
Towards A Simple Event Calculus for Run-Time Reasoning

Christos Vlassopoulos1,2 and Alexander Artikis3,1
1Institute of Informatics and Telecommunications, NCSR “Demokritos”, Athens, Greece

2Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
3Department of Maritime Studies, University of Piraeus, Greece

Abstract

The Event Calculus for Run-Time reasoning (RTEC) is
a logic programming implementation of the Event Calcu-
lus, designed to compute continuous narrative assimilation
queries on data streams. RTEC has been used for complex
event recognition in various applications domains, such as
maritime monitoring, city transport management and human
activity recognition. The construction of the complex event
definitions has proven a time-consuming process, since it re-
quires several interactions with domain experts (e.g. transport
engineers). To address this issue, we present a simple lan-
guage for RTEC, with the aim of supporting people who are
not familiar with the Event Calculus or (logic) programming.
A compiler translates, in a process transparent to the user, a
specification in the simple language to an RTEC event de-
scription that may be subsequently used for continuous query
computation.

Introduction
Today’s organisations need to act upon high-velocity data
streams in order to capitalise on opportunities and detect
threats. Towards this, event recognition systems have been
particularly helpful, as they support the detection of ‘com-
plex events’ (CE) of special significance, given streams of
‘simple, derived events’ (SDE) arriving from various types
of sensor (Artikis et al. 2012). The ‘definition’ of a CE
imposes temporal and, possibly, atemporal constraints on
its subevents, i.e. SDEs or other CEs. In the maritime do-
main, for example, CE recognition systems have been used
to make sense of position streams emitted from thousands of
vessels, in order to detect, in real-time, suspicious and illegal
activity that may have dire effects in the maritime ecosystem
and passenger safety.

Several CE recognition frameworks have been proposed,
supporting data streams by means of various optimisation
techniques (Cugola and Margara 2012; Bicocchi et al. 2014).
One such framework is the Event Calculus for Run-Time
reasoning (RTEC), a logic programming implementation of
the Event Calculus (Kowalski and Sergot 1986), designed to
compute continuous narrative assimilation queries on data
streams (Artikis, Sergot, and Paliouras 2015). RTEC in-
cludes novel implementation techniques for efficient CE
recognition. A form of caching stores the results of sub-
computations in the computer memory to avoid unnecessary

re-computations. A set of interval manipulation constructs
simplify CE definitions and improve reasoning efficiency.
An indexing mechanism makes RTEC robust to SDEs that
are irrelevant to the CEs we want to recognise and so RTEC
can operate without SDE filtering modules. Finally, a ‘win-
dowing’ mechanism supports real-time CE recognition.

RTEC has been used for CE recognition in various ap-
plications domains, including human activity recognition
from video content, city transport management, and mar-
itime monitoring (Patroumpas et al. 2017). The construction
of CE definitions was performed manually, since annotated
data were insufficient for employing machine learning tech-
niques. This was a time-consuming process that required
several interactions with domain experts. To address this is-
sue, we have been developing a simpler language for RTEC,
with the aim of supporting people who are not familiar with
the Event Calculus or (logic) programming. A compiler
translates, in a process transparent to the user, a specifica-
tion in the simpler language to an RTEC event description
that may be subsequently used for query computation.

The remainder of the paper is structured as follows. First,
we present RTEC. Then, we discuss the simple language
and illustrate its use through various examples. In the sec-
tion that follows, we describe the functionality of the com-
piler that translates the statements of the simple language to
RTEC. Subsequently, we present the empirical evaluation of
our approach, and briefly discuss related and further work.

RTEC
The Event Calculus for Run-Time reasoning (RTEC) is
a logic programming implementation of the Event Calcu-
lus, designed to compute continuous narrative assimilation
queries on data streams for complex event (CE) recognition.
The time model is linear and includes integer time-points.
Following Prolog, variables start with an upper-case letter,
while predicates and constants start with a lower-case let-
ter. Where F is a fluent—a property that is allowed to have
different values at different points in time—the term F =V
denotes that fluent F has value V . Boolean fluents are a
special case in which the possible values are true and false.
Informally, F =V holds at a particular time-point if F =V
has been initiated by an event at some earlier time-point, and
not terminated by another event in the meantime.

An event description in RTEC includes rules that define

Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals for which F =V holds continuously
initiatedAt(F =V, T) At time T a period of time for which F =V is initiated
terminatedAt(F =V, T) At time T a period of time for which F =V is terminated
union all(L, I) I is the list of maximal intervals produced by the union of the lists of maximal

intervals of list L
intersect all(L, I) I is the list of maximal intervals produced by the intersection of the lists of maximal

intervals of list L

relative complement all (I ′,L, I) I is the list of maximal intervals produced by the relative complement of the list of
maximal intervals I ′ with respect to every list of maximal intervals of list L

Table 1: Main predicates of RTEC.

the event instances with the use of the happensAt predi-
cate, the effects of events with the use of the initiatedAt
and terminatedAt predicates, and the values of the fluents
with the use of the holdsAt and holdsFor predicates, as well
as other, possibly atemporal, constraints. Table 1 sum-
marises the main predicates of RTEC. The code is available
at https://github.com/aartikis/RTEC. We rep-
resent instantaneous SDEs and CEs by means of happensAt,
while durative CEs are represented as fluents. The major-
ity of CEs are durative and, therefore, in CE recognition the
task generally is to compute the maximal intervals for which
a fluent expressing a CE has a particular value continuously.
Below, we discuss the representation of fluents, and present
the way we compute their maximal intervals.

Fluents
holdsFor(F =V, I) represents that I is the list of the max-
imal intervals for which fluent F has value V continuously.
holdsAt(F =V, T) represents that fluent F has value V at a
particular time-point T . holdsAt and holdsFor are defined in
such a way that, for any fluent F , holdsAt(F =V, T) if and
only if time-point T belongs to one of the maximal intervals
of I for which holdsFor(F =V, I). Fluents in RTEC are
of two kinds: simple and statically determined. We assume,
without loss of generality, that these types are disjoint.

Simple fluents For a simple fluent F , F =V holds at a
time-point T if F =V has been initiated by an event at some
time-point earlier than T , and has not been terminated at
some other time-point in the meantime. This is an imple-
mentation of the law of inertia. The time-points at which
F =V is initiated are computed with the use of initiatedAt
rules, which have the following form (terminatedAt are de-
fined similarly):

initiatedAt(F =V, T) :−
happensAt(E, T),
conditions[T]

The conditions[T] set includes further constraints on time-
point T , expressed as follows:

• a possibly empty set of happensAt predicates expressing
constraints on the (non-)occurrence of events;

• a possibly empty set of holdsAt predicates expressing con-
straints on fluents; and

• a possibly empty set of atemporal constraints.
Consider the following example from human activity

recognition on video content:

initiatedAt(moving(P1 ,P2)= true, T) :−
happensAt(start(walking(P1)= true), T),
holdsAt(walking(P2)= true, T),
holdsAt(close(P1 ,P2)= true, T).

initiatedAt(moving(P1 ,P2)= true, T) :−
happensAt(start(walking(P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(close(P1 ,P2)= true, T).

initiatedAt(moving(P1 ,P2)= true, T) :−
happensAt(start(close(P1 ,P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(walking(P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T) :−
happensAt(end(walking(P1)= true), T).

terminatedAt(moving(P1 ,P2)= true, T) :−
happensAt(end(walking(P2)= true), T).

terminatedAt(moving(P1 ,P2)= true, T) :−
happensAt(end(close(P1 ,P2)= true), T).

(1)

walking is a durative SDE detected on video frames. (Re-
call that SDEs are given as input to RTEC.) start(F =V)
(resp. end(F =V)) is a built-in RTEC event taking place
at each starting (ending) point of each maximal interval for
which F =V holds continuously. close(A,B)= true when
the distance between tracked entities (people and/or objects)
A and B does not exceed some threshold of pixel positions.
The above formalisation states that P1 is moving with P2

when they are walking close to each other.
Note that in this formulation of the Event Calculus,

terminatedAt(F =V, T) does not necessarily imply that
F =V at T . Similarly, initiatedAt(F =V, T) does not nec-
essarily imply that F 6= V at T .

https://github.com/aartikis/RTEC

time

I1
I2

(a) Union.

time

I1
I2

(b) Intersection.
time

I1
I2

(c) Relative Complement.

Figure 1: A visual illustration of the three interval manipulation constructs of RTEC. In this example, there are two input fluent
streams, I1 and I2. The output of each interval manipulation construct is colored light blue.

To compute holdsFor(moving(P1, P2)= true, I),
that is, to compute the maximal intervals for which
moving(P1 ,P2)= true holds continuously, we find all
time-points Ts at which moving(P1, P2)= true is initiated,
and then, for each Ts, we compute the first time-point Te

after Ts at which moving(P1, P2)= true is ‘broken’. The
time-points at which F =V is broken are computed as
follows:

broken(F =V, Ts, T) :−
terminatedAt(F =V, Te), Ts < Te ≤ T.

(2)

broken(F =V1, Ts, T) :−
initiatedAt(F =V2, Te), Ts < Te ≤ T,
V1 6= V2.

(3)

According to rule (3), if F =V2 is initiated at Te then effec-
tively F =V1 is terminated at time Te, for all other possible
values V1 of F . Rule (3) ensures, therefore, that a fluent
cannot have more than one value at any time. We do not
insist that a fluent must have a value at every time-point. In
RTEC there is a difference between initiating a Boolean flu-
ent F = false and terminating F = true: the first implies, but
is not implied by, the second.

Consider another example, this time from city transport
management. In this application domain, transport officials
are interested in computing the maximal intervals for which
passenger density in buses and trams is high. This may indi-
cate low passenger satisfaction, among others. Consider the
formalisation below:

initiatedAt(passenger density(ID ,VT)=Val , T) :−
happensAt(passenger density change(ID ,VT ,Val), T).

(4)

passenger density change is an SDE determined from sen-
sor data. ID concerns the vehicle of type VT (bus, tram)
on which the sensors (video cameras, microphones) are
mounted, while the value Val may be low , medium or high .

Statically determined fluents In addition to the domain-
independent definition of holdsFor, an event description may
include domain-specific holdsFor rules, used to define the
values of a fluent F in terms of the values of other fluents.
We call such a fluent F statically determined. holdsFor rules
of this kind make use of interval manipulation constructs—
see the last three items of Table 1. Consider, e.g. moving
as in rules (1) but defined instead as a statically determined

fluent:

holdsFor(moving(P1 ,P2)= true, I) :−
holdsFor(walking(P1)= true, I1),
holdsFor(walking(P2)= true, I2),
holdsFor(close(P1 ,P2)= true, I3),
intersect all([I1 , I2 , I3], I).

(5)

According to the above rule, the list I of maximal intervals
during which P1 is moving with P2 is computed by deter-
mining the list I1 of maximal intervals during which P1 is
walking, the list I2 of maximal intervals during which P2 is
walking, the list I3 of maximal intervals during which P1 is
close to P2, and then calculating the list I representing the
intersections of the maximal intervals in I1, I2 and I3.

RTEC provides three interval manipulation constructs:
union all, intersect all and relative complement all. These
are illustrated in Figure 1. The interval manipulation con-
structs of RTEC support the following type of definition:
for all time-points T , F =V holds at T if and only if some
Boolean combination of fluent-value pairs holds at T . For a
wide range of fluents, this is a much more concise definition
than the traditional style of Event Calculus representation,
i.e. identifying the various conditions under which the fluent
is initiated and terminated so that maximal intervals can then
be computed using the domain-independent holdsFor. Com-
pare, e.g. the statically determined and simple fluent repre-
sentations of moving in rules (5) and (1) respectively.

Semantics
CE definitions in RTEC are (locally) stratified logic pro-
grams (Przymusinski 1987). We restrict attention to hierar-
chical definitions, those where it is possible to define a func-
tion level that maps all fluent-values F =V and all events to
the non-negative integers as follows. Events and statically
determined fluent-values F =V of level 0 are those whose
happensAt and holdsFor definitions do not depend on any
other events or fluents. In CE recognition, they represent the
input SDEs. There are no fluent-values F =V of simple flu-
ents F in level 0. Events and simple fluent-values of level
n are defined in terms of at least one event or fluent-value
of level n−1 and a possibly empty set of events and fluent-
values from levels lower than n−1. Statically determined
fluent-values of level n are defined in terms of at least one
fluent-value of level n−1 and a possibly empty set of fluent-
values from levels lower than n−1. Note that fluent-values

F =Vi and F =Vj for Vi 6=Vj could be mapped to different
levels. For simplicity however, and without loss of general-
ity, a fluent F itself is either simple or statically determined
but not both.

A Simple Language
Addressing an event recognition problem in RTEC requires
knowledge of Prolog, familiarisation with the Event Calcu-
lus in general, as well as understanding and memorisation
of the syntactical details of RTEC in particular. In this sec-
tion, we present a simple Event Calculus dialect with a high-
level notation, abstracting away from technical details. This
simplified Event Calculus (SimplEC) aims at supporting do-
main experts, such as city transport engineers and maritime
patrol officials, that are not familiar with (logic) program-
ming. SimplEC is designed to resemble simple statements
in English, with some pseudo-code and mathematical ele-
ments. It does not contain obscure symbols like :-, or \+.
Instead, it contains simple words like if, or, not, as well as the
comma operator that indicates conjunction. There are also
a few special tokens, like initiate that stem from the Event
Calculus. In what follows, we illustrate the use of SimplEC
through a series of examples from three real-world applica-
tions. A full account of the SimplEC statements for all these
applications, as well as the grammar of SimplEC, is avail-
able at the GitHub repository of RTEC.

Recall the formalisation of passenger density from city
transport management—see rule (4). This may be expressed
in SimplEC as follows:

initiate passenger density(ID ,VT)=Val iff
passenger density change(ID ,VT ,Val).

(6)

‘happensAt’ may be omitted since the first condition of an
initiate statement is always an event. Moreover, in the ab-
sence of long-term temporal relations, the variables express-
ing time-points may be omitted, and ‘initiatedAt’ may be
simply written as initiate.

The definition of moving in human activity recognition,
given by rule-set (1), may be written in SimplEC as follows:

initiate moving(P1 ,P2) if
start walking(P1),
walking(P2),
close(P1 ,P2).

initiate moving(P1 ,P2) if
start walking(P2),
walking(P1),
close(P1 ,P2).

initiate moving(P1 ,P2) if
start close(P1 ,P2),
walking(P1),
walking(P2).

terminate moving(P1 ,P2) if
end walking(P1).

terminate moving(P1 ,P2) if
end walking(P2).

terminate moving(P1 ,P2) if
end close(P1 ,P2).

(7)

In addition to ‘happensAt’, ‘holdsAt’ is also omitted from
the above statements, since after the first condition, con-
straints on fluents are expected (recall that walking and
close are fluents). If more constraints on events were re-
quired, then these would have to be prefixed by ‘happens’.
The value of true Boolean fluents can also be omitted. To
make the above formalisation even more succinct, the last
three statements may be replaced by the following one:

terminate moving(P1 ,P2) iff
end walking(P1) or
end walking(P2) or
end close(P1 ,P2).

(8)

In datasets used for human activity recognition, there is
no explicit information that a tracked entity is a person or an
inanimate object. Therefore, in the activity definitions we try
to deduce whether a tracked entity is a person or an object
given, among others, the detected SDEs. We defined the
fluent person(P) to have value true if P has been walking,
active, running or moving abruptly since P ‘appeared’, that
is, since P was first tracked:

initiate person(P) iff
(start walking(P) or
start active(P) or
start running(P) or
start abrupt(P)),
not disappear(P).

terminate person(P) iff
disappear(P).

(9)

The value of person(P) is time-dependent because the iden-
tifier P of a tracked entity that ‘disappears’ (is no longer
tracked) at some point may be used later to refer to another
entity that ‘appears’ (becomes tracked), and that other entity
may not necessarily be a person. Note that disappear is an
event; however, we did not have to use the ‘happens’ prefix
in the initiate statement. The compiler of SimplEC may de-
duce that disappear is an event since it is used as the first
condition of the ‘terminate’ statement.

The compiled RTEC rules are the following:

initiatedAt(person(P)= true, T) :−
happensAt(start(walking(P)= true), T),
not happensAt(disappear(P), T).

initiatedAt(person(P)= true, T) :−
happensAt(start(active(P)= true), T),
not happensAt(disappear(P), T).

initiatedAt(person(P)= true, T) :−
happensAt(start(running(P)= true), T),
not happensAt(disappear(P), T).

initiatedAt(person(P)= true, T) :−
happensAt(start(abrupt(P)= true), T),
not happensAt(disappear(P), T).

terminatedAt(person(P)= true, T) :−
happensAt(disappear(P), T).

(10)

In SimplEC, statically determined fluents are defined via
statements that begin with the fluent itself. The body of

the statement consists of a number of conjunctions, dis-
junctions, and negations of other fluents, expressing, respec-
tively, the intersect all, union all and relative complement all
interval manipulation constructs of RTEC (see Figure 1).
As an illustration, consider the statement below expressing
moving , from the domain of activity recognition, as a stati-
cally determined fluent:

moving(P1 ,P2) iff
walking(P1),
walking(P2),
close(P1 ,P2).

(11)

Recall that the corresponding definition in RTEC is given
by rule (5). Note that the above statement does not include
‘holdsFor’ and the corresponding variables for intervals.

Another example illustrating the compactness of the stat-
ically determined fluent definitions is again taken from ac-
tivity recognition. In this domain, fighting between two per-
sons may be defined in the following way:

fighting(P1 ,P2) iff
(abrupt(P1) or abrupt(P2)),
close(P1 ,P2),
not (inactive(P1) or inactive(P2)).

(12)

This statement declares that when two persons stand close
to each other and at least one of them appears to be moving
abruptly while none of them is inactive, then a fight is in-
ferred to be taking place. Translating this statement into the
RTEC syntax yields the following rule:

holdsFor(fighting(P1 ,P2)= true, I) :−
holdsFor(abrupt(P1)= true, I1),
holdsFor(abrupt(P2)= true, I2),
union all([I1 , I2], I3),
holdsFor(close(P1 ,P2)= true, I4),
intersect all([I3 , I4], I5),
holdsFor(inactive(P1)= true, I6),
holdsFor(inactive(P2)= true, I7),
union all([I6 , I7], I8),
relative complement all(I5 , [I8], I).

(13)

Rule (13) takes many more keystrokes to complete and re-
quires the application of quite a few interval manipulation
constructs, compared to statement (12). SimplEC here helps
building a shorter and more natural-looking statement.

RTEC has also been used for maritime monitoring. In
this domain, maritime patrol officers are interested in detect-
ing various types of illegal, suspicious or dangerous activity,
such as when a vessel is rapidly moving towards some other
vessel(s). Such a behaviour could indicate a vessel pursuit or
even imminent collision. Consider the formalisation below:

happensAt(fastApproach(Vessel), T) :−
happensAt(speedChange(Vessel), T),
holdsAt(velocity(Vessel)=Speed , T),
Speed > 20 knots,
holdsAt(coord(Vessel)=(Lon,Lat), T),
not nearPorts(Lon,Lat),
holdsAt(headingToVessels(Vessel)= true, T).

(14)

Unlike the specifications that we have seen so far, the
activity of interest here is defined as a derived event.
speedChange(Vessel) is an SDE detected from vessel po-
sition signals. velocity and coord are fluents indicating,
respectively, the speed and coordinates of a vessel. These
are also given as input to RTEC. nearPorts(Lon,Lat) is
an atemporal predicate that becomes true when the point
(Lon,Lat) is close to a port. headingToVessels(Vessel)
is a fluent that becomes true whenever a Vessel ’s direction
of movement is towards at least one other vessel. According
to rule (14), a ‘fast approach’ movement is recognised when
a Vessel changes its speed at open sea, the new speed is
above 20 knots, and there is at least one other nearby vessel
towards which it is heading. The value of 20 knots was cho-
sen by domain experts. More details about the application of
RTEC to maritime monitoring may be found at (Patroumpas
et al. 2017).

In addition to fluents, SimplEC supports derived events.
Rule (14) e.g. may be expressed as follows:

happens fastApproach(Vessel) iff
speedChange(Vessel),
velocity(Vessel) > 20 knots,
coord(Vessel)=(Lon,Lat),
not nearPorts(Lon,Lat),
headingToVessels(Vessel).

(15)

Similar to initiate and terminate statements, the first condi-
tion of a happens statement is expected to be an event, while
the remaining ones concern fluents unless otherwise indi-
cated. In this example, the user has to declare separately
that nearPorts is an atemporal predicate. We should also
like to note, in this example, the ability to condense arith-
metic comparisons, such as that of lines 3 and 4 of rule (14).

Compiler
The compiler of SimplEC parses a set of statements in
the simple language and, based on its grammar, translates
the statements to rules in the RTEC format. Moreover, it
constructs the declarations required for computing narra-
tive assimilation queries. The declarations distinguish, for
the benefit of RTEC, between simple and statically deter-
mined fluents, and between input and output entities (events
and fluents). In SimplEC statement (11), for instance,
the compiler will detect three statically determined fluents,
namely moving(,), walking(), and close(,), of which
moving(,) is an output entity, as it appears in the head of
the statement, and the other two are input entities, as they do
not appear to be defined by other, simpler entities. Subse-
quently, the compiler will generate the RTEC rule (5), along
with the following declarations:

sDFluent(moving(,)).
sDFluent(walking()).
sDFluent(close(,)).
outputEntity(moving(,)).
inputEntity(walking()).
inputEntity(close(,)).

(16)

See the GitHub repository of RTEC for example decla-
ration files. The declarations also express the ‘caching hi-
erarchy’, that is, the order in which fluents and events are

Figure 2: Dependency graph of the city transport management event description.

processed. RTEC performs bottom-up processing whereby
fluents and events of level 1 of a hierarchy are processed
first, subsequently moving to levels 2, 3, etc. The computed
intervals of each level are cached. This way, fluent and event
intervals of some level n may be simply fetched from mem-
ory when required in the processing of fluents and events of
some higher level m.

To aid the user, the compiler may display the dependency
graph of the event description. This is a directed graph
where each vertex corresponds to a fluent or event, and for
each pair of vertices (i, j) there is an edge from i to j if
i appears in the body of a statement defining j. Figure 2
shows the dependency graph of an event description for city
transport management. In this figure, we can observe the
way in which the events and fluents affect each other. In the
leftmost part of the figure there are vertices with no incom-
ing edges. These correspond to input events and fluents that
form the narrative upon which all complex activities will be
recognised. In this domain, the input entities include infor-
mation about the acceleration and deceleration of transport
vehicles, changes in internal temperature, noise level or pas-
senger density, as well as the time of arrival at a stop.

On the right of the bottom layer, there are two other lay-
ers of events and fluents that have both incoming and out-
going edges. These are output entities that also contribute
to the definition of other output entities. On these layers
we combine information from the bottom layer and produce
higher-level information. For instance, we can recognise
complex activities such as driving style and quality, vehicle
punctuality and the passengers’ comfort level. In the right-
most part of the figure, there is one last layer with no out-
going edges. These are the complex activities of the highest
level—consider, for instance, passenger satisfaction.

Empirical Evaluation
SimplEC has been designed and implemented with a view to
making the event descriptions of RTEC concise and Prolog-
independent. A SimplEC user with little or no programming
skills should be able to define events and the effects thereof
within a particular domain, by writing short, simple and

straightforward statements. To test the extent to which this
conciseness is achieved by our proposed language, we com-
pared the RTEC code with its respective SimplEC code in
terms of length and simplicity in three application domains
already discussed in this paper: Human activity recognition,
city transport management and maritime monitoring. Figure
3 illustrates the comparison.

Figure 3a depicts the code size in bytes needed to con-
struct equivalent formalisations in RTEC and SimplEC. In
human activity recognition, the event descriptions along
with the entity declarations of RTEC result in 7,406 bytes
of code. The same information can be described in our pro-
posed language using only 2,780 bytes, which corresponds
to a 62.5% reduction. In city transport management, the
achieved reduction is approximately 50%, while in maritime
monitoring it is approximately 60%. In Figure 3b we focus
the comparison on the lines of code needed in each case.
As far as the human activity recognition application is con-
cerned, 130 RTEC rules were needed in order to describe
the problem. This number is brought down to just 38 using
SimplEC, which corresponds to a 70.8% reduction. Simi-
larly, for city transport management, rules were reduced by
approximately 72%, while in maritime monitoring they were
reduced by 77%. Finally, apart from the metrics that have to
do with the brevity of the event descriptions, there are met-
rics that concern the simplicity of a dialect. One such metric
is the amount of unique domain-independent keywords and
predicates. The application of this metric to the three do-
mains is shown in Figure 3c.

The significant difference in code size, lines of code and
number of unique domain-independent predicates is mainly
caused by the fact that there are several keywords, condi-
tions and facts in the RTEC code, which are automatically
inferred and generated internally by the SimplEC compiler
and, therefore, need not be included in the SimplEC state-
ment set, thus paving the way for fewer, shorter and more
compact statements. These automatically inferred objects
include the interval manipulation constructs and the entity
declarations, among others. For instance, SimplEC state-
ment (11) yields RTEC rule (5), along with the declarations

(a) Code size. (b) Lines of code. (c) Unique keywords.

Figure 3: Comparison between RTEC and SimplEC in three real-world applications: Human Activity Recognition (HAR),
City Transport Management (CTM) and Maritime Monitoring (MM). Dark blue bars correspond to RTEC while dark red ones
correspond to SimplEC.

shown in (16). Consequently, a user of SimplEC does not
have to keep many special terms and domain-independent
predicates in mind, thus making it easier to focus on the do-
main formalisation.

Related and Further Work

RTEC has a formal, declarative semantics as opposed to
most complex event processing languages, several data
stream processing and event query languages, and most
commercial production rule systems (Cugola and Margara
2012). Moreover, RTEC supports atemporal reasoning and
reasoning over background knowledge, and explicitly rep-
resents intervals, thus avoiding the related logical problems
(Paschke 2005). Concerning the Event Calculus literature
(e.g. (Chittaro and Montanari 1996; Cervesato and Monta-
nari 2000; Miller and Shanahan 2002; Paschke and Bichler
2008; Artikis and Sergot 2010; Montali et al. 2013)), a key
feature of RTEC is that it includes a windowing technique
(Artikis, Sergot, and Paliouras 2015). In contrast, no Event
Calculus system ‘forgets’ or represents concisely the data
stream history.

We presented our efforts towards a simple language for
RTEC. We observed, using real-world applications, that
SimplEC helps in writing much more succinct event de-
scriptions. However, the simple language must be evalu-
ated by people that are not familiar with the Event Calculus.
Towards this, we will make use of the domain experts of
the datAcron project1, where RTEC is used as the complex
event recognition engine for maritime and aviation monitor-
ing. We are also working towards constructing simpler and
more orderly dependency graphs.

Acknowledgements

This work is funded by the H2020 project datAcron
(687591).

1http://datacron-project.eu

References
[Artikis and Sergot 2010] Artikis, A., and Sergot, M. J.
2010. Executable specification of open multi-agent systems.
Logic Journal of the IGPL 18(1):31–65.

[Artikis et al. 2012] Artikis, A.; Skarlatidis, A.; Portet, F.;
and Paliouras, G. 2012. Logic-based event recognition.
Knowledge Eng. Review 27(4):469–506.

[Artikis, Sergot, and Paliouras 2015] Artikis, A.; Sergot,
M. J.; and Paliouras, G. 2015. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng. 27(4):895–908.

[Bicocchi et al. 2014] Bicocchi, N.; Vassev, E.; Zambonelli,
F.; and Hinchey, M. 2014. Reasoning on data streams:
An approach to adaptation in pervasive systems. In Nature
of Computation and Communication - International Confer-
ence, ICTCC, 23–32.

[Cervesato and Montanari 2000] Cervesato, I., and Monta-
nari, A. 2000. A calculus of macro-events: Progress report.
In Seventh International Workshop on Temporal Represen-
tation and Reasoning, TIME, 47–58.

[Chittaro and Montanari 1996] Chittaro, L., and Montanari,
A. 1996. Efficient temporal reasoning in the cached event
calculus. Computational Intelligence 12(3):359–382.

[Cugola and Margara 2012] Cugola, G., and Margara, A.
2012. Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys
44(3):15.

[Kowalski and Sergot 1986] Kowalski, R. A., and Sergot,
M. J. 1986. A logic-based calculus of events. New Gen-
eration Comput. 4(1):67–95.

[Miller and Shanahan 2002] Miller, R., and Shanahan, M.
2002. Some alternative formulations of the event calculus.
In Computational Logic: Logic Programming and Beyond,
LNAI 2408. 452–490.

[Montali et al. 2013] Montali, M.; Maggi, F. M.; Chesani, F.;
Mello, P.; and van der Aalst, W. M. P. 2013. Monitor-
ing business constraints with the event calculus. ACM TIST
5(1):17:1–17:30.

http://datacron-project.eu

[Paschke and Bichler 2008] Paschke, A., and Bichler, M.
2008. Knowledge representation concepts for automated
SLA management. Decision Support Systems 46(1).

[Paschke 2005] Paschke, A. 2005. ECA-RuleML: An ap-
proach combining ECA rules with temporal interval-based
KR event/action logics and transactional update logics.
Technical report, CoRR abs/cs/0610167.

[Patroumpas et al. 2017] Patroumpas, K.; Alevizos, E.; Ar-
tikis, A.; Vodas, M.; Pelekis, N.; and Theodoridis, Y. 2017.
Online event recognition from moving vessel trajectories.
GeoInformatica 21(2):389–427.

[Przymusinski 1987] Przymusinski, T. 1987. On the declar-
ative semantics of stratified deductive databases and logic
programs. In Foundations of Deductive Databases and
Logic Programming. Morgan.

	Introduction
	RTEC
	Fluents
	Semantics

	A Simple Language
	Compiler
	Empirical Evaluation
	Related and Further Work

