
The Advice Taker 2.0

Loizos Michael
Open University of Cyprus

loizos@ouc.ac.cy

Abstract
Starting from McCarthy’s seminal proposal for the
construction of an advice-taking machine, we show
how tools from abstract argumentation and compu-
tational learning can help disambiguate and forma-
lize that goal. Our focus is on establishing provable
guarantees on the realizability of the advice taker,
and on implementing an actual prototype system.

1 Introduction
However, certain elementary verbal reasoning processes so simple
that they can be carried out by any non-feeble minded human have
yet to be simulated by machine programs. — McCarthy, 1959

The construction of the advice taker as a means towards the
endowment of machines with intelligent behavior was put fo-
rward by McCarthy [1959] both as a complement to the use of
programming — the then-prevalent mode of human-machine
interaction — and as an intermediate milestone to the even-
tual use of learning from experiences. Programming has cer-
tainly stuck around as a key way of interacting with machines,
while the recent seemingly uncanny ability of learning-based
machines to outperform human experts across tasks and do-
mains might suggest that McCarthy’s agenda is now dated.

This might have been the case had it not been for a new im-
petus on the viability of modern machine-learning techniques
(such as deep learning) to produce human-like intelligence:
their lack of operational transparency1, and their brittleness
— which, somewhat ironically, was the issue plaguing sy-
stems based on classical logic (like McCarthy’s advice taker)
that machine learning was supposed to address — as a result
of their subtle dependency on biases in their training data.

We do not intend to debate whether the currently-trending
machine-learning paradigm will eventually succeed in ove-
rcoming this impetus. We do contend, however, that McCar-
thy’s proposal for the development of an advice taker still re-
mains, today, relevant as one way of thinking about these is-
sues, and perhaps making progress towards addressing them.

In this work we revisit McCarthy’s [1959] proposal see-
king to make three contributions: (i) to show that certain key,
but admittedly under-specified, aspects of the original propo-
sal can be made concrete through formal argumentation and

1Randall Munroe’s depiction: https://xkcd.com/1838/.

learning theory, both of which have dealt with the problem of
symbolic knowledge manipulation; (ii) to establish formal re-
sults on the realizability of constructing the advice taker; and
(iii) to present an explicit example of such a construction.

1.1 Overview
We introduce in Sections 2–4 a view of the advice taker as
an online learning machine that seeks to approximate a target
theory known to an advice giver (e.g., a human) interacting
with the advice taker, in a manner that offers PAC-like gua-
rantees [Valiant, 1984]. Both the target theory and the advice
taker’s hypothesis are formalized in Sections 6–7 through a
novel structured argumentation framework. The framework
accounts for the representation of arguments that entail not
only inferences, but also actions that the advice taker is assu-
med to execute. Unlike work in reinforcement learning, ho-
wever, the learning of these action-entailing arguments does
not presuppose the execution of the actions and the receipt of
a reward indicating their appropriateness in a given context.
Instead, a supervised learning approach is used to learn all ar-
guments, both inference-entailing and action-entailing ones.

Facilitated by the underlying structured argumentation fra-
mework, and unlike what a straightforward application of the
PAC semantics would suggest: the advice taker does not only
predict the label of an example — which would correspond to
an extension of the advice taker’s hypothesis — but also pro-
vides an explanation on how the prediction is reached; corre-
spondingly, the advice giver does not return the correct label
— which would correspond to an extension of the target the-
ory — but instead offers advice, which generally corresponds
to only a part of an argument, and is both smaller than the full
correct label, and cognitively easier for a human to construct.

Our approach, thus, takes a step back from a pure learning-
based view of the advice taker, and a step towards program-
ming, by treating each piece of advice as a “code snippet” that
the advice taker integrates into its current hypothesis. We qu-
antify the necessary information content of these pieces of
advice in Section 5, and show in Section 8 that PAC-like gu-
arantees can indeed be established for a natural advice giver
and a simple integration policy. An advice taker that adopts
this particular integration policy is fully implemented in SWI-
Prolog, while a visual web-based interface is under continual
development, with the current version being accessible online
from: http://cognition.ouc.ac.cy/prudens/.

2 The Advice Taker and the Advice Giver
[. . .] its behavior will be improvable merely by making statements
to it [that] will require little if any knowledge of the program or
the previous knowledge of the advice taker. — McCarthy, 1959

Unlike most contemporary work on Knowledge Representa-
tion and Reasoning, which tacitly assumes that knowledge is
available a priori, we consider the involvement of an explicit
advice giver in an online knowledge acquisition process.

We start with the supposition that the advice taker follows
an elaborate-integrate cycle. Each cycle is initiated by an ex-
ternal or internal stimulus, such as an incoming query by a
user, an event occurrence, the lapse of time, etc. The advice
taker continues to sense the current context, which it uses as
input to the processes of that cycle. By context we mean any-
thing visible to the advice giver that might be relevant for the
advice taker to consider during that cycle, including data that
the advice taker may produce through its internal processes.
As this need not be specified more concretely for the purpo-
ses of the current section, we shall simply assume, for now,
that a context x ∈ X is a finitely-representable piece of data.

The advice taker proceeds to elaborate the information in
context x by drawing inferences that follow from its current
knowledge and x. Some of the elaborations may correspond
to actions that the advice taker executes, including the action
of simply reporting to a user some or all of the inferences that
were drawn. Each elaboration is accompanied by an expla-
nation on how it was reached, which is made available to the
advice giver. With access to those explanations, the advice
giver proceeds to offer advice to the advice taker, and the lat-
ter integrates that advice into its current knowledge, which is
later used to elaborate contexts in subsequent cycles.

As is the case for context, a high-level abstract view of
the data involved during elaboration and integration suffices
for now, and a more concrete proposal will be made in the
sequel. We shall assume, therefore, that the advice taker and
the advice giver share a setD of finitely-representable deriva-
tions, which can be thought to be determined by a previously
agreed-upon syntax, such as a fragment of first-order logic.

During the elaboration step, the advice taker maps the cur-
rent context x into a set of derivations, through an elaboration
theory t : X → 2D that it maintains and revises across cycles.
The derivations in t(x) determine the inferences and actions
that follow from x and their corresponding explanations.

During the integration step, the advice giver computes and
offers a finitely-representable advice α ∈ A to the advice ta-
ker, by applying a feedback function f : X ×2D → A on the
current context x and the advice taker’s elaboration t(x). In
turn, the advice taker integrates advice α into its current ela-
boration theory t to produce a revised version. Although we
shall not specify, for the time being, how each piece of advice
is integrated, we shall make provisions for A to include the
symbol ‘∅’ indicating that the advice giver has “no advice”
to give during that cycle, or, equivalently, that it finds the ela-
boration t(x) of the advice taker acceptable, meaning that the
advice taker is not expected to revise its current elaboration
theory. We shall further assume that for each context x, there
exists at least one elaboration e(x) ∈ 2D that is acceptable.

Necessarily, the interaction between the advice taker and

the advice giver ends up endowing the former with subjective
knowledge that reflects the beliefs and biases of the latter. We
will, indeed, embrace this subjectivity of the knowledge for
most of this paper, and we will briefly revisit at the end the
question of how commonsense knowledge can be acquired by
the advice taker through some form of autonomous learning.

3 How Should the Advice Taker Elaborate?
One will be able to assume that the advice taker will have availa-
ble to it a fairly wide class of immediate logical consequences of
anything it is told and its previous knowledge. — McCarthy, 1959

The advice taker elaborates a context by producing inferences
and actions, supported by a set of derivations that are returned
by its elaboration theory. Whether an elaboration is meaning-
ful boils down to how the elaboration theory is revised after
a piece of advice is received by the advice taker. We shall
require, then, that the advice taker works towards ensuring
that its elaboration theory eventually is such that t(x) is acce-
ptable to the advice giver (i.e., f (x, t(x)) = ∅) sufficiently
frequently. To make this intuition concrete, we proceed to qu-
antify the terms “frequently”, “sufficiently”, and“eventually”.

We do not interpret “frequently” narrowly in terms of some
fraction of contexts that needs to be elaborated in an accepta-
ble fashion. Indeed, it might be the case that certain contexts
occur rarely, and hence are practically inconsequential, while
a small fraction of contexts might occur frequently enough so
that their acceptable elaboration would be critical. To quan-
tify this situation, we shall assume that contexts are drawn in-
dependently at random from some fixed, but unknown to the
advice taker, probability distribution P over contexts in X .
We acknowledge that this independence assumption might
not always hold in certain realistic scenarios, where contexts
across different cycles of interaction might end up being cor-
related. Nonetheless, we adopt this simplifying assumption if
only for the purposes of formal analysis of the interaction.

Given the above notion of frequency, we say that an elabo-
ration theory t : X → 2D is (1− ε)-approximately accepta-
ble under P against an advice giver with feedback function
f if f (x, t(x)) = ∅ for a context x drawn from P , except
with probability at most ε over the randomness of sampling
from P . Instead of fixing “sufficiently” to correspond to a
particular value of ε, we shall let the advice taker receive an
arbitrary value for ε ∈ (0, 1] as a parameter when it is initiali-
zed, and we will expect the advice taker to eventually produce
a (1− ε)-approximately acceptable elaboration theory.

This leads to the question of how long “eventually” is; how
long are we willing to allow the advice taker to be in a trai-
ning mode where its elaborations are not sufficiently frequen-
tly accepted, before producing a desirable elaboration theory.
We are not suggesting that the advice taker should ever stop
accepting advice and integrating it in its elaboration theory;
indeed, we view the elaborate-integrate cycle as a perpetual
process. Rather, we are looking only to quantify the length of
an initial period during which the advice taker’s elaborations
should still be under scrutiny by the advice giver, much like
how the actions of a novice human assistant are closely mo-
nitored during an initial training period of their employment.

On the one hand, the advice taker should be given sufficient
training time to compensate for the burden of its knowledge
acquisition task, which grows with certain task parameters,
such as: the representation size n of the drawn contexts, the
representation size s of the advice giver’s feedback function,
the value of 1/ε (since the task becomes harder as ε beco-
mes smaller). We shall assume, therefore, that the training
time is some function g(1/ε, n, s). On the other hand, allow-
ing g(1/ε, n, s) to grow arbitrarily (e.g., exponentially) in its
parameters would entail a computationally overly-powerful
advice taker, and would impose unrealistic demands on the
advice giver. A theoretically-reasonable compromise is to let
g(1/ε, n, s) grow polynomially in its parameters. Pragmati-
cally, the degree of the polynomial needs to be a small value.

Despite our effort to allocate a fair amount of resources to
the advice taker, we have not accounted for the possibility of
the advice taker simply being unlucky! Consider, for exam-
ple, a probability distribution P that assigns probability 1/3
to context x1 and probability 2/3 to context x2. Suppose,
further, that we set ε := 1/2, and expect the advice taker to
produce a 1/2-approximately acceptable elaboration theory t
under P against some advice giver. It follows that t(x2) sh-
ould eventually be acceptable by the advice giver. But what
if the advice taker never gets the opportunity to interact with
the advice giver in context x2 to get advice on what might be
acceptable in that context? Despite x2 being the most pro-
bable context under P , the probability of never drawing it is
non-zero, irrespectively of any finitely-long training period.

Consequently, we slightly downgrade our expectations, so
that the advice taker may fail to eventually produce a desi-
rable elaboration theory, but only with a “sufficiently small”
probability δ. As in our treatment of ε, we let the advice taker
receive an arbitrary value for δ ∈ (0, 1] as a parameter when
it is initialized, and we allow it to fail with at most probability
δ. Correspondingly, we also allow the advice taker’s training
time to depend on (and grow polynomially in) 1/δ, so that the
advice taker’s training time is a function g(1/δ, 1/ε, n, s).

4 An Advice Taker with Learning Guarantees
Our ultimate objective is to make programs that learn from their
experience as effectively as humans do. — McCarthy, 1959

In the preceding section we had quantified the type of guaran-
tees that we expect the advice taker to offer on its operation.
As we have already discussed, these guarantees are necessa-
rily tied to the advice giver. In a sense, there is no objectively
correct way for the advice taker to draw inferences and act,
since, in particular, there is no objectively correct elaboration
theory (or knowledge) that the advice taker can have. Instead,
the inferences and actions of an elaboration theory (or know-
ledge) can, at best, conform to the advice giver’s feedback.

Even with this shift from objective truth to subjective con-
formance, the requirements that we have imposed on the
advice taker — to probably and tractably produce an appro-
ximately acceptable elaboration theory — might seem overly
arduous. In this section we seek to bring these requirements
together, and establish results on their realizability. Our for-
malization adopts and extends the celebrated probably ap-
proximately correct semantics for concept learning [Valiant,

1984], emphasizing tractable operation (through the restricti-
ons on the training time g), provable guarantees on performa-
nce (through the parameters δ, ε that quantify the quality of
the returned elaboration theory), and a crisp specification of
the interaction between the advice taker and the advice giver.
Definition 4.1 (PAC Advice Takers). An advice taker is pro-
bably approximately conformant (PAC) to an advice giver
with a feedback function in a class F (with fixed sets X , D,
A) if for every real values δ, ε ∈ (0, 1], every probability
distribution P over contexts in X that have a finite represen-
tation size of at most n, and every feedback function f ∈ F
with a finite representation size of s, the advice taker is given
access to the parameters δ, ε, n,F , and proceeds as follows:

a context x is drawn independently at random from P; the
advice taker uses its current (possibly stochastic) elaboration
theory t : X → 2D to return a set t(x) of derivations; the
advice giver offers the piece of advice f(x, t(x)); the advice
taker integrates the advice to revise the elaboration theory t.

After time at most g(1/δ, 1/ε, n, s) the advice taker termi-
nates and returns, except with probability at most δ, an elabo-
ration theory t that is (1−ε)-approximately acceptable under
P against f . If the running-time function g grows polynomi-
ally in its parameters, then the advice taker is efficient.

Definition 4.1 captures concisely the requirements on the
interaction and on the elaboration theory of the advice taker
up until the end of the training phase; as we have already di-
scussed, the interaction and revision of the elaboration theory
might continue after that. For the purposes of our subsequent
formal analysis, we have allowed the elaboration theory to be
a stochastic function, so that the advice taker can choose to
produce random sets of derivations during the training phase,
if this happens to be beneficial towards its goal of being PAC.
In a later section we will offer an explicit construction of a
PAC advice taker without appealing to this stochasticity.

Although the advice taker interacts with a single predeter-
mined advice giver, the latter’s feedback function is generally
unknown to the former; had this not been the case, the advice
taker could simply be assumed to have access to all the advice
the advice giver could provide. On the flip side of things, the
advice taker can, and does, have some information about cer-
tain aspects of the advice giver’s feedback function (such as
the setA of all pieces of advice it can possibly return), depen-
ding on the particular scenario in which the interaction takes
place. This partial knowledge of the advice giver’s feedback
function f is captured in Definition 4.1 by assuming that f
belongs in a class F that is known to the advice taker, while
leaving open the possibility that f could be any member of
F , and insisting that the advice taker delivers in all cases.

With the aforementioned clarifications, we can now esta-
blish formal results on the realizability of a PAC advice taker.

Our first result shows that a (possibly non-efficient) PAC
advice taker always exists, demonstrating, on the one hand,
the non-vacuousness of Definition 4.1, and highlighting, on
the other hand, the importance of insisting on efficiency.
Theorem 4.1 (Existence of a Universal PAC Advice Taker).
For every class F , there exists an advice taker that is PAC to
an advice giver with any feedback function that belongs in F .

Proof (sketch). Memorize the first m contexts, and map each
through t to the next set of derivations in 2D that have not yet
been paired with it, until all m elaborations are acceptable.
Do not execute any of the actions in the considered elaborati-
ons. The result follows for an appropriate choice of m.

The advice taker constructed in the proof of Theorem 4.1
does not really utilize any advice from the advice giver other
than for the purpose of checking whether its elaboration of
each given context is acceptable. This minimal reliance on the
advice is compensated by the long running time of the advice
taker, which effectively performs a blind systematic search of
an appropriately selected subspace of all elaboration theories.

5 How Should the Advice Giver Advise?
In order for a program to be capable of learning something it must
first be capable of being told it. In fact, in the early versions we
shall concentrate entirely on this point [. . .] — McCarthy, 1959

In view of Theorem 4.1, a natural next step is to examine how
the advice offered by the advice giver can be utilized more
effectively by the advice taker towards constructing its elabo-
ration theory. Since we are still approaching the interaction
of the advice taker and the advice giver at an abstract level,
we cannot yet discuss the structure of this advice, but we can,
however, examine the amount of information that it conveys.

To quantify the amount of such information that might be
necessary, we first introduce an auxiliary definition. Consider
a partition u of 2D of size |u|, and denote by u[i] its i-th
element in some order. We shall say that u is shattered by a
class F of feedback functions if there exists a context x ∈ X
such that for every i ∈ {1, 2, . . . , |u|}, there exists a feedback
function f ∈ F for which {e | f (x, e) = ∅} ⊆ u[i]. The
(information) sparsity spr(F) of a class F is the maximum
value |u| for a chosen partition u of 2D that is shattered by F .

Intuitively, the sparsity of a class F captures how little in-
formation is conveyed to the advice taker, in a worst-case con-
text x, towards identifying what is acceptable to the advice
giver, after the advice taker has successfully eliminated a fe-
edback function in F from being the one actually used by the
advice giver. Consequently, the higher the sparsity of F , the
less information the advice taker receives after each elimina-
tion, and the more feedback functions it needs to eliminate
before gathering enough information to meet its goal.2

Theorem 5.1 (Necessary Feedback for Efficient PAC Advice
Takers). If there exists an advice taker that is PAC to an
advice giver with any feedback function f : X × 2D → A
in class F , and runs in time g(·), then |A|g(·) is Ω(spr(F)).

Proof (sketch). An advice taker receives at most g(·) pieces
of advice and, therefore, at most log |A| ·g(·) bits of informa-
tion, each eliminating at most half of the remaining parts of u
from including the acceptable elaborations according to f . If
|A|g(·) ≤ (1/2) · spr(F), then at least two parts of u are not
eliminated, giving a t with an expected error of at least 1/2.
The result follows for appropriate choices of δ and ε.

2This measure of the lack of information in a worst-case example
differs from VC-dimension [Kearns and Vazirani, 1994], which aims
to lower-bound the number of distinct examples needed to learn.

Depending, then, on the paucity of initial information that
the advice taker has on which elaborations the advice giver
might find acceptable (to the extent that such information fol-
lows from the advice taker’s knowledge of F), the constraint
on the efficiency of the advice taker has an effect on the rich-
ness of the advice that the advice giver needs to offer.

6 Knowledge Representation and Reasoning
[. . .] probably have a single rule of inference which will combine
substitution for variables with modus ponens. — McCarthy, 1959

Our emphasis up to this point was on formalizing and quan-
tifying certain aspects of the interaction between the advice
taker and the advice giver. Before giving an explicit constru-
ction of the two actors, we must make concrete the language
in which the advice taker represents the knowledge that it re-
asons with and the advice giver represents the advice it offers.

Recall that the role of the advice taker’s reasoning module
is not to identify certain objective truths, nor to deduce what
is logically entailed by a given context and the available kno-
wledge. Instead, the role of reasoning is to produce elaborati-
ons that are acceptable by the advice giver. This subjectivity
lessens the burden on the consideration of any particular type
of reasoning semantics for the advice taker, since the intera-
ction with the advice giver can finely-tune the produced ela-
borations by customizing the former’s knowledge. This is de-
cidedly demonstrated by Theorem 4.1, which establishes the
existence of a PAC advice taker without reliance on the reaso-
ning semantics. The primary role of the reasoning semantics,
then, is to support the flexible revision of the knowledge. Our
proposal below should, therefore, be read in this spirit, as a
reasonable candidate for the representational syntax and the
reasoning semantics, but by no means as the only option.

We consider a fixed language L that assigns finite names
to the members of the two non-overlapping sets of constants
and variables, and defines the following constructs: An atom
is a constant or a variable. A predicate is a constant followed
by a finite parentheses-surrounded comma-separated list of
atoms; these atoms are the predicate’s arguments, and their
multitude is the predicate’s arity. A literal is a predicate or a
predicate prefixed by the symbol ‘¬’. A query is a predicate
prefixed by the symbol ‘?’. An action is a predicate prefixed
by the symbol ‘!’. A term is a literal, a query, or an action.
Two variable-free terms are conflicting if they are the literals
λ and ¬λ for a predicate λ. Following Prolog convention, we
capitalize the first letter of variables but not of constants.

A context in X is a collection of variable-free literals. A
rule in R is an expression of the form ϕ τ, where the
body ϕ of the rule is a finite comma-separated list of literals
or queries, and the head τ of the rule is a literal or an action
whose variables all appear in some of the terms of ϕ. An
inferential rule is a rule with a literal head, while a produ-
ction rule is a rule with an action head. An instance of a rule
is an expression obtained from the rule after all variables in
the rule’s terms are replaced with constants, so that all appe-
arances of the same variable across the rule map to the same
constant. Two (inferential) rule instances are conflicting if
their (variable-free) head terms are conflicting. Two (inferen-
tial) rules are conflicting if they have conflicting instances.

A knowledge base κ = 〈%,�〉 comprises a finite collection
% ⊆ R of rules, and an irreflexive antisymmetric priority re-
lation � that is a subset of % × % and includes pairs of con-
flicting (inferential) rules only. For simplicity of exposition,
we may occasionally assume that rules in % are named, and
define � over their names. The priority relation is lifted to
apply on rule instances also, in the natural manner. A know-
ledge base is totally-prioritized if for every pair of conflicting
(inferential) rules r1, r2 ∈ % either r1 � r2 or r2 � r1 holds.
For a totally-prioritized knowledge base, the priority relation
need not be specified explicitly, as it can be determined by the
order in which rules are represented in the knowledge base.

The advice taker reasons with such a knowledge base with
the aim to elaborate a context. At a high level, reasoning pro-
ceeds by applying a forward chaining policy, starting with an
initial set of variable-free predicates specified by the given
context, and repeatedly applying modus ponens by interpre-
ting rules as classical implications. Whenever a query ?λ is
encountered in the body of a rule, this is treated as a call to
an external oracle to decide if the predicate λ is true on its gi-
ven arguments. If not all of the arguments of λ happen to be
constant at the time of this call, then the call unifies, if possi-
ble, the variables of λwith constants such that the instantiated
predicate is true. If multiple such instantiations are possible,
this gives multiple instances of the rule, the evaluation of each
of which proceeds independently. Whenever a (variable-free)
action is encountered in the head of a rule, this is treated as
an execution of a correspondingly-named external procedure
with inputs determined by the action’s (constant) arguments.

To make our reference to an external oracle and to external
procedures concrete, we will stipulate the existence, along-
side the knowledge base κ, of a Prolog program π, and shall,
henceforth, write κ(π) when we wish to make explicit the
Prolog program π that is linked to the knowledge base κ. The
encountering of a query ?λ or an action !λ in a rule of κ corre-
sponds to the posing of the associated predicate λ as a goal to
π. In the case of an action, the Prolog call is made for its side-
effects, not for determining whether it succeeds. This unified
treatment allows one to include seamlessly arbitrary pieces of
imperative code in an otherwise declarative knowledge base.
Such imperative code allows the advice taker to gain access to
the sensors and actuators of any device on which the advice
taker is operating, and, in particular, to perceive signals be-
yond those that are available in a context. A special kind of
these sensors, and we expect the most oft-used ones, are th-
ose that check for the axiomatic truth of statements involving,
most typically, equality, ordering, or set membership.
Definition 6.1 (Derivation). A derivation for a term τ0 in a
context x under a knowledge base κ(π) is a singly-rooted di-
rected acyclic hypergraph such that: each vertex is a distinct
variable-free term; each leaf term is either a literal that be-
longs in x or a query that is true according to π; the root
term is τ0; each directed hyperedge between term sets B and
H is labeled by an instance ϕi τi of a rule in κ such that
H = {τi} and B comprises the terms in ϕi; no term appe-
ars in the head of more than one labeling rule instance. The
crown rule instance of a derivation, if it exists, is the labeling
rule instance with head τ0, and is the only possible use of an
instance of a production rule in the derivation.

We conclude this section with an example knowledge base.

Example 6.1. A phone assistant implementing a user’s po-
licy, with rules in increasing order of priority. Queries refer
to built-in or easy-to-implement Prolog predicates, and acti-
ons refer to Prolog predicates that control phone functions.

Policy: Decline calls when busy; e.g., when in a meeting at work.
Calls from family members are important. Send an SMS when decli-
ning important calls. Repeated calls are urgent; unless coming from
“serial” repeated callers. Repeated important calls are urgent. An-
swer urgent calls. Answer calls from colleagues that are expected.

my pos(P1), work pos(P2), ?dist(P1,P2,D), ?(D<50) at work
calendar(From,To), time(T), ?(From<T), ?(T<To) in meeting
in meeting, at work busy
call from(C) will answer(C)
call from(C), busy ¬will answer(C)
will answer(C) !answer(C)
¬will answer(C) !decline(C)
contact(C,Info), ?member(in group(family),Info) important(C)
call from(C), important(C), ¬will answer(C) !sms(C,‘Busy. . . ’)
contact(C,Info), ?member(log(L),Info), ?last entry(E,L), time(T),

?member(when(W),E), ?diff(T,W,D), ?(D<3) recent caller(C)
call from(C), recent caller(C) urgent(C)
“. . . left as an exercise to the reader!” serial repeated caller(C)
call from(C), serial repeated caller(C) ¬urgent(C)
call from(C), recent caller(C), important(C) urgent(C)
call from(C), urgent(C) will answer(C)
contact(C,Info), ?member(in group(work),Info) colleague(C)

call from(C), colleague(C), is expected(C) will answer(C)

The explicit treatment of time, in domains where this is be-
neficial, can proceed analogously to our work on story under-
standing [Diakidoy et al., 2014; 2015], with extra knowledge
used to address the specific problems associated with tempo-
ral reasoning (e.g., the persistence of observed information).

7 An Argumentative Elaboration Theory
In our opinion, a system which is to evolve intelligence of human
order should [at least be such that:] Interesting changes in beha-
vior must be expressible in a simple way. — McCarthy, 1959

The advice taker elaborates a context x by mapping it through
some elaboration theory t to a set t(x) of derivations. Defi-
nition 6.1 already accounts for several of the features we re-
quire for this elaboration process, including its dual role to
specify drawn inferences (which come through crown infe-
rential rule instances) and actions to be taken (which come
through crown production rule instances). To complete our
proposal on how a knowledge base gives rise to elaborations,
it remains to specify which derivations should appear in t(x).

Without loss of generality, we interpret any set of actions
for which derivations exist in t(x) as being intended to be
executed together in an arbitrary order. Whenever a particu-
lar order is required, then a different action corresponding to
an external procedure that orders things appropriately should
be used. In effect, then, derivations can be incompatible only

because of a conflict between their respective instances of in-
ferential rules. To resolve which derivations appear together
in t(x), we appeal to abstract argumentation [Dung, 1995].

Priorities in a knowledge base indicate a preference on how
conflicts between rule instance pairs are to be resolved, ef-
fectively stating that if the bodies of both rule instances are
known to hold, then the evidence favors the head of the more
preferred rule instance to be drawn as an inference. In the
absence of a priority between two conflicting rule instances,
then neither of their heads is to be drawn as an inference. This
idea can be lifted to handle conflicts between derivations.

Definition 7.1 (Rebuttal). Consider two derivations, the first
one for term τ1 and the second one for some unspecified term,
both in a context x under a knowledge base κ(π) with κ =
〈%,�〉. The first derivation rebuts the second derivation on
rule instance r2 if there exists a non-leaf term τ2 in the second
derivation pointed to by a hyperedge labeled by rule instance
r2, such that τ2 is conflicting with τ1, while term τ1 is either:

• a leaf in the first derivation; the rebuttal is exogenous,

• the head of the first derivation’s crown rule instance r1,
and it holds that r2 6� r1; the rebuttal is endogenous.

The derivation being rebutted is always attacked on a weak
link: a rule instance r2 in the derivation that either conflicts
with a leaf of the attacking derivation, or is less preferred
than the crown rule instance r1 of the attacking derivation.
The former type of rebuttal is equivalent to saying that r2 is
attacked because the negation of its head appears in context x.
Indeed, the attacking derivation in the former type of rebuttal
necessarily comprises only that single leaf, since this is the
only way that the leaf can also be the derivation’s root τ1.

Each derivation naturally corresponds to an argument, and
the rebuttal relation between derivations corresponds to an at-
tacking relation between arguments. The argumentation fra-
mework that is induced in the stated manner by a knowledge
base κ(π) and a context x can be seen to adopt the following
choices under the general ASPIC+ categorization [Prakken,
2010]: axiomatic premises (which correspond to the context
x), defeasible rules, rebutting attacks, and application of rule
preferences on the last link. We, thus, conclude the specifica-
tion of the advice taker’s reasoning semantics by fixing the set
t(x) of derivations that it uses to elaborate x to be the unique
grounded extension of the induced argumentation framework.

The grounded extension-based semantics is chosen, in part,
because of the tractability of computing the grounded exten-
sion. This tractability is known to hold only when it is mea-
sured against the size of the argumentation framework. The
induced argumentation framework, in our case, can be expo-
nentially larger than the size of the knowledge base (even for
a “propositional” knowledge base). Fortuitously, we are able
to prove the following, essentially optimal, tractability result.

Theorem 7.1 (Efficient Computation of the Grounded Exten-
sion). Consider a knowledge base κ(π) and a context x. Let
||κ(π)|| be the number of distinct crown rule instances in all
derivations in x under κ(π), and let |x| be the size of x. As-
sume, further, that every call to π takes unit time. Then, the
grounded extension of the argumentation framework induced
by κ(π) and x can be computed in time polynomial in ||κ(π)||

and |x|. Furthermore, there exists no algorithm that can com-
pute the grounded extension of the argumentation framework
induced by κ(π) and x in time sub-linear in ||κ(π)|| and |x|.

Proof (sketch). Starting from x, repeatedly apply modus po-
nens to construct a derivation network N that concisely re-
presents all derivations in x under κ(π) [S1]. Mark literals
in x [S2] and repeat the following until convergence: remove
literals that conflict with marked literals [S3]; remove hype-
redges that are not labeled by the crown rule instance of a
derivation in N [S4]; mark hyperedges that are labeled by a
rule instance r1 whose body literals are all currently marked,
and for which any other hyperedge that is labeled by a con-
flicting rule instance r2 is such that r1 � r2 [S5]; mark the
head term of every hyperedge that is currently marked [S6].
Return the marked part ofN [S7], which concisely represents
the grounded extension. The Appendix shows graphically the
execution of the process on an example knowledge base.

The argumentation-based semantics gives the advice taker
considerable flexibility in revising its elaboration theory. The
addition or removal of rules or priorities, as might be sugge-
sted by the advice giver, can be done in a local and revision-
tolerant3 manner [McCarthy, 1998], while still having a signi-
ficant impact on the operating behavior of the advice taker.

8 Explicit Construction of an Advice Taker
A machine is instructed mainly in the form of a sequence of im-
perative sentences; while a human [. . .] in declarative sentences
describing the situation in which action is required together with
a few imperatives that say what is wanted. — McCarthy, 1959

We conclude the development of our framework for PAC
advice taking by providing explicit, but domain-independent,
constructions of an advice taker and an advice giver.

The advice taker maintains during each interaction cycle i a
knowledge base κi(π), and elaborates a given context x using
the elaboration theory ti induced by κi(π), as described in the
preceding section. The advice giver can be thought to hold its
own fixed knowledge base κ(π) also, which it uses to identify
whether it finds the inferences drawn and / or actions taken by
the advice taker acceptable. The argumentative nature of re-
asoning presents the advice giver with a natural strategy for
offering advice to the advice taker: if the latter’s elaboration
ti(x) is not acceptable by the former in context x, then it must
be because ti(x) does not coincide with the grounded exten-
sion of the argumentation framework induced by κ(π) and x;
the former’s advice, then, seeks to reduce this discrepancy,
towards making κi(π) and κ(π) have induced argumentation
frameworks that share a common grounded extension.

Consider, therefore, some context x during the i-th cycle
of interaction. The advice taker proposes an elaboration ti(x)
based on its current knowledge base κi(π). In response, the
advice giver offers the advice fκ(π)(x, ti(x)) through a feed-
back function fκ(π) that depends on the grounded extension
e(x) of the argumentation framework induced by κ(π) and
x. The advice taker concludes the cycle by revising κi(π) to

3McCarthy [1998] actually calls this property “elaboration tole-
rance” — not to be confused with our use of the term “elaboration”.

If: A rule r, an instance of which is in ti(x), is not in κ(π).
Advise: “Rule r is invalid and should not be used!”
Revise: The advice taker removes rule r from its know-
ledge base, along with all its dependent priorities.

Else if: One of rule r’s instances that is in e(x), is applica-
ble (i.e., its body is satisfied) in ti(x), but is not in ti(x).
Advise: “Rule r is relevant and should be applied!”
Revise: The advice taker adds rule r to its knowledge base,
with priority over all conflicting rules.

Else if: A derivation d rebuts, under κ(π), a derivation in
ti(x), and it is not rebutted by a derivation in e(x).
Advise: “Derivation d’s rebuttal should be recognized!”
Revise: The advice taker adds rules with instances in d to
its knowledge base, with priority over all conflicting rules.

Else: (None of the preceding conditions holds.)
Advise: “The elaboration of the context is acceptable!”
Revise: The advice taker retains its knowledge base.

Figure 1: Example Construction of an Advise-Revise Cycle.

κi+1(π). In all cases, κ = 〈%,�〉 and κi = 〈%i,�i〉 for each
cycle i, with κ0 chosen arbitrarily as long as extra time poly-
nomial in ||κ0(π)|| is allowed. We can show the following:

Theorem 8.1 (Existence of an Efficient PAC Advice Taker).
Assume unit-time access to an oracle that computes grounded
extensions of argumentation frameworks as discussed in The-
orem 7.1. For every fixed Prolog program π, and every class
F ⊆

{
fκ(π) | κ is any totally-prioritized knowledge base

}
of feedback functions that offer advice as described in Fi-
gure 1, there exists an efficient advice taker that is PAC to
an advice giver with any feedback function that belongs in F .

Proof (sketch). The advice taker and the advice giver interact
as in Figure 1, until m consecutive elaborations are accepta-
ble. The result follows for an appropriate choice of m.

Thinking of the advice giver as a human wishing to get an
advice-taking machine to operate in a certain manner, we call
this mode of human-machine interaction machine coaching.
Lying between machine learning and machine programming,
in this mode the human coach interacts rather actively, but
still naturally, with the machine, as summarized below.

machine learning:
• the interaction is one-sided and can be online or batch
• the human labels inputs with outputs of the target theory
• the machine generalizes to create a hypothesis theory

machine programming:
• the interaction is one-sided and happens at the beginning
• the human generates explicit parts of the target theory
• the machine blindly adds parts to the hypothesis theory

machine coaching:
• the interaction is dialectical and is necessarily online

• the human recognizes mistakes in the hypothesis theory
• the machine appropriately revises the hypothesis theory

To highlight a key aspect of machine coaching, note that
our example advice giver can, in principle, either tackle by
itself the advice taker’s task of elaborating contexts using the
grounded extension of the former’s induced argumentation
framework, or directly program the advice taker with the for-
mer’s knowledge. Pragmatically, however, machine coaching
allows the advice giver to offload equitably its computational
and cognitive burdens, exploiting the computational superio-
rity of machines, and acknowledging the lighter human co-
gnitive load to recognize mistakes in a dialectical setting ra-
ther than to generate arguments [Mercier and Sperber, 2011].

9 Conclusions
[. . .] a system which can be told to make a specific improvement
in its behavior [. . .] Once this is achieved, we may be able to tell
the advice taker how to learn from experience. — McCarthy, 1959

McCarthy [1959] had envisioned much more that the advice
taker could do, most intriguing of which is perhaps the speci-
fication of its elaboration and integration procedures through
machine coaching. We believe that our proposal offers a ge-
neral enough basis to investigate such possible extensions, by
considering, for example, the case of knowledge bases with
production rules whose associated actions operate not on the
advice taker’s environment, but on the advice taker itself.

With an eye towards developing argumentation-based sy-
stems compatible with human cognitive capabilities and limi-
tations [Michael et al., 2015; Kakas and Michael, 2016], ma-
chine coaching is most usefully viewed not as a primary mode
of human-machine interaction — except for simple everyday
tasks (cf. Example 6.1) — but as a debugging and personali-
zation mode subsidiary to programming and learning, which
currently serve better the goal of acquiring imperative and ge-
neral (commonsense) declarative knowledge, respectively.

On the matter of declarative knowledge, our earlier work
shows that it can be learned autodidactically [Michael, 2008]
without human interaction, and just by reading text [Michael,
2009] as found on the Web. Noting that learning cannot pro-
ceed independently from the manner in which knowledge is
used to reason [Michael, 2014], our recently-proposed NERD
algorithm [Michael, 2016] for learning in a certain argumen-
tative setting seems adaptable to this work’s reasoning seman-
tics. The role of machine coaching in learning-driven know-
ledge acquisition is exemplified by observing that text on the
Web encodes what can be called websense [Michael, 2013],
with whatever biases and mistakes this entails. Its inevitable
discrepancies with commonsense or user-specific knowledge
can be ironed out by using machine coaching alongside ma-
chine learning. Whether deep learning can likewise be inte-
grated with machine coaching remains an intriguing prospect.

References
[Diakidoy et al., 2014] Irene-Anna Diakidoy, Antonis Ka-

kas, Loizos Michael, and Rob Miller. Story Comprehen-
sion through Argumentation. In Proceedings of the 5th
International Conference on Computational Models of Ar-
gument, pages 31–42, Scottish Highlands, U.K., 2014.

[Diakidoy et al., 2015] Irene-Anna Diakidoy, Antonis Ka-
kas, Loizos Michael, and Rob Miller. STAR: A System of
Argumentation for Story Comprehension and Beyond. In
Proceedings of the 12th International Symposium on Lo-
gical Formalizations of Commonsense Reasoning, pages
64–70, Palo Alto, CA, U.S.A., 2015.

[Dung, 1995] Phan M. Dung. On the Acceptability of Argu-
ments and its Fundamental Role in Nonmonotonic Reaso-
ning, Logic Programming, and n-Person Games. Artificial
Intelligence, 77(2):321–357, 1995.

[Kakas and Michael, 2016] Antonis Kakas and Loizos Mi-
chael. Cognitive Systems: Argument and Cognition. IEEE
Intelligent Informatics Bulletin, 17(1):14–20, 2016.

[Kearns and Vazirani, 1994] Michael Kearns and Umesh Va-
zirani. An Introduction to Computational Learning The-
ory. The MIT Press, Cambridge, MA, U.S.A., 1994.

[McCarthy, 1959] John McCarthy. Programs with Common
Sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pages 75–91, Lon-
don, England, U.K., 1959.

[McCarthy, 1998] John McCarthy. Elaboration Tolerance. In
Proceedings of the 4th International Symposium on Lo-
gical Formalizations of Commonsense Reasoning, pages
198–216, London, England, U.K., 1998.

[Mercier and Sperber, 2011] Hugo Mercier and Dan Sper-
ber. Why Do Humans Reason? Arguments for an Ar-
gumentative Theory. Behavioral and Brain Sciences,
34(2):57–74, 2011.

[Michael et al., 2015] Loizos Michael, Antonis Kakas, Rob
Miller, and György Turán. Cognitive Programming. In
Proceedings of the 3rd International Workshop on Artifi-
cial Intelligence and Cognition, pages 3–18, Turin, Italy,
2015.

[Michael, 2008] Loizos Michael. Autodidactic Learning and
Reasoning. Doctoral Dissertation, Harvard University,
Cambridge, MA, U.S.A., 2008.

[Michael, 2009] Loizos Michael. Reading Between the Li-
nes. In Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, pages 1525–1530, Pasa-
dena, CA, U.S.A., 2009.

[Michael, 2013] Loizos Michael. Machines with WebSense.
In Proceedings of the 11th International Symposium on
Logical Formalizations of Commonsense Reasoning, Ayia
Napa, Cyprus, 2013.

[Michael, 2014] Loizos Michael. Simultaneous Learning
and Prediction. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation
and Reasoning, pages 348–357, Vienna, Austria, 2014.

[Michael, 2016] Loizos Michael. Cognitive Reasoning and
Learning Mechanisms. In Proceedings of the 4th Interna-
tional Workshop on Artificial Intelligence and Cognition,
pages 2–23, New York City, NY, U.S.A., 2016.

[Prakken, 2010] Henry Prakken. An Abstract Framework for
Argumentation with Structured Arguments. Argument and
Computation, 1(2):93–124, 2010.

[Valiant, 1984] Leslie G. Valiant. A Theory of the Learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

A Example Construction from Theorem 7.1
Figure 2 illustrates key steps of the construction used in the
proof of Theorem 7.1. Capital letters are used to denote arbi-
trary variable-free literals, which implies that rules coincide
with their instances, as is the case in a “propositional” know-
ledge base. The construction is applied on a knowledge base
κ with rules r01, . . . r19 and priorities r01 � r02, r07 � r08,
r17 � r09, r09 � r06. The first panel depicts the rules of κ,
whereas subsequent panels show the processing of the deri-
vation network resulting from κ and a context x = {A,¬Z}.

Priority r01 � r02 eventually leads to the removal of r02,
and to the consequent breaking of the cycle between P andQ
during iteration 2. Priority r07 � r08 eventually leads to the
marking of r07 and L, and to the consequent removal of r08
during iteration 3. Priorities r17 � r09 and r09 � r06 initially
keep r06, r16 from being marked, until after the marking of
r17, and the removal of ¬R and r09 during iteration 4. The
grounded extension is the marked part in the last panel.

Rule instances r12, . . . , r17 demonstrate a scenario of how
exponentially-many derivations can be succinctly encoded in
a derivation network, which is a central feature towards achi-
eving efficient computation of the grounded extension.

Z r11

r05

r04

r01 P Q G r10 H

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r05

r04

r01 P Q G r10 H

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

Z r11

r05

r04

r01 P Q G r10 H

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 o

iter. : --
step : --

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 o

iter. : --
step : 2

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

r05

r04

P

r03 C r07 L r06 R

r02 r09 R r08 L

X R
r14

r15

r16

r17 o

iter. : 1
step : 6

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r05

r04

r01 P Q

C

r07 L r06 R

A r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

r05

r04

P

r07 L r06 R

r09 R r08 L

X R
r14

r15

r16

r17 o

iter. : 2
step : 3

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r04

r01 P Q

C

r07 L r06 R

A r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

r04

P

r07 L r06 R

r09 R r08 L

X R
r14

r15

r16

r17 o

iter. : 2
step : 4

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r04

r01 P Q

C

r07 L r06 R

A r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 m

r06 R

r09 R r08 L

R
r16

r17 o

iter. : 2
step : 6

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r04

r01 P Q

C

r07 L r06 R

A r09 R

Y X R
r12

r13

r14

r15

r16

r17 m

r06 R

r09 R

r16

o

iter. : 3
step : 6

Z r11

r05

r04

r01 P Q

C

r03 C r07 L r06 R

A r02 r09 R r08 L

Y X R
r12

r13

r14

r15

r16

r17 r

Z r11

r04

r01 P Q

C

r07 L r06 R

A

Y X R
r12

r13

r14

r15

r16

r17 m o

iter. : 4
step : 6

Figure 2: Key steps of the construction used in the proof of
Theorem 7.1. Light colors / dark colors / dashed lines show
existing / marked / removed parts of the derivation network.
Green / red circles show positive / negative literals. Blue re-
ctangles show hyperedges with arrows indicating directions.

