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Abstract.
gramming (GP) are increasingly being applied to the prob&#m
evolving term-weighting schemes in Information Retriy&l). One
fundamental problem with the solutions generated by thieesdas-
tic processes is that they are often difficult to analyse. fiper of
guestions regarding these evolved term-weighting scheeraain
unanswered. One interesting question is; do different afitise GP
process bring us to similar points in the solution space?

Evolutionary algorithms and, in particular, Genetic Pro- shown to increase the performance of IR systems [16]. Trexde t

niques only work when the ranked lists from the differentiestl
systems return different ranked lists. Thus, when new tesighting
schemes are developed it is important, in many respectseter-d
mine if these new schemes are similar to existing ones ingein
the ranked lists produced, or if indeed they belong to a newityeof
weighting scheme.

This paper presents a framework for evaluating the distance

This paper deals with determining a humber of measures of thbetween the ranked lists produced from different term-inviig

distance between the ranked lists (phenotype) returnediffgr-d
ent term-weighting schemes. Using these distance measueate-
velop trees that show the phenotypic distance between teese
weighting schemes. This framework gives us a representatio
where these evolved solutions lie in the solution space.

Finally, we evolve several global term-weighting schemed a
show that this framework is indeed useful for determining téal-
ative closeness of these schemes and for determining theetexp
performance on general test data.

1 INTRODUCTION

Information retrieval (IR) is concerned with the return efavant
documents from a collection of unstructured documentsgivaser
need. It has been recognized that the effectiveness ofnaguce ap-
proaches to IR depend crucially on the term weighting agdgtethe
terms of the document vectors [15]. These term-weightsyaieally
calculated using term-weighting schemes that assign satuterms
based on how useful they are likely to be in determining thevesce
of a document. Documents are scored in relation to a queng asie
of these term-weighting schemes and are returned in a rdiskéaf-
mat.

Genetic Programming (GP) is a biologically inspired seaigo-
rithm useful for searching large complex spaces. Inspisetthé the-
ory of natural selection, the GP process creates a randonigimm
of solutions. These solutions, encoded as trees, undergrag®ns
of selection, reproduction and mutation until suitableutiohs are
found. As GP is a nhon-deterministic algorithm it cannot bpested
to produce a similar solution each time. Restart theory inSG&-
gests that it is necessary to restart the GP a number of timasléer
to achieve good solutions [9]. As a result, an important tiaese-
garding the solutions generated by the GP process is; doeadjdod
solutions behave similarly or is the GP bringing us to a déffe¢ area
in the solution space each time?

Recently, IR fusion techniques, that use the rankings freversl
retrieval systems to determine the final document rankiage ftbeen

L University of Ireland, Galway. email: ronan.cummins@alieay.ie, col-
mor@it.nuigalway.ie

schemes in order to understand the relative closeness o€ the
schemes. We develop two different distance measures andtbhd
they are useful in determining how the term-weighting sobgiere
expected to perform in a general environment. We use these di
tance measures to create trees visualizing the distanteedrethe
weighting schemes.

Section 2 of this paper introduces term-weighting schersefull
for determining the discrimination value of a term. Sectimtro-
duces the GP process and existing approaches using GP te evol
term-weighting schemes are also discussed. Section 4ludes our
framework and outlines two distance measures. Our expatahe
setup is outlined in section 5 while section 6 discusses esults.
Finally, our conclusions and future work are summarisecettisn

2 INFORMATION RETRIEVAL
2.1 Term-Weighting for vector models

Term-weighting schemes assign values to terms based oruresas
of the term in both a global (collection-wide) and local (dowent-
specific) context. Yu and Salton [19] suggest that the besindjuish-
ing terms are those which occur with a high frequency in aedac-
uments but whose overall frequency across a collectionwsllov
document frequency). They conclude from this that a ternghtei
ing function should vary directly with term frequency angérsely
with document frequency. Thdf scheme, first introduced by Sparck
Jones [17], gives a higher weight to terms that occur in fedoeu-
ments. The originaildf measure is often calculated as follows:

N+1

df
whereN is the number of documents in the collection affd is
the number of documents containing tetmA modern weighting
scheme developed by Robertson et al. [13] is the BM25 weighti
scheme. The global part of this weighting scheme is a variai
the traditionaldf measure and is calculated as follows:

N —df; +0.5
df: + 0.5

idf = log(
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The idf measure forms the basis of many modern term-weightingt is important to gain an understanding of the solutionsaivtetd

schemes as it determines what initial weight a search teouldh
receive [12]. It is worth noting that documents are typigalot re-
trieved byidf only, and are usually used in conjunction with local
measures to aid retrieval performance. However, if we catiyfifind
out what initial weight a search term should be given, we temt
improve upon this by looking at the within-document chagsastics

to further improve retrieval performance. Developing glbleight-
ing schemes separately has been shown to benefit the penfocema
of IR systems [11, 4, 14] and is an important goal in develgpin
full weighting schemes which include local characteristiike term-
frequency and document normalisation. Theffetype schemes are
also used in many other domains within IR to weight featueeg. (
document classification).

3 GENETIC PROGRAMMING

Genetic Programming [8] is a stochastic searching alguoritim-
spired by natural selection. In the GP process, a populaficolu-
tions is created randomly (although some approaches sedaitial
population with certain known solutions). The solutions encoded
as trees and can be thought of as the genotypes of the indisidu
Each tree (genotype) contains nodes which are either fumg{iop-
erators) or terminals (operands). Each solution is rateddan how
it performs in its environment. This is achieved using a fiminc-
tion. Having assigned the fitness values, selection carrdeoclivid-
uals are selected for reproduction based on their fithes® vaitter
solutions will be selected more often.

Once selection has occurred, reproduction can start. @epro
tion (recombination) can occur in variety of ways. Crossasehe

main reproductive mechanism in GP. When two solutions are se

lected from the selection process, their genotypes are ic@utio
create a new individual. One point crossover is the norm éoegjc
programming. This is where a single point is located in batrepts
and the sub-trees are swapped at these points to create Wwwsone
lutions. Mutation (asexual reproduction) is the randormggeof the
value of a gene (or the change of a subtree) to create a nevidudl.

Selection and recombination occurs until the populatiomeis
placed by newly created individuals. Once the recombingiiocess
is complete, each individual’s fitness in the new generata@valu-
ated and the selection process starts again. The procealyends
after a predefined number of generations. Bloat is a commen ph
nomenon in GP. Bloat is where solutions grow in size withocoa
responding increase in fitness.

3.1 Phenotype

The phenotype of the individual is often described as itsabigtur.
Selection occurs based on the fitness only. Fitness is dietednby
the phenotype which is in turn determined by the genotypeorfes
can imagine, different genotypes can map to the same phanaiyd
different phenotypes can have the same fitness. For modepnsiin
GP in an unchanging environment, identical genotypes wélprto
identical phenotypes which will have the same fitness.

3.2 Previous Research

GP techniques have previously been adopted to evolve vieight
functions and are shown to outperform standard weightihgrses
in an adhoc framework [6, 10, 18, 4]. However, in many of these
proaches a critical analysis of the solutions evolved ipnesented.

from these evolutionary processes and have a means of thing
differences between the schemes.

In [7], differences in retrieval systems are analysed ushmgy
ranked lists returned from the various systems. The disthatween
two ranked lists is measured using the number of out-offquees.
Using the measure it can then be determined if two systemare
essence the same (i.e. if they return the same ranked listssket of
queries). Spearman’s rank correlation and Kendall’s tatvao com-
mon correlations that measure the difference between dasdts of
data. Both Spearman’s rank correlation and Kendall's taualisof
the ranked data in a pair of ranked lists.

4 FRAMEWORK
4.1 Phenotypic Distance M easures

Figure 1 shows how the GP paradigm is adopted to evolve term-
weighting schemes in IR. We use mean average precision (MAP)
as our fitness function as it is a commonly used metric to exelu
the performance of IR systems and is known to be a stable measu
[1]. Furthermore, it has been used with success in previesiarch
evolving term-weighting schemes in IR [6, 18].

Genetic Programming terminology for evolving
term-weighting for Information Retrieval

mean average X
<:>
sets of

term-weighting

Figurel. GP for Information Retrieval

For our framework, we measure the phenotype of our solubgns
examining the sets of ranked lists returned by the term-tiig so-
lution for a set of topics on a document collection (its eomiment).
Spearman’s rank correlation uses all available documekisricom
two ranked lists and not just the ranks of relevant documeftts
wish to develop distance measures for the parts of the raligtsd
which affect the MAP (fitness) of a solution. This is impottas the
rank of relevant documents is the only direct contributiagtér to
the fitness of individuals within the GP.

To compare two sets of ranked lists, we introduce a measuidwh
essentially measures the average difference betweenrtke oérel-
evant documents in two sets of ranked lists. In this measueag-
nore the ranks of non-relevant documents as they do notilboter
to the fitness although they do technically contribute togheno-
type of the individual. This measure will tell us if the sanedevant
documents are being retrieved at, or close to, the same ks
will tell us if the weighting schemes are evolving towardsutons



that promote similar features of relevant documents. Towis of the
phenotypic distance measure&4t(a, b)), wherea andb are two
weighting schemes, is defined as follows:

[lim — ()]
% ZiER

if ri(a) > lim
if r;(b) > lim
otherwise

|ri(a) — lim|

|ri(a) —ri(b)]

whereR is the set of relevant documents in the collection for all
of the queries used and(a) is the rank position of relevant docu-

ment: under weighting scheme. lim is the maximum rank posi-
tion available from a list and is usually 1000 (as this is tkaally
the maximum rank for official TREC runs). As a result, relev@oc-
uments that are ranked outside the top 1000 are treated & diei

5 EXPERIMENTAL SETUP
5.1 Approach Adopted

We evolve global term-weighting schemes in the followingnfie-
work:

score(d,q) = Y _(gwi x qtf) @3)

wherescore(d, q) is the score a documedtrecieves in relation to
a queryq, gw; is the global weighting angt f is the frequency of the
term in the query. All documents in the collection are sconectla-
tion to the query and ranked accordingly. We are only evaltime
global (term-discrimination) part of the weighting scheagean ex-

rank 1000. Thus, when comparing two schemes this measure wihmple of our framework. However, the entirety of the ternighting

tell us how many rank positions, on average, a relevant deotiis
expected to change from schemé&o schemeé . Although different
parts of the phenotype will impact on the fitness in differmmiounts
(i.e. changes of rank for relevant documents at positioes h600
do not significantly effect the MAP) they are an important fradis-

tinguishing the behaviour of the phenotype. The change &itipa

at high ranks can tell us about certain features of weighdoigeme
and the behaviour at these ranks.

scheme can be evolved and analysed in a similar manner.

5.2 Training and Test Collections

We use collections from TREC disks 4 and 5 as our test cotlesti
A different set of 50 TREC topics is used for each of the coiters
(apart from the Federal Register collection (FR) for which use
100 TREC topics). For each set of topics we create a mediugtien

We also develop a second measure of the distance between t"!ﬁjery set (m), consisting of the title and description figlaisd a

ranked lists which takes into account the effect a changarik has

long query set (I) consisting of the title, description aratrative

on MAP. To measure the actual difference a change in rankdcoulfie|ds. we also use documents from the OHSUMED collection as
make in terms of MAP, we modify théist(a, b) measure so thatthe 5 test collection for medium length queries (OH90-91). Wy aise

change in rank of a relevant document is weighted on how éesf
MAP. This weighted distance measure_{ist(a, b)) is similar to
the measure described in [2] and is calculated as follows:

im | i ri(a) > lim
1 1 H .
@ quQ R%z ZieRq ri(a)  lim if 7i(b) > lim
1 1 .
@ T mm otherwise

whereQ) is the number of queries ari}, is the relevant documents
for a queryq. This measure tells us how a change in rank of a rele-

vant document will affect the MAP (i.e. changes of rank afifimss
close to 1000 will not change the MAP significantly, while npgas
of rank in the top 10 may change MAP considerably). Of coltse,
entirely possible that two ranked lists could be considgrdifferent
yet have a similar MAP, as they may be promoting differergvaht
documents.

4.2 Neighbour-joining trees

Neighbour-joining is a bottom-up clustering method oftesed for
the creation of phylogenetic trees. However, we use the adeth
produce trees that represent solutions that are fiidferent runs of
our GP. The algorithm requires knowledge of the distancesdset
entities that are to be represented in the tree. A distantéxiscre-
ated for the set of entities using a distance measure andethean
then be produced from the resulting data. We use this clogtegch-
nique to visualize the phenotypic distance between thedodstions
output by our GP. For example, if we hagé entities or solutions,

we can create aiV x N distance matrix using one of our distance

measures. Then, using this distance matrix, we can thetecdeee
using a suitable drawing package [3] which represents ttee ated
can provide a visualisation into where our solutions liedglation to
each other. This model is also well suited to our evolutigrzara-
digm. We use this technique simply to visualise the distdeteveen
our term-weighting solutions which are developed using GP.

the topics in these sets that have relevant documents irtleetion.

The TRAIN collection (used in training) consists of 35,41td-
ments from the OHSUMED collection and the 63 topics. Thetlesig
of these topics range from 2 to 9 terms. Standard stop-woodsthe
Brown Corpu$ are removed and remaining words are stemmed using
Porter’s algorithm. No additional words are removed fromnlarra-
tive fields as is the case in some approaches. Table 1 shows som
characteristics of the document collections used in tlgearch.

Tablel. Document Collections

Collection|| #Docs| #words/dod]| #Topics| medium long
TRAIN || 35,412 72.7|| 0-63 | 4.96 None
LATIMES || 131,896 251.7|| 301-350, 9.9 29.9
FBIS 130,471 249.9(| 351-400] 7.9 219
FT91-93 || 138,668| 221.8(| 401-450| 6.5 18.7
FR 5,630 387.1(| 301-400| 8.9 25.9
OH90-91 || 148,162 81.4|| 0-63 4.96  None

5.3 Terminal and Function Set

Tables 2 and 3 show the functions and terminals that are umsaidl i
runs of the GP.

54 GP parameters

We use MAP as our fitness function. All tests are run for 50 gen-
erations with an initial random population of 100 solutiars the
training collection (TRAIN) detailed in Table 1. The toumant size
is set to 3. We restrict all trees to a depth of 6. As a resut llais
the effect of reducing bloat, improving generalisatiojueng the
search space and increasing the speed of the GP. As ourtigties
operator is binary, the longest individual we can have camains 63

2 http://www.lextek.com/manuals/onix/stopwords1.html



. Best and Average of the Population from two runs of the GP
Table2. Function Set
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Table3. Terminal Set 008 § g e
0 10 20 30 40 50
Generations
Terminal Description
N no. of documents in the collection Figure2. Best and Average Fitness for best two global runs
df document frequency of a term
cf collection frequency of a term
\% vocabulary of collection (no. of unique terms)
C size of collection (total number of terms) as a comparison to our distance measures that only looktahdes
0.5 the constant 0.5 of relevant documents.
1 the constant 1 . - .
10 the constant 10 The values in Table 6 indicate the average number of rank posi

tions a relevant document changes. While the values in Table
dicate the maximum possible percentage MAP difference datw
geneg2® — 1). We believe that this is a large enough space in whichtwo schemes. By looking at the difference between the ratikesi
to find suitable term-weighting schemes. The creation tygmis  of each global weighting we can get an idea of the landscapieeof
the standard ramped half and half creation method used by gz  solution space in the global domain.

We use an elitist strategy where the best individual is aataally

transfered to the next generation. 4% mutation is used irexperi- Table5. 1— spearman’s rank correlation between all global weightimgys
ments. Due to the stochastic nature of GP a number of runses of TRAIN

needed to allow the GP converge to a suitably good solutienrilv
the GP seven times and choose the best solution from eachss th ~_Schemd idf [ idfrs; |gw1 |gw2 |gws |gws |gws | gwe | gwr

is ai i ; idf 00.00| 0.014 | 0.524| 0.501| 0.503| 0.396| 0.007| 0.007| 0.078
runs. This gives us seven evolved solutions a_nd two bendhsaéu tdhes 00.00 | 02511 0207| 0:207| 0:300| 0.020| 0.020| 6.089
tions (1) (2) to use with our document collections. gw 00.00| 0.059| 0.186| 0.174| 0.523| 0.523| 0.451
gws 00.00| 0.210| 0.136| 0.499| 0.499| 0.425
qws 00.00| 0.170| 0.501| 0.501| 0.435
qwy 00.00| 0.393| 0.393| 0.324
6 RESULTS gws 00.00| 00.00| 0.076
qws 00.00| 0.076
Table 4 shows the MAP of seven global evolved weighting sesem 97 00.00
(gw) on our training data in no particular order. We can see that a
the evolved schemes are better than our benchméatksadidf ;) Table6. dist measure between all global weightings on TRAIN

in terms of MAP.

Table4. % MAP for all global weightings Schemq idf |idfrs; | gwi | gw2 | gws | gwa | gws | gws | gwr

idf 00.00| 01.27 | 36.50]| 35.07| 32.81| 30.31| 03.65| 03.65| 11.15

idfrs; 00.00 |35.94|34.32|31.90| 29.42| 04.52| 04.52| 12.01

gw1 00.00| 05.07| 21.26| 18.46| 35.34| 35.34| 28.13

Collection| id, idf s gwa 00.00| 20.60| 15.96| 34.15| 34.15| 27.08
idf |idfrej 1 gwr gwa |gwa |gwa |gws [gwe |gwr guws 00.00| 06.62| 30.48| 30.48| 24.66

TRAIN  ]19.83]19.98 || 22.05| 21.98| 21.60] 21.69| 20.11] 20.11] 20.75 gwa 00.00| 28.37| 28.37| 22.15
qws 00.00( 00.00( 09.16

gwe 00.00| 09.16

Figure 2 shows the best and average of the population from the 9“7
two best runs of the GP (i.gw: andgws:). It is worth noting that
the best individual from the seven randomly created pojauiat(i.e. Table7. w.dist % measure between all global weightings on TRAIN
generation 0) is not better than the best solution produfted the
50" generation from the worst of the seven runs.

Tables 5, 6 and 7 shows the distance matrices for all the globa

Schemd idf |idfrs; | gwi | gw2 | gws | gws | gws | gws | gwr

weighting schemes for the training data using Spearmanls car- j%] 00001 06.21 1 02301 93-171 92-32] 03-831 99-281 9995 3152
relation, dist(a,b) andw_dist(a,b) measures respectively. Spear-  gw; - 00.00| 01.33| 02.73| 03.16| 04.23| 04.23| 04.25
man’s rank correlation gives us values in the range-dfto +1 and %i 00.00 88:88 8%:%2 83:82 83:82 83:82
uses all of the documents in the ranked list. As the Spearm@as-c gwa 00.00 88-6‘8 88-6‘8 8%-%3
lations of the ranked lists produced by the global weightolgeme A | 00.00| 01.18
are all positively correlated, we simply use Spearman’s rank cor- guwr 00.00

relation as a distance measure. This will givel ukthe lists are ran-
domly correlated and if they are identical. We use this correlation
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Figure3. Neighbour-Joining trees for global weightings

Firstly, from Figure 3 we can see that the phenotypic digtanc
measures produce trees of a similar structure. The onlgrdifice
in form is thatgws andgw, are clustered together directly using the
unweighteddist measure. It is important to note that the trees visu-
alize different aspects of the ranked lists. For example diktance
between the top four performing schemea){ to gw,) and the re-
maining schemes is greater in the tree created from Spearnaak
correlation than for the other two trees. This is because®pan’s
rank correlation uses the ranks of non-relavant documéntsking
at the tree produced by th&st(a, b) measure, we can see thats
andgw, are quite similar in terms of the actual ranks of relevant doc
uments. However, when looking at the tree producedbist(a, b)
for these two schemes, we can see that some of these diffsrane
at low ranks as the possible difference in MAP is quite large.

In general, we can see thaif.;, idf, gws andgws are pheno-
typically close. Schemegws and gws are actually phenotypically
equivalent (i.e. return the same ranked lists) but not ggmcally
equivalent. The two versions aff are very close. Schemes; and
gws are also phenotypically close whidevs andgw.s are somewhat

similar. An important point to note is that as we get pheniutyiy
further from the best solutiory{v1) we see a relative drop in MAP
on our training collection. This indicates that the solofi@re evolv-
ing towards the ranked lists (on the training set) that aoelpced by
gwi. Obviously, phenotypically close solutions will have a gan
fitness but it is not neccessarily true that solutions witimalar fit-
ness will have a similar phenotype (e.g. as one can imagatéttare
exists many poor performing functions which return equilig but
different ranked lists). It is worth noting that these trebsuld be
produced from the training data as this is the environmemre/the
solutions were evolved. However, these trees can help usethgp
the behaviour of the schemes on general data (if our traithitg is
a representative sample).

Tables 8 and 9 show the MAP of all schemes for unseen test data
on medium and long queries. Firstly, we can see that therdiffees
in MAP between the evolved weightings aivf,.; are all statisti-
cally significant p < 0.05) using a two-tailed t-test. Both version
of idf perform similarly as expected. We can see that is no
longer the best evolved weighting scheme, although it 15 8-
nificantly better tharidf. Schemegw2, gws andgw, are now the
best performing schemes on most of the collections. Schemes
andgws still perform only slightly better thawdf,,;, while gw~ still
performs slightly better than these again. It would seerndha has
overtrained slightly on the training collection. It is alsorth point-
ing out that our training set seems to be quite general as ofitisé
schemes perform similarly on test data. If we look at the ggres
of some of the schemes it leads us to a similar conclusion. &e h
re-written the following formulas in a more intuitive mamre pro-
vide transparency to the process. As a result, the re-wiittenulas
may also be shorter (in depth) that those that were evohigthatly.

2 2 2
gwi = Vie] vel éfdfﬁ-ﬁ-\/; gwz = fd}éﬁ
gus — \/uog(%m x % x (Z—; +1)

cf*N B 05

gwi =\ = gws = r
N

AT e [

We can see thagw; is a more specific form ofw=2. Schemes
gws and gwe are an example of two different genotypes producing
the same ranked listgws will produce a score that is always double
that of gws. We are evolving towards a ranked list on the training
collection that is produced by the best two schenges, (and gw-).
The gw2 scheme is a more general formgf; and performs con-
sistently better on our test data. Téwes scheme contains a problem-
atic log(cf/df) that will assign certain low frequency terms a zero
weight [5] and makes it a poor choice for weighting in a refle
context. This can be seen on the results for the FR colleetiven
compared to one of its nearest neighbogus,. When looking at the
individual queries for this collection (FR), we have detered that
the difference betweegw, and the other top schemeg; to gws)
is only large for a very small number of queries. As a resuait be



Table 8.

% MAP for idf and global weightings for Medium Queries

Collection | Topics | idf |idfrs; || gw1 | gw2 | gws |gws |gws | gws | gwr
LATIMES | 301-350 (m) 19.11|19.16 ||21.80|22.49 |23.48 | 22.98 | 20.92| 20.92| 21.12
FBIS 351-400 (m) 10.30{ 10.41 || 15.16| 15.68 |14.55 | 14.33 | 11.61| 11.61| 11.72
FT91-93 | 401-450 (m) 27.38|28.15 || 27.52| 27.86 |27.56 | 27.92 | 27.04| 27.04| 27.10
R 301-400 (m) 25.87(24.89 || 25.12| 25.71 |21.31 | 28.72 | 25.49| 25.49| 27.39
OH90-91 | 0-63 (m) 21.68|21.72 || 24.96| 25.69 | 25.02 | 25.28 | 22.96| 22.96| 23.68

~ p-value | 241 Topics | 0.272| -

|| 0.004] 0.0001] 0.0001| 0.0001| 0.018 0.018] 0.021

Table 9.

% MAP for idf and global weightings for Long Queries

Collection | Topics | tdf | idfrs; || gw1 | gw2 |gws |gws |gws |gws |gwr
LATIMES | 301-350 (I)| 13.57| 13.79 || 21.60 | 24.27 | 24.78 | 24.30 |16.37 | 16.37 | 16.63
FBIS 351-400 (1) 06.76| 06.97 || 12.30 | 13.32 | 14.07 | 13.84 | 08.34 |08.34 | 09.01
FT91-93 401-450 (1)| 23.11| 23.13 || 27.17 | 28.28 [28.31 |29.13 | 24.95 | 24.95 | 25.80
R 301-400 (1) 16.23] 16.95 || 22.78 | 22.75 | 20.86 | 27.83 | 19.84 | 19.84 |19.92

~ p-value | 241 Topics| 0.300] -

|| 0.0001] 0.0001] 0.0001| 0.0001| 0.0001| 0.0001] 0.0001

concluded thagw4 promotes certain useful features that are different [3]

than those of the rest of the schemes. These differencetcen
able on the FR collection because of its makeup. Jtae scheme
seems to be a particularly robust global weighting schensghasn
on the test data. The difference betweet, andgws, for example,
is not statistically significant. However, we know that, has ad-
vantagous retrieval features (as seen on the FR colledtongrtain
(albeit few) queries.

7 CONCLUSION

We have introduced two metrics that measure the distaneeebat
the ranked lists returned by different term-weighting sohe. These
measures are useful for determining the closeness of tesighting
schemes and for analysing the solutions without the needalyse
the exact form (genotype) of a term-weighting scheme. Traisé-

(4]

(5]

[7]
(8]

9]

work can be used for all types of term-weighting schemes é&sa a

fits well into the genetic programming paradigm.

The distance matrices produced from these distance mesasame
be used to produce trees that aid visualization of the swiigpace.
The trees produced are also useful in determining the velgigr-
formance of the solutions on general test data. We have htsors
that all the evolved global weighting schemes produced\atviag
to a area of the solution space that is different from the dygfedf
currently being used to measure the discrimination value t&frm.
In future work, we intend to apply this framework to analysgire
term-weighting schemes which have been evolved.
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