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1083 Práter u. 50/a
Budapest, Hungary

Abstract

AI applications often receive their input in the form of
natural language text, or as the transcription of spoken
text. A commonsense inference system should trans-
form such input to a formal representation with lim-
ited vocabulary in order to be able to process them. In
this paper, we present a method based on neural word
embeddings that automatically assigns semic features
to words of natural language. These features either de-
scribe the ontological category of a given word or pro-
vide some characterization or additional information.
We show that our method has high coverage and per-
forms well for English and Hungarian, and can easily
be extended to other languages as well.

Introduction
One of the most natural representations of commonsense
knowledge is natural language. What people think or know
about the world is expressed in either spoken or written lan-
guage. Due to the popularity and accessibility of on-line me-
dia, crowds of people put their knowledge into written texts,
either in the form of very short comments on social media
sites or in the form of longer posts in addition to the writings
of professional journalists. These texts, which are produced
in a daily manner, adapt to changes in language use, and not
only general knowledge, but facts and beliefs about the ac-
tual state of the world is also represented in them. Moreover,
not only standard language, but slang and words used in in-
formal contexts and special domains are also present in texts
collected from the Web. In addition, more and more books
representing a wide range of domains and styles are digi-
tized. Large written corpora consisting of these resources are
available as raw material for research, and can be exploited
as a source of knowledge.

A more structured form of knowledge representation is
hand-crafted ontologies, such as WordNet (Fellbaum 1998;
Miller 1995) or DBpedia (Lehmann et al. 2015). In Word-
Net, concepts are collected into synonym sets and are orga-
nized into a strictly hierarchical structure of hyponymy rela-
tions, along with some horizontal relations, like meronymy.
However, WordNet has been criticized for its too high gran-
ularity at the bottom level and its generality at the top level
(Brown 2008). Moreover, its middle layers also contain
many concepts that may be appropriate in a scientific tax-

onomy, like ‘fissiped mammal.n’, but are not present in ev-
eryday language use. Similar problems concern most other
structured knowledge bases. Moreover, since they are ex-
tremely costly to produce or extend to achieve a good lex-
ical coverage, these resources are static in nature, they are
not able to keep up with changes in language use and daily
life, and they contain only standard word forms.

Whatever its source, a knowledge base is an essen-
tial component of a commonsense inference system. Even
though recent results achieved by applying deep neural sys-
tems on raw textual input have been significant, traditional
inference systems first transform their input written in natu-
ral language into a formal representation using features ex-
tracted from one or more knowledge bases, then they try
to solve the given task based on this formal representation.
In order to be able to process arbitrary input, the coverage
of the knowledge bases used should be as high as possible
(Davis 1990).

In this paper, we present an automatic method that is able
to assign semantic features or atomic predicates to prac-
tically any (even non-standard/slang or misspelled) word
form in a text in a language-independent manner. As we ap-
ply morphological analysis and lemmatization to the corpus
both at the time of generating the embedding models and at
query time, all forms of a single lemma are covered instead
of only those explicitly present in the original corpus. This
is essential to achieve a good coverage for an agglutinating
language like Hungarian where a single lexeme may have
hundreds of possible word forms, only few of which are ac-
tually present even in a huge corpus. Instead of constructing
another static knowledge base of fixed vocabulary, we pro-
pose a dynamic tool that can be retrained or fine-tuned at
any time using an up-to-date, possibly domain-specific cor-
pus appropriate to the task at hand. The target formalism or
set of semantic features to be used is also an interchange-
able parameter of the proposed method. The set of features
and predicates presented in this paper is derived from for-
malized definitions of a subset of the headwords (including
the defining vocabulary) of the Longman Dictionary of Con-
temporary English (LDOCE) (Summers 2005). Both the vo-
cabulary of the model and the features used are embedded
in a neural-network-created word embedding vector space
model (Mikolov et al. 2013).

Before we present the structure of the paper, let the fol-



lowing example illustrate the kind of semantic annotation
automatically assigned by the model to words in the sen-
tence The cow gives milk to her calf.:
cow: mammal, at_farm, produce_milk, HAS{four(legs)}, animal
gives: =AGT.CAUSE{=DAT.HAS.=PAT}, give, offer, communicate
milk: food, sweet, drink, liquid
calf: young, mammal, animal, has_wool. HAS{four(legs)}

The paper is structured as follows: first, a brief introduc-
tion to neural word embeddings is presented. This is fol-
lowed by the description of the lexical resource that we
used when creating our models. In the following section,
the method of building the model is described. In this pa-
per, the method is demonstrated for English. However, ex-
isting semantic resources can also be mapped to word em-
bedding spaces over the vocabulary of other languages. We
have performed experiments with Hungarian, an agglutina-
tive language with scarce semantic resources, but the method
can easily be applied to other languages as well. Finally, we
present both qualitative and quantitative evaluation of the
models.

Word Embedding Models
Traditional models of distributional semantics build word
representations by counting words occurring in a fixed-size
context of the target word (Baroni, Dinu, and Kruszewski
2014). In contrast, more recent methods for building dis-
tributional representations of words use neural networks
to generate word embedding models (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014) the most influen-
tial implementation of which is word2vec1.

When training embedding models, a fixed-size context of
each word in the vocabulary is used as the input of a neu-
ral network. This network is used to predict the target word
from the context by using back-propagation and adjusting
the weights assigned to the connection between the input
neurons (each corresponding to an item in the whole vocab-
ulary) and the projection layer of the network. This weight
vector can finally be extracted and used as the embedding
vector of the target word. Since similar words are used in
similar contexts, these vectors optimized for prediction from
the context will also be similar for similar words. There are
two types of neural networks used for this task. One of them
is the so called CBOW (continuous bag-of-words) model in
which the network is used to predict the target word from
the context, while the other model, called skip-gram, is used
to predict the context from the target word. For both mod-
els, the embedding vectors can be extracted from the middle
layer of the network and can be used alike as a dense vector
representation of the meaning of the words in both cases.

The vectors thus obtained point to certain locations in the
semantic space consistently so that semantically and/or syn-
tactically related words are close to each other, while un-
related ones are more distant. Moreover, it has been shown
that vector operations can also be applied to these represen-
tations, thus the semantic relatedness of two words can be
quantified as the algebraic difference of the two vectors rep-
resenting these words. Similarly, the meaning of the com-

1https://code.google.com/archive/p/word2vec/

position of two (or more) words is generally well repre-
sented by the sum of the corresponding embedding vectors
(Mikolov, Yih, and Zweig 2013).

As the words are represented as dense real-valued vec-
tors, the similarity of two words can easily be defined as the
angle between the vectors of the words, i.e. the most sim-
ilar words for a query word can be retrieved by finding its
nearest neighbours in the vector space according to cosine
distance.

One of the main drawbacks of building such a model from
raw corpora, however, is that by itself it is not able to handle
polysemy and homonymy, because one representational vec-
tor is built for one lexical element regardless of the number
of its different senses. We applied a simple method to allevi-
ate this problem, at least in cases where the homonyms have
different PoS. In order to assign different vectors to the same
word with different parts-of-speech, we applied PoS-tagging
and lemmatization to the training corpora before building
the model. The main PoS tag of each word was attached to
the word as a suffix in the form lemma#PoS, thus a differ-
ent embedding vector was created for homonymous lemmas
with different parts-of-speech.

We trained an English word embedding model on the
English Wikipedia dump2 of 2.25 billion tokens (8.24 M
token types) that was annotated using the Stanford tagger
(Toutanova et al. 2003). Since the CBOW model has proved
to be more efficient for large training corpora, we used this
model architecture for training with the radius of the context
window set to 5 and the number of dimensions to 300 and
using a token frequency limit of 5.

Figure 1 illustrates how the words pianist, teacher, turner,
maid and their three nearest neighbors are arranged in the
English word embedding space3. The original vectors con-
sist of 300 dimensions, but these were mapped to a 2D rep-
resentation using the t-sne algorithm (van der Maaten and
Hinton 2008).

Lexical Resources
Our goal was to create a model that can assign semantic
features and elementary predicates to words in an arbitrary
text. Thus, first, the set of features to be used had to be de-
fined. The Longman Dictionary of Contemporary English
(LDOCE) (Summers 2005) is a traditional dictionary con-
taining words and their definitions. All definitions in the dic-
tionary are written using a constrained defining vocabulary
(Longman Defining Vocabulary (LDV)). The definitions of a
subset of headwords in LDOCE, including all items in LDV
and most frequent words listed in the BNC and the Google
unigram count, were transformed into a formal description
containing only unary and binary predicates in a resource
called 4lang (Kornai et al. 2015). illustrated by the following
examples (for the explanation of the notation used in these
definitions see (Kornai et al. 2015)):
bread: food, FROM/2742 flour, bake MAKE
(a type of food made from flour and water that is

2downloaded from https://dumps.wikimedia.org/ in May, 2016.
3The PoS tag is NN for all example words, and it is omitted

from the figure.



Category Example words in 4lang
PART OF.body body#NN, tongue#NN, back#NN, neck#NN, shoulder#NN, bone#NN, skin#NN, wrist#NN, buttock#NN etc.
=AGT.HAS.mouth swallow#VB, suck#VB, eat#VB, drink#VB
HAS{four(legs)} horse#NN, tiger#NN
mammal mammal#NN, lion#NN, deer#NN, man#NN, horse#NN, sheep#NN, cattle#NN, rabbit#NN, cat#NN, pig#NN, goat#NN, cow#NN
=AGT.HAS.mind read#VB, remember#VB, feel#VB, understand#VB
=AGT.CAUSE{=DAT.KNOW.=PAT} express#VB, teach#VB

Table 1: Example words for some semantic features (predicates) after transforming the definitions to the format consisting of
labels and example words

Figure 1: The arrangement of the 3 nearest neighbors of the
words pianist, teacher, turner, maid in the English word em-
bedding space

mixed together and then baked)
show: =AGT CAUSE[=DAT LOOK =PAT], communicate
(to let someone see something)

We further transformed this format so that we have some
category labels (here: unary and binary predicates) and listed
examples. This was achieved by segmenting the formal de-
scriptions into elementary predicates (by splitting at com-
mas), but we did not segment predicates into further parts,
so e.g. HAS[four.(legs)] remained an atomic feature. Each
such token was treated as a category label. Then, all words
that had the particular token in their definition were listed
as an example for that label. This resulted in 1489 category
labels and 12,507 words listed as examples for them. Then,
in order to make this resource compatible with the word em-
bedding model built from the Wikipedia corpus, its vocab-
ulary was intersected with that model. Even though the vo-
cabulary of this resource consists mostly of frequent words
used in LDOCE definitions, it also includes some affixes,
inflected forms, and a few multiword items, which are not
present in the lemmatized Wikipedia model, so the intersec-
tion resulted in 11,039 words. Table 1 shows some examples
words for some features derived from the 4lang resource.

However, some categories were too broad and the set of
words listed for them was too heterogeneous. To handle this
problem, a hierarchical agglomerative clustering algorithm
was applied to the set of words in those categories that con-
tained at least five words. The reason for applying a hierar-
chical clustering rather than k-means is based on the argu-

ment of (Pereira, Tishby, and Lee 1993), who states that due
to the sophisticated variability of written texts, the number of
clusters of the concepts used in a certain text cannot be pre-
dicted. A hierarchical organization, however, is appropriate
for producing compact groups of words and phrases, based
on the actual text, rather than on some predefined general-
ization. The linkage method for the hierarchical clustering
was chosen based on the cophenet correlation between the
original data points and the resulting linkage matrix (Sokal
and Rohlf 1962). The best correlation was achieved when
using Wards distance criteria (Ward 1963), resulting in small
and dense groups of terms at the lower level of the resulting
dendrogram. However, we did not need the whole hierarchy,
represented as a binary tree, but separate, compact groups of
terms, i.e. well-separated subtrees of the dendrogram. The
most intuitive way of defining these cutting points of the tree
is to find large jumps in the clustering levels. To put it more
formally, the height of each link in the cluster tree is to be
compared with the heights of neighbouring links below it in
a certain depth. If this difference is larger than a predefined
threshold value (i.e. the link is inconsistent), then the link is
a cutting point. For more details of the clustering algorithm,
see (Siklósi 2016). Each cluster was then labeled with the
original category label with a numeric index added.

Even though we present our method using only the 4lang
dictionary as a lexical resource, the system can be built from
any dictionary that can be transformed to a similar format.

Method
Our objective was to create a model with high lexical cover-
age that can also return the most relevant semantic features
for words not present in 4lang. In order to achieve this goal,
the semantic features from this controlled set were projected
into the embedding space containing the representation of
the words. Nearest feature neighbors for each word can be
retrieved from the model using the cosine distance metric.

For each indexed semantic predicate label output by the
clustering algorithm, we iterated the list of example words
annotated with their part-of-speech (the crude PoS tags used
in the 4lang resource had to be mapped to the more fine-
grained PTB tags returned by the Stanford tagger) and re-
trieved their embedding vectors from the word embedding
model built from the PoS-tagged Wikipedia corpus. As a
simple but effective method for rendering a representation
vector for a set of words with their corresponding word em-
beddings we took the mean of these vectors, and used that
as the embedding vector of that particular semantic feature.



Original word Analyzed word Features
Laika Laika#NNP carnivorous mammal faithful HAS.short(hair/3359) HAS{four(legs)} 〈AT/2744.farm〉 companion young EAT.flesh HAS.long(tail)
likes like#VB want =PAT{person} wish emotion ask =AGT.HAS.mind annoy =PAT.IN/2758.mind communicate desire =AGT.HAS.body
eating eat#VB swallow =AGT.HAS.mouth eat love INSTRUMENT.tongue =AGT.CAUSE{=PAT{move}} sleep suck sing touch rest
fried fried#JJ food ’.COOK/825 ’.SERVE thick/2134 FROM/2742.flour bake.MAKE FROM/2742.milk food.IN/2758 vegetable sweet bread
onion onion#NN ’.COOK/825 vegetable fruit food FROM/2742.milk sweet round soft thick/2134 PART OF.plant
with with#IN
cucumber cucumber#NN vegetable fruit food ’.COOK/825 sweet ’.EAT round CAUSE{food.HAS.taste} PART OF.plant soft

Table 2: An example sentence, Laika likes eating fried onion with cucumber with features assigned to each word using our
method

Original word Analyzed word Hypernyms
Laika Laika#NNP
likes like#VB desire want
eating eat#VB consume digest take in take have
fried fried#JJ
onion onion#NN vegetable produce food solid matter physical entity entity
with with#IN
cucumber cucumber#NN vegetable produce food solid matter physical entity entity

Table 3: An example sentence, Laika likes eating fried onion with cucumber with hypernyms from WordNet assigned to each
word

Thus a representation of each predicate used in the defini-
tions was obtained in the semantic space created from the
English PoS-tagged corpus. These semantic feature vectors
were kept separated from the word vectors in the original
embedding model in order to be able to restrict lookup to
either words or features derived from each lexical resource.
To find the relevant features for a query word tagged with
its appropriate part-of-speech, its representational vector is
retrieved from the word embedding model and its nearest
neighbors are taken from the model containing the semantic
predicates. Since instead of exact matching, nearest neigh-
bors are searched for, out-of-vocabulary words (with respect
to the original lexical resources) can also be assigned se-
mantic labels. The only requirement is that the word must
be present in the word embedding model.

Other languages
We also carried out some experiments to apply our method
to another language, Hungarian. Hungarian is an aggluti-
native language with very few lexical semantic resources.
As the original 4lang dictionary contained the Hungarian
translation of the vocabulary included (3477 words), it was
straightforward to create a similar model for Hungarian as
well. For this, we had to create a Hungarian word embedding
model, which was built from a web-crawled corpus of 3.18
billion tokens (27.49 M token types) that was annotated us-
ing the PurePos (Orosz and Novák 2013) tagger, augmented
with the Humor Hungarian morphological analyzer (Novák
2014; Novák, Siklósi, and Oravecz 2016). We applied the
method described above to define the position of the features
in the Hungarian word embedding space by calculating the
mean of the vector representations of the Hungarian example
words for each semantic predicate. Our approach can easily
be extended to any other language by translating this dic-
tionary of moderate size (relative to complicated knowledge

bases). Furthermore, this method also adapts to differences
in word usage in different languages, since words are repre-
sented with their embedding vector in the target language.

Experiments and Results
The aim of this research was to investigate the possibility
of providing a high coverage tool for assigning a semantic
representation to words of a natural language input dynami-
cally instead of using a static knowledge base with a limited
vocabulary. Thus, first we investigated the performance of
the tool for some example input, then we also performed a
quantitative analysis.

Qualitative analysis
Table 2 shows an example: Laika likes eating fried onion
with cucumber. First, using the Stanford parser, the input is
annotated with part-of-speech tags and each word is lemma-
tized. Then, for each lemmatized content word (i.e. omitting
the function word with) with corresponding part-of-speech,
the top 10 nearest features are retrieved from the model and
ordered by their distance from the vector representing the
target word in the embedding space. Note that the number of
top n features generated for each word is a free parameter,
but moving further in the semantic space results in less and
less appropriate features for the target word. Table 3 shows
the WordNet hypernyms assigned to each content word in
the same sentence (the representation of the adjective fried
and the proper name Laika is missing from WordNet).

As it can be seen in the example, our model is able to as-
sign two types of features to words. Ontological/taxonomic
categories, such as carnivorous, mammal for the word Laika
vegetable, food for the words onion and cucumber appear
together with characteristic features of the given concept,
such as faithful, HAS{four(legs)}, 〈AT/2744.farm〉 or round



and CAUSE{food.HAS.taste}. While the first type of fea-
tures can be extracted from traditional ontologies, the lat-
ter type of characteristics can not. However, we believe that
the latter type of features form an important part to common
sense knowledge, because if people are asked to describe a
concept, they will rather use such characteristics. Moreover,
an inference system can also benefit from such descriptions.
It can also be seen from the example, that the model “knows”
that Laika is a dog by returning semantic features charac-
terizing dogs. In addition, the feature EAT.flesh emphasizes
the contrast of Laika being a dog and eating cucumber and
onion.

Another benefit of our model, as mentioned above, is that
it is able to generate features for all the words that are present
in the original corpus the word embedding was built from,
not only for the extremely limited set of words included in
the 4lang dictionary. WordNet or other hand-made resources
are limited only to the words and the classification that the
designer of the resource had in mind. Our model, in con-
trast, is able to assign features to proper names, slang words
or mistyped word forms as well as long as these are repre-
sented in the corpus the word embedding model was created
from. In addition to the above example containing the dog
name Laika, the following examples show some of the near-
est features for two more proper names and two slang words:
IBM: information.IN, computer, equipment, electric, group
Facebook: information.ON, ABOUT.recent(events), computer
hype: fame, fun, idea, popular, surprise
numpty: bad, lazy, stupid, lack(work), dull

A weakness of our method is that in some cases it also
adds noise in the generated features. For example, features
such as sleep or sing generated for the verb eat are not ones
we would expect to be part of the definition of eat (even if
in a broader sense they might be related). Inappropriate fea-
tures like this may be eliminated manually from the repre-
sentations generated by the model. The model can thus also
be used as an aid in a semi-automatic semantic resource cre-
ation/extension process proposing an initial representation
that can be cleaned manually for applications that require
a high-precision lexical semantic representation. Otherwise,
the generated semantic features can be used in models per-
forming some downstream task even without filtering out the
noise. In that case, the added semantic features may improve
the performance of the downstream tool providing mostly
useful features for words that otherwise would completely
lack semantic representation.

Quantitative analysis
We also carried out two kinds of quantitative analysis of the
performance of our model. First, we checked the robustness
of the model by performing a sanity check. For each word
present in the original 4lang dictionary, we calculated how
many of the semantic features present in the original defi-
nition were retrieved among the top N features returned by
the model (feature recall, Rf ) and the percentage of words
for which all features were retrieved (word recall, Rw). The
results are shown in Table 4 as a function of N (numbers
are percentages). Recall was also calculated ignoring words
having more than N features (Rp

w) and discounting features

N Rw Rp
w Rf Rp

f
|f | ≤ N P (f) MAP

1 44.11 88.18 50.79 92.66 50.02 92.66 92.66
5 86.88 87.75 91.38 92.26 99.00 56.70 89.66

10 93.39 93.39 95.97 95.97 100.00 32.70 90.56
15 95.61 95.61 97.36 97.36 100.00 22.89 90.77
20 96.48 96.48 97.93 97.93 100.00 17.54 90.82

Table 4: Performance of the model for English tested on def-
initions in the 4lang vocabulary as a function of the num-
ber N of top-ranked features retrieved for each word. Rw:
Word recall (words for which all features were retrieved),
Rw(poss): recall for words having no more than N fea-
tures, Rf : feature recall, Rf (poss): feature recall ignoring
features over the top N , |f | ≤ N : percentage of words hav-
ing no more than N features, P (f): feature precision, MAP:
mean average precision of features. Numbers are percent-
ages.

Language acc d-acc #F #B
English 75.13% 90.07% 559 277
Hungarian 73.86% 88.34% 584 295

Table 5: Performance of the model on 280 different test
words for English and Hungarian. acc: feature accuracy, d-
acc: domain accuracy of features, #F: different features, #B:
features marked wrong at least once.

over the N limit for words having more than N features
(Rp

f ). As no definition contained more than 10 terms, Rp
w

is identical to Rw and Rp
f is identical to Rf for N ≥ 10.

The definitions are terse and contain a minimal description
for each word: for half of the words containing only a sin-
gle term, and for almost all words not more than 5, see
column |f | ≤ N ). Feature precision (P (f)) apparently de-
creases quickly as the number of features retrieved increases
if we blindly accept only terms present in the original defini-
tions as correct. See, however, further discussion below. The
last column of the table shows the mean average precision
(MAP) of features (terms) present in the original definitions.

In the other experiment, we selected 280 words not
present in the original dictionary randomly from a prede-
fined list of Hungarian words in which each word was as-
signed to one of 28 semantic domains (e.g. food, vehicles,
locations, occupations, etc.). From each domain 10 words
were chosen randomly and were translated to English. Then,
for these words, the 10 nearest features were generated and
two human annotators checked whether each feature was ad-
equate for each given word. The same evaluation was per-
formed for Hungarian. The agreement ratio between the an-
notators was 0.798 for English and 0.734 for Hungarian ac-
cording to Cohen’s kappa, which is substantial in both cases.
The results are shown in Table 5.

The table shows feature accuracy (acc: the ratio of cor-
rectly assigned features) in each domain. We also automat-
ically computed feature “domain accuracy” (d-acc): here
we ignored feature assignment errors where the same fea-
ture was marked adequate for another test word in the same
domain. The number of different features that appeared in



this evaluation and the number of features marked wrong
at least once are shown in the last two columns. Note that
the feature accuracy (precision) for 10 features retrieved
turned out to be much higher (75.13%) than in the sanity
check experiment (only 32.70%) even though this list con-
tained words not in the original resource. The reason for
this is that the model returns many features which, while
not explicitly present in the original terse definitions, cor-
rectly follow from the knowledge embodied in the feature
model. E.g. While the definition of dog in 4lang contains
only 3 terms: animal, faithful and carnivorous, the top 10
features retrieved from the model also include mammal,
HAS{four(legs)}, hairy and companion. The sanity check
experiment thus grossly underestimated the precision of the
model.

Conclusion
We have presented an automatic method that is able to as-
sign semantic features to words of natural language. This
approach exploits the representative power of neural word
embeddings by mapping features derived from formal defi-
nitions of words to the vector space of the given language.
In addition to some illustrative examples, we have presented
the evaluation of the models demonstrating that the method
works with relatively high accuracy. Although there is a
moderate amount of noise in the set of generated features,
the method has a very high coverage, being able to process
proper names or non-standard words as well, which cannot
all be included in hand-made static knowledge bases. As
such, our automatic method can be used as the base of a
manually constructed resource, or can provide valuable in-
put for downstream applications, such as commonsense in-
ference systems.
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