ ` σ′

Γ ` σ → σ′ [Type Arrow]

(Γ.TClass)κi
Γ ` σ Γ ` σ′

Γ ` 〈κ σ〉 ⇒ σ′ [Type Bounded Poly]

(Γ.TClass)κ
TV ar = {α : κ}
Γ⊕ TV ar ` σ

Γ ` ∀α. 〈κ α〉 ⇒ σ
[Type Context]

TV ar = {α}
Γ⊕ TV ar ` σ

Γ ` ∀α.σ
[Type Poly]

Figure 4: Rules for Types

E1⊕E2 denotes the combination of the environments E1 and E2. It also checks that domains of the environ-
ments are disjoint, so the function is well defined.

(E1 ⊕ E2) var =

{
E1 var if var ∈ dom (E1) and var /∈ dom (E2)

E2 var if var ∈ dom (E2) and var /∈ dom (E1) .

Let us introduce a compound environment Γ as tuple of the aforementioned environments, which let us avoid
writing all environments in inference rules. The dot operator selects one of the components, for example Γ.TV ar.
We also use the operator ⊕ to add new elements to a component of Γ, in order to save space. For example,
considering V = {x : σ′}, Γ ⊕ V ar denotes a new compound environment Γ′, and the environment Γ′.V ar now
includes a new variable x.

The rules for types in Figure 4 ensure that types are syntactically valid. The rule Type α requires that
free type variables are found in the environment, and the rule Type κ requires that type constructors are fully
applied. Rules Type Context and Type Poly together describe how polymorphic types are made. In Type
Context, (Γ.TClass)κ means the type class κ is known, and TV ar = {α : κ} means the type variable α is
constrained to instances of the type class κ. Type Poly specifies types with empty context. Both rules removes
quantified type variables from the environment.

Syntax-directed rules for expressions and function definitions are shown in Figure 5. There are two Constr
rules for data constructors, because there are two enumeration types built into NequeLace. One is ExprType,
which has data constructors such as Variable and Application. The other is Recursivity, which represents
function categories, and has data constructors NonRecursive, NonTailRecursive and TailRecursive. The
set of data constructors are disjoint, so a simple parsing is able to tell the type of a data constructor. A query
with data constructor is presented in Section 5.2. The rules Bind, Return and Guard specializes the types of
>>=, return and guard in the Haskell standard library [Jon03] to the type constructor Set. The rule Import
encodes the scoping rules of function definitions. Each function may use already defined functions, which rules
out recursion. This technical restriction makes the implementation straightforward, and it is not a real trade-off,
since recursive functions in queries are hardly needed. The rule Context introduces qualified expressions, and
the rule Inst eliminates them. In Inst, the premise

Γ
inst

` κ σ

means that the type σ is an instance of the type class κ. The rules Poly Abs introduces quantification,
creating a polymorphic expression with an empty context, and the rule Poly Appl eliminates quantification by
substitution. Note that by substituting a type for a type variable in Poly Appl, we get a bounded polymorphic
type, which will be eliminated by the rule Inst.

There are definite advantages of creating a type inference mechanism. As with most statically typed languages,
type errors are revealed in the early stages of processing. Furthermore, by using own type inference method,
programmers get more friendly error messages. For example, in the following query the actual parameter of
functions is intentionally omitted, thus the type inference reports an error:

{ f | m <- modules, f <- functions }

260

Γ ` n : Int
[Num]

Γ ` str : String
[String]

Γ ` dataConstr str : ExprType
[Constr]

Γ ` dataConstr str : Recursivity
[Constr]

Γ ` ei : σi

Γ ` (e1, e2, . . . , en) : (σ1, σ2, . . . , σn)
[Tuple]

(Γ.V ar) v = σ

Γ ` v : σ
[Ident]

(Γ.Fun) v = σ

Γ ` v : σ
[Fun]

Γ ` E : σ → σ′ Γ ` F : σ

Γ ` EF : σ′ [Appl]

V ar = {x : σ}
Γ⊕ V ar ` E : σ′

Γ ` λx.E : σ → σ′ [Abs]

Γ ` e : Set σ
Γ ` e′ : σ → Set σ′

Γ ` e >>= e′ : Set σ′ [Bind]
Γ ` e : σ

Γ ` return e : Set σ
[Return]

Γ ` e : Bool

Γ ` guard e : Set ()
[Guard]

~f = (f1, . . . , fn) = ((v = e)1 , . . . , (v = e)n)
Funi = {vj : σj} , j < i

Γ⊕ Funi ` fi : σi Γ⊕ Funn+1 ` e : σ

Γ ` with ~f e : σ
[Import]

(Γ.TClass)κi
TV ar = {α : κ}

Γ ` κ α Γ ` E : σ

Γ ` E : ∀α. 〈κ α〉 ⇒ σ
[Context]

Γ ` E : 〈κ σ〉 ⇒ σ Γ
inst

` κ σ

Γ ` E : σ
[Inst]

TV ar = {α}
Γ⊕ TV ar ` E : σ

Γ ` E : ∀α.σ
[Poly Abs]

Γ ` E : ∀α.θ ⇒ σ Γ ` σ
Γ ` E : (θ ⇒ σ) [α := σ]

[Poly Appl]

Γ ` e : σ

Γ ` v = e : σ
[FunDef]

Figure 5: Typing Rules of Expressions and Function Definitions

261

When the user tries to interpret the query, she gets an error message. Here {a1} denotes a set of arbitrary
elements, and {Function} denotes a set of functions.

type error: expected: {a1},
actual: Module -> {Function}

in expression "functions"

Moreover, the user an gets easy-to-understand error message when the formal argument type differs from the
actual argument type. For instance, the expression not 2 does not have type as the error message indicates:

type error: expected: Bool,
actual: Int

at the 1. argument of "not"

In summary, using the type inference method presented in this section, we are able to report good error
messages for the programmers, thus making the language more friendly.

5 Using Semantic Queries

We present examples of semantic queries that solve real-life problems. The following experiments are done with
the source code of mnesia (version 20.1), an open source and built-in data base management system of the Erlang
OTP.

To understand the behaviour of a certain function, we need to understand the behaviour of the called functions
as well. Thus, a query that helps us to locate the functions called by the given function is quite useful. We can
express this in both query languages for a given function mnesia:stored_key/6.

{c | m <- modules, name m == "mnesia",
f <- functions m, name f == "stored keys",
c <- calls f}

The same query in Semantic Query Language:

mods[name=mnesia].funs[name=stored keys].calls

The result set contains the following eight functions.

mnesia:abort/1
mnesia:next/2
mnesia:prev/2
mnesia:ts keys/5
mnesia:get ordered tskey/3
mnesia:get next tskey/3
ets:match/2
lists:last/1

To prove the usability of NequeLace, we have studied a few queries that was suggested by problems of our
industrial partners.

5.1 Dynamic calls

Let us consider the previous query, where we selected the functions called by mnesia:stored_key/6. In the
body of this function we can find dynamic function calls as well. For example, in line 994 in the module mnesia,
we find the expression mnesia:Op(Tab,Key).

This makes the understanding of the function even harder since we do not know what functions are referenced
by the variable Op. Therefore our first use case scenario tries and answers the following question: what are the
functions referenced dynamically at a certain point in the program?

This query can be expressed by NequeLace. The following position-based query relies on implicit position
parameter.

dynamicFunctions (topExpr atExpr)

The result shows us that the dynamic application may refer to the functions next or prev:

mnesia:next/2
mnesia:prev/2

262

We provide the same query in the Semantic Query Language, which is used to benchmark the performance in
Section 6.1. In a text editor, or in the web interface of RefactorErl, we can select the aforementioned expression
and run the following query:

@expr.top.dynamic function

When no graphical interface is available, a simple command line query can select the expression by a regular
expression:

ri:q(mnesia, "mnesia:Op\\(Tab,Key\\)", "@expr.top.dynamic function").

A third option to obtain the desired information is to select all dynamic references of a function. However, if
there are multiple dynamic calls the result set is bigger:

mods[name=mnesia]
.funs[name=stored keys]
.expressions.sub[type=application]
.dynamic functions

5.2 Record Field Updates

Another main concern of Erlang developers is the identification of records. When we are talking about records,
the name of the record is not unique in the program. Distinct files may declare distinct records with the same
name. Therefore, when we are performing a text search on a record name, we will find plenty of false positive
hints.

Another problem is the identification of certain record fields. The name of the record and the reference of the
field may be placed in consecutive lines in the source code. This makes the identification of a record field even
harder with line based regular expression search as well. However, RefactorErl is not sensitive to location (i.e.
line) information. The tool identifies entities (e.g. records) based on semantic analysis.

The usage of records is quite common when we are implementing stateful servers, for example. When we
modify the type of a record field at some point of the program, we might need to correct all update of that
record field to reflect the type change. Therefore our second use case scenario tries to answer the following
question: what are the expressions which update the value of a given record field?

An example query for the loader_queue field of the state record is as follows.

{ref | f <- files,
r <- records f, name r == "state",
fld <- fields r, name fld == "loader queue",
ref <- references fld, exprType (topExpr ref) == Record update}

The same query in the Semantic Query Language, which serves as a standard in performance comparison, is
the following.

files
.records[name=state]
.fields[name=loader queue]
.reference[.top expr[type=record update]]

5.3 Finding Suspicious Values

Due to the dynamic type system of Erlang, developers often need to investigate runtime errors related to the
misuse of values. Once developers find errors such as badmatch, function_clause, which indicate failure in
pattern matching, they might be interested where the given value originates from. A data-flow analysis is able
to detect the flow of certain values, thus these are built into the query languages as well.

Our third use case is based on the following question: is there any expression with a given (incorrect) value
that may reach a given function?

Let us consider the following example where we found the previous_log atom as a suspicious value that may
cause a runtime error in the function open_log/6. We can write a query to find out whether the possible value
(origin) of the first arguments is the atom previous_log:

263

{o | m <- modules, name m == "mnesia log",
f <- functions m, name f == "open log", arity f == 6,
p <- parameters f, paramIndex p == 1,
o <- origin p, exprType o == Atom, exprValue o == "previous log"}

The query in the Semantic Query Language is as follows.

mods[name=mnesia log]
.funs[name=open log, arity=6]
.params[index=1].origin[type=atom, value=previous log]

If we have an editor with the file opened then we can also use a position-based query:

@expr.origin

These queries result two expressions in the mnesia database manager, both has the same value previous_log,
which flows to the argument of open_log/6. Running a text-based search yields 14 expressions, and therefore it
would take longer time to check all of them.

6 Comparison

In Section 2.3, we described our main concerns with the existing query language implementation and proposed
a new methodology to build a maintainable implementation.

A quantitative comparison on the effect of the new implementation on the maintainability can be expressed
in terms of person months used to implement certain features. The aforementioned variable binding feature
implementation took 4.5-5 person months, and the result was still unsatisfying. In contrast, the design and
implementation of the whole NequeLace from scratch took 2 person months.

It is worth noting that there is also a significant difference between the two implementations in terms of lines
of code. The implementation of the RefactorErl language consists of 7772 lines, while the NequeLace imple-
mentation consists of 1980 lines (including comments and blank lines in both cases). Although the NequeLace
implementation still misses several functions compared to the RefactorErl language, these functions contribute
usually two or three lines.

6.1 Benchmark

Besides the general comparison on the development and the usability of the two languages, we also benchmarked
performance of NequeLace implementation against that of RefactorErl Semantic Query Language to prove that
NequeLace is usable in industrial-scale environment as well, like the RefactorErl language.

For this purpose, we loaded the Erlang distributed database mnesia, a code base consists of more than 24
thousand lines of code, into RefactorErl. We performed the benchmark on Debian GNU/Linux 9.2. The Haskell
code was compiled with GHC 8.0.2, while RefactorErl2 was compiled with Erlang OTP 19.2.

We used the queries presented in Section 5 to compare the execution times of the NequeLace implementation
and the Semantic Query Language implementation. In Table 1 we summarized the results. An astute reader
may recognize that NequeLace is slower. However, these differences are hardly perceptible. We conclude that
NequeLace is suitable as a replacement for the query language of RefactorErl, while the development of the
language is more straightforward, and the language is much more extensible.

Query Execution time (s) Deviation (s)
NequeLace RefactorErl QL NequeLace RefactorErl QL

Dynamic call 0.046 0.017 0.0172 0.0007
Record update 0.083 0.005 0.0179 0.0001
Value origin 0.104 0.007 0.0204 0.0002

Table 1: Execution Time and Deviation

2RefactorErl is freely available to download at http://plc.inf.elte.hu/erlang

264

http://plc.inf.elte.hu/erlang

6.1.1 Slower Queries

Although the queries presented in Section 5 are fast and result a small amount of data, we chose them based on
the most recent problems of our industrial partners. Thus, we present a long running query that operates on a
larger data set as well. One example query collects the possible values of all expressions in a module. The result
set contained 6644 different expressions. The NequeLace implementation needed 1 minute and 27 seconds on
average.

{o | m <- modules, name m == "mnesia",
f <- functions m,
e <- expressions f,
o <- origin e}

The RefactorErl implementation is faster, it took 1 minute 2 seconds on average to evaluate the query:

mods[name=mnesia].funs.expressions.origin

The main reason of the difference is the communication between Erlang and Haskell, which includes serializa-
tion and de-serialization. Although 25 seconds may seem as a big difference, it only makes NequeLace around 1.5
times slower. Compared to 1 minute of RefactorErl, an order of magnitude difference in execution time would
indeed render the new language unusable. Fortunately, this is not the case.

7 Related Works

According to Philip Wadler [Jon87, chapter 7], the introduction of set builder notation in programming languages
dates back to 1977, when Rod Burstall and John Darlington presented an early version of NPL, a functional
programming language. Jacob T. Schwartz and others designed SETL [SDDS86], a language based on set theory,
which includes set former expression, a variant of set builder notation.

The idea of using list comprehension as basis of a query language is not new. Philip Trinder[CT94, Tri92]
argues that list comprehensions are suitable to express queries against relational, functional and object-oriented
databases, and such queries are brief, clear and efficient.

List comprehension as query language made its way into modern languages. The .NET framework, for
instance, includes Language Integrated Query (probably better known as LINQ). A query is a view of an input
data sequence (e.g. a list of Person objects) that produces a new output sequence (a list of String objects, the
names). When combined with object-relational mapping, an SQL database may also provide the input sequence.

Taking advantage of the meta-programming toolkit in Erlang (called parse transformation), a programmer
can build database queries in form of a list comprehension. Such queries are called Query List Comprehensions
(QLCs) [Heb13, p. 539] in Erlang terminology. For example, to query every user from a mnesia table user who
lives in New York, one could write the following in an Erlang program.

Query = qlc:q([U#user.name | | U <- mnesia:table(user),
U#user.city == "New York"]),

Usernames = qlc:eval(Query)

Database Supported Haskell (DSH) [UG15] is a domain-specific language embedded in Haskell. Programs
in DSH describe data-parallel and data-intensive computations. They are written as list comprehensions and
projections, which are translated into SQL queries.

Set builder notation is not the only way to traverse graphs. XPath and XQuery [Wal15], both are designed
for XML document traversal, follow a different approach. XPath queries built on relation between nodes, called
axis (e.g. child, descendant, parent) and predicates. XQuery is a superset of XPath which additionally includes
functional language elements.

8 Conclusions

We have defined a good practice on query language design, and following that practice we have defined a simple,
intuitive query language in purely functional style. We presented set builder expressions, which are universal
in the sense that they serve as reusable template for query languages. The template can be applied in other
contexts, the replacement set of built-in functions requires the most effort of all tasks.

There is plenty left to do. Pattern matching is popular feature among functional and logic languages. It can
be utilized in the query language too. For instance, it would be much convenient if the programmer could search
for tuples using pattern matching.

265

References

[Arm13] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd edition, October 2013.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda — A Functional Language with
Dependent Types. In Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in
Computer Science, pages 73–78. Springer-Verlag, 2009.

[BHH+11] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi, Máté Tejfel, and Melinda
Tóth. RefactorErl, Source Code Analysis and Refactoring in Erlang. In Proceeding of the 12th
Symposium on Programming Languages and Software Tools, Tallin, Estonia, 2011.

[CT94] Daniel K. C. Chan and Philip W. Trinder. Object comprehensions: A query notation for object-
oriented databases. In David S. Bowers, editor, Directions in Databases: 12th British National
Conference on Databases, volume 826 of Lecture Notes in Computer Science, pages 55–72. Springer
Berlin Heidelberg, July 1994.

[Har16] Robert Harper. Practical foundations for programming languages. Cambridge University Press, 2016.

[Heb13] Fred Hebert. Learn You Some Erlang for Great Good! no starch press, January 2013.

[HHJW94] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type classes in Haskell.
In European Symposium On Programming, volume 788 of Lecture Notes in Computer Science, pages
241 – 256. Springer Verlang, April 1994.

[Ive62] Kenneth E. Iverson. A programming language. In Proceedings of Spring Joint Computer Conference,
AIEE-IRE, pages 345–351. ACM, 1962.

[Jon87] Simon Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall,
May 1987.

[Jon03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, April 2003.

[PS11] Manolis Papadakis and Konstantinos Sagonas. A PropEr integration of types and function specifi-
cations with property-based testing. In Proceedings of the 2011 ACM SIGPLAN Erlang Workshop,
pages 39–50, New York, NY, September 2011. ACM Press.

[SDDS86] Jacob T. Schwartz, Robert B. K. Dewar, Edward Dubinsky, and Edith Schonberg. Programming
with Sets: An Introduction to SETL. Springer-Verlag, October 1986.

[TBKH] Melinda Tóth, István Bozó, Judit Köszegi, and Zoltán Horváth. Static Analysis Based Support for
Program Comprehension in Erlang. In Acta Electrotechnica et Informatica, Volume 11, Number 03,
October 2011. Publisher: Versita, Warsaw, ISSN 1335-8243 (print), ISSN 1338-3957 (online), pages
3-10.

[Tri92] Philip W. Trinder. Comprehensions, a Query Notation for DBPLs. In Proceedings of the Third Inter-
national Workshop on Database Programming Languages, DBPL3, pages 55–68. Morgan Kaufmann
Publishers, 1992.

[UG15] Alexander Ulrich and Torsten Grust. The Flatter, the Better: Query Compilation Based on the
Flattening Transformation. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD, pages 1421–1426. ACM, 2015.

[Wal15] Priscilla Walmsley. XQuery. O’Reilly Media, 2nd edition, December 2015.

266

	Introduction
	Preliminaries
	What is Erlang?
	What is RefactorErl?
	The Need for a New Query Language

	NequeLace: the New Query Language
	Implicit query parameters
	Query Functions
	Formal Syntax

	Type Checking Queries
	Using Semantic Queries
	Dynamic calls
	Record Field Updates
	Finding Suspicious Values

	Comparison
	Benchmark
	Slower Queries

	Related Works
	Conclusions

