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Abstract
The description logic dSROIQ is a decidable exten-
sion of SROIQ that supports defeasible reasoning in
the KLM tradition. It features a parameterised pref-
erence order on binary relations in a domain of inter-
pretation, which allows for the use of defeasible roles
in complex concepts, as well as in defeasible concept
and role subsumption, and in defeasible role assertions.
In this paper, we address an important limitation both
in dSROIQ and in other defeasible extensions of de-
scription logics, namely the restriction in the semantics
of defeasible concept subsumption to a single prefer-
ence order on objects. We do this by inducing prefer-
ence orders on objects from preference orders on roles,
and use these to relativise defeasible subsumption. This
yields a notion of contextualised defeasible subsump-
tion, with contexts described by roles.

1 Introduction
SROIQ [Horrocks et al., 2006] is an expressive, yet decid-
able Description Logic (DL) that serves as semantic founda-
tion for the OWL 2 profile, on which several ontology lan-
guages of various expressivity are based. However, SROIQ
still allows for meaningful, decidable extension, as new
knowledge representation requirements are identified. A
case in point is the need to allow for exceptions and de-
feasibility in reasoning over logic-based ontologies [Bon-
atti et al., 2009; 2011; 2015; Britz et al., 2011; 2013a;
2013b; Britz and Varzinczak, 2016a; Casini et al., 2015;
Casini and Straccia, 2010; 2013; Giordano et al., 2013; 2015;
Sengupta et al., 2011]. Yet, SROIQ does not allow for the
direct expression of and reasoning with different aspects of
defeasibility.

Given the special status of subsumption in DLs in par-
ticular, and the historical importance of entailment in logic
in general, past research efforts in this direction have fo-
cused primarily on accounts of defeasible subsumption and
the characterisation of defeasible entailment. Semantically,
the latter usually takes as point of departure orderings on a
class of first-order interpretations, whereas the former usually
assume a preference order on objects of the domain.

Recently, we proposed a decidable extension of SROIQ
that supports defeasible knowledge representation and rea-

soning over defeasible ontologies [Britz and Varzinczak,
2016a; 2017]. Our proposal built on previous work to resolve
two important ontological limitations of the preferential ap-
proach to defeasible reasoning in DLs — the assumption of
a single preference order on all objects in the domain of in-
terpretation, and the assumption that defeasibility is intrinsi-
cally linked to argument form [Britz and Varzinczak, 2013;
2016b].

We achieved this by extending SROIQ with nonmono-
tonic reasoning features in the concept language, in subsump-
tion statements and in role assertions, via an intuitive notion
of normality for roles. This parameterised the idea of pref-
erence while at the same time introducing the notion of de-
feasible class membership. Defeasible subsumption allows
for the expression of statements of the form “C is usually
subsumed by D”, for example, “Chenin blanc wines are usu-
ally unwooded”. In the extended language dSROIQ, one
can also refer directly to, for example, “Chenin blanc wines
that usually have a wood aroma”. We can also combine these
seamlessly, as in: “Chenin blanc wines that usually have a
wood aroma are usually wooded”. This cannot be expressed
in terms of defeasible subsumption alone, nor can it be ex-
pressed w.l.o.g. using a typicality operator on concepts. This
is because the semantics of the expression is inextricably tied
to the two distinct uses of the term ‘usually’.

However, even this generalisation leaves open the question
of different, possibly incompatible, notions of defeasibility in
subsumption, similar to those studied in contextual argumen-
tation [Amgoud et al., 2000; Bikakis and Antoniou, 2010].
In the statement “Chenin blanc wines are usually unwooded”,
the context relative to which the subsumption is normal is left
implicit – in this case, the style of the wine. In a different con-
text such as consumer preference or origin, the most preferred
(or normal, or typical) Chenin blanc wines may not correlate
with the usual wine style. Wine x may be more exceptional
than y in one context, but less exceptional in another context.
This represents a form of inconsistency in defeasible knowl-
edge bases arising from the presence of named individuals in
the ontology. The example illustrates why a single ordering
on individuals does not suffice. It also points to a natural in-
dex for relativised context, namely the use of preferential role
names previously proposed for dSROIQ.

In this paper, we therefore propose to induce preference
orders on objects from preference orders on roles, and use



these to relativise defeasible subsumption. This yields a no-
tion of contextualised defeasible subsumption, with contexts
described by roles.

The remainder of the paper is structured as follows: In
Section 2 we present some DL background on SROIQ. In
Section 3 we introduce the syntax of the extended language
dSROIQ, and in Section 4 its semantics. The newly intro-
duced defeasible language constructs are discussed in Sec-
tion 5, where we also give examples to illustrate their se-
mantics and use. Section 6 covers a number of rewriting
and elimination results required for effective reasoning with
dSROIQ knowledge bases.

We shall assume the reader’s familiarity with the preferen-
tial approach to non-monotonic reasoning [Kraus et al., 1990;
Lehmann and Magidor, 1992; Shoham, 1988]. Whenever
necessary, we refer the reader to the definitions and results
in the relevant literature.

2 The description logic SROIQ
In this section, we provide the basics of SROIQ [Horrocks
et al., 2006]. For space considerations, but also to avoid rep-
etition, we defer many of its technicalities to the upcoming
sections.

The language of SROIQ is built upon a finite set of
atomic concept names C, of which N, the set of nominals,
is a subset, a finite set of role names R and a finite set of indi-
vidual names I such that C, R and I are pairwise disjoint. The
universal role is denoted by u and the set of all roles is given
by R := R ∪ {r− | r ∈ R} ∪ {u}, where r− denotes the
inverse of r. With A,B, . . . we denote atomic concepts, with
r, s, . . . roles, and with a, b, . . . individual names. A nominal
will also be denoted by o, possibly with subscripts.

The set of SROIQ complex concepts is the smallest set
such that: >, ⊥ and every A ∈ C are concepts; if C and D
are concepts, r, s ∈ R, and n ∈ N, then ¬C (concept com-
plement), C uD (concept conjunction), C tD (concept dis-
junction), ∀r.C (value restriction), ∃r.C (existential restric-
tion), ∃r.Self (self restriction), ≥ ns.C (at-least restriction),
≤ ns.C (at-most restriction) are also concepts. WithC,D . . .
we denote complex SROIQ concepts. A more detailed de-
scription of the roles allowed in complex concept descriptions
will be provided in Definitions 1 and 3.

If C and D are concepts, then C v D is a general concept
inclusion axiom (GCI, for short), read “C is subsumed byD”.
C ≡ D is an abbreviation for both C v D and D v C.

Given C a concept, r ∈ R and a, b ∈ I, an individual
assertion is an expression of the form a : C, (a, b) : r, (a, b) :
¬r, a = b or a 6= b.

A role inclusion axiom (RIA) is a statement of the form
r1◦· · ·◦rn v r, where r1, . . . , rn, r ∈ R\{u} and r1◦· · ·◦rn
denotes the composition of r1, . . . , rn. A role assertion is
a statement of the form Fun(r) (functionality), Ref(r) (re-
flexivity), Irr(r) (irreflexivity), Sym(r) (symmetry), Asy(r)
(asymmetry), Tra(r) (transitivity), and Dis(r, s) (role dis-
jointness), where r, s 6= u. A more detailed description of
the roles allowed in RIAs will be given in Definition 2.

The semantics of SROIQ is in terms of the standard set
theoretic Tarskian semantics. An interpretation is a structure

I := 〈∆I , ·I〉, where ∆I is a non-empty set called the do-
main, and ·I is an interpretation function mapping concept
names A ∈ C to subsets AI of ∆I (with oI a singleton if
o ∈ N), role names r ∈ R to binary relations rI over ∆I ,
and individual names a ∈ I to elements of the domain ∆I ,
i.e., AI ⊆ ∆I , rI ⊆ ∆I × ∆I , aI ∈ ∆I . We extend
·I from role names to roles by letting uI := ∆I × ∆I and
(r−)I := {(y, x) | (x, y) ∈ rI}, and to role chains by setting
(r1 ◦ · · · ◦ rn)I := rI1 ◦ · · · ◦ rIn .

As an example, let C := {A1, A2, A3}, R := {r1, r2}
and I := {a1, a2, a3}. Figure 1 depicts the interpreta-
tion I1 = 〈∆I1 , ·I1〉, where ∆I1 = {xi | 1 ≤ i ≤
9}, AI11 = {x1, x4, x6}, AI12 = {x3, x5, x9}, AI13 =

{x6, x7, x8}, rI11 = {(x1, x6), (x4, x8), (x2, x5)}, rI12 =

{(x4, x4), (x6, x4), (x5, x8), (x9, x3)}, aI11 = x5, aI12 = x1,
and aI13 = x2.

I1 : ∆I1

AI11 AI12

AI13

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Figure 1: A SROIQ interpretation.

The notion of interpretation can be extended to interpret
(complex) SROIQ concepts and to provide a notion of sat-
isfaction of GCIs, RIAs, individual and role assertions in a
way that will be made clear in Section 3.

3 Context-based defeasible SROIQ
In this section, we present the syntax and semantics of an ex-
tension to SROIQ to represent defeasible complex concepts
and subsumption. The logic presented here is an incremental
extension of dSROIQ, which was introduced recently [Britz
and Varzinczak, 2017] to add defeasible reasoning features to
SROIQ. Previous work included various defeasible con-
structs on concepts based on preferential roles, but only a sin-
gle preference order on objects. This was somewhat of an
anomaly, as pointed out by some reviewers and colleagues.
We address this anomaly by adding context-based orderings
on objects that are derived from preferential roles. This turns
out to be a remarkably seamless yet very useful refinement.
Briefly, each preferential role r, interpreted as a strict partial
order on the binary product space of the domain, gives rise
to a context-based order on objects as detailed in Definition 6
below.

3.1 Defeasibility in RBoxes
Let inv : R −→ R be such that inv : r 7→ r−, if r ∈ R,
inv : r 7→ s, if r = s−, and inv : u 7→ u.



Let r1, . . . , rn, r ∈ R \ {u}. A classical role inclusion ax-
iom is a statement of the form r1 ◦ · · · ◦ rn v r. A defeasible
role inclusion axiom has the form r1 ◦ · · · ◦ rn@∼r, read “usu-
ally, r1 ◦ · · · ◦ rn is included in r”. A finite set of (classical
or defeasible) role inclusion axioms (RIAs) is called a role
hierarchy and is denoted byRh.

Definition 1 ((Non-)Simple Role) Let r ∈ R and let Rh be
a role hierarchy. Then r is non-simple inRh iff:

1. There is r1 ◦ · · · ◦ rn v r or r1 ◦ · · · ◦ rn @∼r in Rh such
that n > 1, or

2. There is s v r or s@∼r inRh such that s is non-simple, or
3. inv(r) is non-simple.

With Rn we denote the set of non-simple roles in Rh. Rs :=
R \Rn is the set of simple roles inRh.

Intuitively, simple roles are those that are not implied by
the composition of roles. They are needed to restrict the type
of roles in certain concept constructors (see below), thereby
preserving decidability [Horrocks et al., 2006].

Definition 2 (Regular Hierarchy) A role hierarchy Rh is
regular if there is a strict partial order < on Rn such that:

1. s < r iff inv(s) < r, for every r, s in Rn, and
2. every role inclusion inRh is of one of the forms:

(1a) r ◦ r v r, (1b) r ◦ r @∼r,
(2a) inv(r) v r, (2b) inv(r)@∼r,
(3a) s1 ◦ · · · ◦ sn v r, (3b) s1 ◦ · · · ◦ sn @∼r,
(4a) r ◦ s1 ◦ · · · ◦ sn v r, (4b) r ◦ s1 ◦ · · · ◦ sn @∼r,
(5a) s1 ◦ · · · ◦ sn ◦ r v r, (5b) s1 ◦ · · · ◦ sn ◦ r@∼r, where
r ∈ R (i.e., a role name), and si < r, for i = 1, . . . , n.

(Regularity prevents a role hierarchy from inducing cyclic de-
pendencies, which are known to lead to undecidability.)

A classical role assertion is a statement of the form
Fun(r) (functionality), Ref(r) (reflexivity), Irr(r) (irreflexiv-
ity), Sym(r) (symmetry), Asy(r) (asymmetry), Tra(r) (tran-
sitivity), and Dis(r, s) (role disjointness), where r, s 6= u. A
defeasible role assertion is a statement of the form dFun(r) (r
is usually functional), dRef(r) (r is usually reflexive), dIrr(r)
(r is usually irreflexive), dSym(r) (r is usually symmetric),
dAsy(r) (r is usually asymmetric), dTra(r) (r is usually tran-
sitive), and dDis(r, s) (r and s are usually disjoint), also with
r, s 6= u. WithRa we denote a finite set of role assertions.

Given a role hierarchy Rh, we say that Ra is simple
w.r.t. Rh if all roles r, s appearing in statements of the
form Irr(r), dIrr(r), Asy(r), dAsy(r), Dis(r, s) or dDis(r, s)
are simple inRh (see Definition 1).

A dSROIQ RBox is a set R := Rh ∪ Ra, where Rh is
a regular hierarchy andRa is a set of role assertions which is
simple w.r.t.Rh.

3.2 Defeasibility in concepts
We now extend the set of SROIQ complex concepts via the
definition of concept constructors allowing for the expression
of defeasibility at the object level.

Definition 3 (dSROIQ Concepts) The set of dSROIQ
complex concepts is the smallest set such that>,⊥ and every
A ∈ C are concepts, and if C and D are concepts, r ∈ R,

s ∈ Rs, and n ∈ N, then ¬C (concept complement), C uD
(concept conjunction), C t D (concept disjunction), ∀r.C
(value restriction), ∃r.C (existential restriction),

∨∼r.C (de-
feasible value restriction), −∼−|r.C (defeasible existential re-
striction), ∃r.Self (self restriction), −∼−|r.Self (defeasible self
restriction), ≥ ns.C (at-least restriction), ≤ ns.C (at-most
restriction),& ns.C (defeasible at-least restriction),. ns.C
(defeasible at-most restriction) are also concepts. With C we
denote the set of all complex concepts.

Note that every SROIQ concept is a dSROIQ concept,
too. We shall useC,D . . ., possibly with subscripts, to denote
complex dSROIQ concepts.

3.3 Context-based defeasible subsumption
GivenC,D ∈ C,C v D is a classical general concept inclu-
sion, read “C is subsumed by D”. C ≡ D is an abbreviation
for both C v D and D v C.

The extension of dSROIQ we propose here includes
context-based defeasible subsumption statements in the
TBox. Given C,D ∈ C and r ∈ R, C @∼rD is a defeasi-
ble general concept inclusion, read “C is usually subsumed
by D in the context r”. A dSROIQ TBox T is a finite set
of general concept inclusions (GCIs), whether classical or de-
feasible.

Before we present the semantics, we introduce the remain-
ing components of dSROIQ ontologies. Recall I is a set of
individual names disjoint from both C and R. Given C ∈ C,
r ∈ R and a, b ∈ I, an individual assertion is an expression
of the form a : C, (a, b) : r, (a, b) : ¬r, a = b or a 6= b. A
dSROIQ ABox A is a finite set of individual assertions.

LetA be an ABox, T be a TBox andR an RBox. A knowl-
edge base (alias ontology) is a tuple KB := 〈A,R, T 〉.

4 Preferential semantics
We shall anchor our semantic constructions in the well-
known preferential approach to non-monotonic reason-
ing [Kraus et al., 1990; Lehmann and Magidor, 1992;
Shoham, 1988] and its extensions [Boutilier, 1994; Britz
and Varzinczak, 2013; a; 2016b; b], especially those to the
DL case [Britz et al., 2011; Britz and Varzinczak, 2016a;
Giordano et al., 2009; Quantz and Royer, 1992].

Let X be a set and let < be a strict partial order on X .
With min<X := {x ∈ X | there is no y ∈ X s.t. y < x}
we denote the minimal elements of X w.r.t. <. With #X we
shall denote the cardinality of X .

Definition 4 (Ordered Interpretation) An ordered inter-
pretation is a tuple O := 〈∆O, ·O,�O〉 in which 〈∆O, ·O〉
is a SROIQ interpretation with AO ⊆ ∆O, for every
A ∈ C, AO a singleton for every A ∈ N, rO ⊆ ∆O × ∆O,
for all r ∈ R, and aO ∈ ∆O, for every a ∈ I, and
�O:= 〈�O1 , . . . ,�O#R〉, where �Oi ⊆ rOi × rOi , for i =

1, . . . ,#R, and such that each �Oi satisfies the smoothness
condition [Kraus et al., 1990].

As an example, let C := {A1, A2, A3}, R :=
{r1, r2}, I := {a1, a2, a3}, and let the r-ordered in-
terpretation O1 = 〈∆O1 , ·O1 ,�O1〉, where ∆O1 =



∆I1 , ·O1 = ·I1 , and �O1= 〈�O1
1 ,�O1

2 〉, where
�O1

1 = {(x4x8, x2x5), (x2x5, x1x6), (x4x8, x1x6)} and
�O1

2 = {(x6x4, x4x4), (x5x8, x9x3)}. (For the sake of read-
ability, we shall henceforth sometimes write tuples of the
form (x, y) as xy.) Figure 2 below depicts the r-ordered inter-
pretation O1. In the picture,�O1

1 and�O1
2 are represented,

respectively, by the dashed and the dotted arrows. (Note the
direction of the�O-arrows, which point from more preferred
to less preferred pairs of objects.) Also for the sake of read-
ability, we shall omit the transitive�O-arrows.

O : ∆O

AO1 AO2

AO3

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Figure 2: A dSROIQ ordered interpretation.

Given O = 〈∆O, ·O,�O〉, the intuition of ∆O and ·O
is the same as in a standard DL interpretation. The intu-
ition underlying each of the orderings in�O is that they play
the role of preference relations (or normality orderings), in a
sense similar to that introduced by Shoham [Shoham, 1988]
with a preference on worlds in a propositional setting and as
extensively investigated by Kraus et al. [Kraus et al., 1990;
Lehmann and Magidor, 1992] and others [Boutilier, 1994;
Britz et al., 2008; Giordano et al., 2007]: the pairs (x, y)
that are lower down in the ordering �Oi are deemed as the
most normal (or typical, or expected) in the context of (the
interpretation of) ri. Technically, the difference between our
definitions and those in the aforementioned work lies on the
fact that our�Oi are orderings on binary relations on the do-
main ∆O, instead of orderings on propositional valuations or
on plain objects of ∆O.

In the following definition we show how ordered interpre-
tations can be extended to interpret the complex concepts of
the language.

Definition 5 (O extended) Let O = 〈∆O, ·O,�O〉.
For any r, r1, r2 ∈ R \ {u}, O interprets orderings
on role inverses and on role compositions as follows:
�Or− := {((y1, x1), (y2, x2)) | ((x1, y1), (x2, y2)) ∈�Or },
and �Or1◦r2 := {((x1, y1), (x2, y2)) | for some z1, z2
[((x1, z1), (x2, z2)) ∈�Or1 and ((z1, y1), (z2, y2)) ∈�Or2 ],
and for no z1, z2 [((x2, z2), (x1, z1)) ∈�Or1 and ((z2, y2),
(z1, y1)) ∈�Or2 ]}. Moreover, let rO|xi := rOi ∩ ({x} ×∆O)

(i.e., the restriction of the domain of rOi to {x}). The
interpretation function ·O interprets dSROIQ concepts in
the following way (whenever it is clear which component of

�O is used, we shall drop the subscript in�Oi ):

>O := ∆O; ⊥O := ∅; (¬C)O := ∆O \ CO;

(C uD)O := CO ∩DO; (C tD)O := CO ∪DO;

(∀r.C)O := {x | rO(x) ⊆ CO};
(
∨∼r.C)O := {x | min�O (rO|x)(x) ⊆ CO};

(∃r.C)O := {x | rO(x) ∩ CO 6= ∅};
(−∼−|r.C)O := {x | min�O (rO|x)(x) ∩ CO 6= ∅};
(∃r.Self)O := {x | (x, x) ∈ rO};
(−∼−|r.Self)

O := {x | (x, x) ∈ min�O (rO|x)};
(≥ nr.C)O := {x | #rO(x) ∩ CO ≥ n};
(≤ nr.C)O := {x | #rO(x) ∩ CO ≤ n};
(& nr.C)O := {x | # min�O (rO|x)(x) ∩ CO} ≥ n;

(. nr.C)O := {x | # min�O (rO|x)(x) ∩ CO ≤ n}.
It is not hard to see that, analogously to the classical case,∨∼ and −∼−|, as well as & and ., are dual to each other.

Definition 6 (Satisfaction) Let O = 〈∆O, ·O,�O〉 and let
r1, . . . , rn, r, s ∈ R, C,D ∈ C, and a, b ∈ I. Let ≺Or :=
{(x, y) | there is some (x, z) ∈ rO such that for all (y, v) ∈
rO [((x, z), (y, v)) ∈ �Or ]}. The satisfaction relation  is
defined as follows:

O  r v s if rO ⊆ sO;
O  r @∼ s if min�O r

O ⊆ sO;
O  r1 ◦ · · · ◦ rn v r if (r1 ◦ · · · ◦ rn)O ⊆ rO;
O  r1 ◦ · · · ◦ rn @∼r if min�O (r1 ◦ · · · ◦ rn)O ⊆ rO;
O  Fun(r) if rO is a function;
O  dFun(r) if for all x, # min�O (rO|x)(x) ≤ 1;
O  Ref(r) if {(x, x) | x ∈ ∆O} ⊆ rO;
O  dRef(r) if for every x ∈ min≺Ou ∆O, (x, x) ∈ rO;

O  Irr(r) if rO ∩ {(x, x) | x ∈ ∆O} = ∅;
O  dIrr(r) if for every x ∈ min≺Ou ∆O, (x, x) /∈ rO;

O  Sym(r) if inv(r)
O ⊆ rO;

O  dSym(r) if min�O (r−)O ⊆ rO;

O  Asy(r) if rO ∩ inv(r)
O

= ∅;
O  dAsy(r) if min�O r

O ∩min�O (r−)O = ∅;
O  Tra(r) if (r ◦ r)O ⊆ rO;
O  dTra(r) if min�O (r ◦ r)O ⊆ rO;
O  Dis(r, s) if rO ∩ sO = ∅;
O  dDis(r, s) if min�O r

O ∩min�O s
O = ∅;

O  C v D if CO ⊆ DO;
O  C @∼rD if min≺Or C

O ⊆ DO;

O  a : C if aO ∈ CO; O  (a, b) : r if (aO, bO) ∈ rO;
O  (a, b) : ¬r if O 6 (a, b) : r;
O  a = b if aO = bO; O  a 6= b if O 6 a = b.

If O  α, then we say O satisfies α. O satisfies a set of
statements or assertions X (denoted O  X) if O  α for
every α ∈ X , in which case we say O is a model of X . We
say C ∈ C is satisfiable w.r.t. KB = 〈A,R, T 〉 if there is a
model O of KB s.t. CO 6= ∅, and unsatisfiable otherwise.



A statement α is (classically) entailed by a knowledge
baseKB, denotedKB |= α, if every model ofKB satisfies α.

5 Modelling with dSROIQ ontologies
The motivation for dSROIQ is to represent defeasible
knowledge, and to reason over defeasible ontologies. We now
consider the different aspects of defeasibility that can be ex-
pressed in dSROIQ. We first consider defeasible existential
restriction:

Cheninblanc u −∼−| hasAroma.Wood v ∃hasStyle.Wooded

This statement is read: “Chenin blanc wines that normally
have a wood aroma are wooded”. That is, any Chenin blanc
wine that has a characteristic wood aroma, has a wooded wine
style. For an example of defeasible subsumption, consider the
statement

Cheninblanc@∼u∃hasAroma.Floral

which states that Chenin blanc wines usually have some floral
aroma. That is, the most typical Chenin blanc wines all have
some floral aroma. Similarly,

Cheninblanc@∼u∀hasOrigin.Loire

states that Chenin blanc wines usually come only from the
Loire Valley. Now suppose we have a Chenin blanc wine x,
which comes from the Loire Valley but does not have a floral
aroma, and another Chenin blanc wine y which has a floral
aroma but comes from Languedoc. No model of this ontology
can simultaneously have x ≺u y w.r.t. origin and y ≺u x
w.r.t. aroma. There can therefore be no model that accurately
models reality.

This is precisely the limitation imposed by having only a
single ordering on objects, as usually assumed by preferen-
tial approaches to defeasible DLs [Britz et al., 2008; 2011;
Giordano et al., 2007; 2009; 2013], and the motivation for
introducing context-based defeasible subsumption. Although
the two defeasible statements are not inconsistent, the pres-
ence of both rules out certain intended models. In contrast,
with context-based defeasible subsumption, both subsump-
tion statements can be expressed and x and y can have in-
compatible preferential relationships in the same model:

Cheninblanc@∼hasAroma∃hasAroma.Floral
Cheninblanc@∼hasOrigin∀hasOrigin.Loire

Note that this knowledge base cannot be changed to:

Cheninblanc v −∼−|hasAroma.Floral
Cheninblanc v

∨∼hasOrigin.Loire
as the latter states that every Chenin blanc wine has a char-
acteristic floral aroma and is usually exclusive to the Loire
Valley (ruling out the possibility of a Chenin blanc without a
floral aroma, or one that comes only from Languedoc).

Lemma 1 below shows that every strict partial order on
objects in the domain ∆O can be obtained from some strict
partial order on ∆O × ∆O as in Definition 6. This justifies
the use of @∼u in defeasible subsumption statements where
the context is universal. It also supports the definition of ≺Ou ,

since it shows the more traditional preference ordering on all
objects in the domain to be a special case of our proposal.
Lemma 2 shows that the converse of Lemma 1 holds in the
more general case of any context-based preference order�Or .

Lemma 1 Given domain ∆O and strict partial order ≺ on
∆O, let�Ou := {((x, z), (y, z)) | x ≺ y}, and let ≺Ou be as
in Definition 6. Then ≺ = ≺Ou .

Lemma 2 LetO = 〈∆O, ·O,�O〉, and let ≺Or be as in Def-
inition 6. Then ≺Or is a strict partial order on ∆O.

Corollary 1 Let ≺ be a strict partial order on ∆O, and let
O  C @∼D iff min≺ C

O ⊆ DO. Then universal defeasible
subsumption @∼u has the same semantics as @∼.

Corollary 1 makes the intuition of universal defeasible sub-
sumption clear. For the more general parameterised case, the
intuition is essentially the same. Consider the role hasOrigin,
which links individual wines to origins. Wine x is considered
more typical (or less exceptional) than y w.r.t. its origin if it
has some origin link which is preferred to any such link from
y.

Context-based defeasible subsumption @∼r can therefore
also be viewed as defeasible subsumption based on a prefer-
ence order on objects in the domain of rO, bearing in mind
that in any given interpretation, it is dependent on�Or . This
raises the question whether a preference order on objects in
the range of rO could be considered as an alternative, but
since role inverses are allowed in context-based defeasible
subsumption, @∼inv(r) achieves this.

The following result shows that context-based defeasible
subsumption is indeed an appropriate notion of defeasible
subsumption:

Lemma 3 For every r ∈ R, @∼r is a preferential subsump-
tion relation on concepts in that, for every O, the following
properties hold:

(Ref) O  C @∼rC (LLE)
O  C ≡ D, O  C @∼rE

O  D @∼rE

(And)
O  C @∼rD, O  C @∼rE

O  C @∼rD u E
(Or)

O  C @∼rE, O  D @∼rE

O  C tD @∼rE

(RW)
O  C @∼rD, O  D v E

O  C @∼rE
(CM)

O  C @∼rD, O  C @∼rE

O  C uD @∼rE

It is not hard to show that, moreover, if the ordering associ-
ated to a role r is modular, the defeasible subsumption @∼r it
induces is also rational, i.e., it satisfies the following rational
monotonicity property:

(RM)
O  C @∼rD, O  C 6@∼r¬C ′

O  C u C ′ @∼rD

A further feature of context-based subsumption is therefore
the ability to allow for both rational and preferential-only sub-
sumption relations.

6 Eliminating ABoxes, classical GCIs and the
universal role

As for classical SROIQ [Horrocks et al., 2006, Lemma 7],
it is possible to eliminate an ABox A by compiling all indi-
vidual assertions in A as follows:



1. Let N′ := N ∪ {oa | a appears in A} (i.e., extend the
signature with new nominals);

2. LetA′ := {a : C ∈ A}∪{a : ∃r.ob | (a, b) : r ∈ A}∪{a :
∀r.¬ob | (a, b) : ¬r ∈ A} ∪ {a : ¬ob | a 6= b ∈ A};

3. For every C ∈ C, let C ′ := C u
d

a:D∈A′ ∃u.(oa uD).
It is then easy to see that C is satisfiable w.r.t. 〈A,R, T 〉 if

and only if C ′ is satisfiable w.r.t. 〈∅,R, T 〉, which allows us
to assume from now on and w.l.o.g. that ABoxes have been
eliminated.

Next, in the same way that most of the classical role asser-
tions can equivalently be replaced by GCIs or RIAs, under our
preferential semantics, all of our defeasible role assertions,
with the exception of dAsy(·) and dDis(·), can be reduced to
defeasible RIAs in the following way. dFun(r) can be re-
placed by > v. 1r.> — to be ‘usually functional’ means
only non-normal arrows can break functionality. (Note that,
since the number restriction is unqualified, r need not be sim-
ple.) dRef(r) and dIrr(r) can, respectively, be replaced with
> @∼∃r.Self and > @∼¬∃r.Self. dSym(r) can be reduced to
r−@∼r and dTra(r) to r◦r@∼r. Furthermore, note that dAsy(r)
can be reduced to dDis(r, r−) (cf. Definition 6). Hence, from
now on we can assume, w.l.o.g., that the set of role asser-
tions Ra contains only statements of the form Dis(r, s) and
dDis(r, s).

Finally, we can apply the same procedure for eliminat-
ing both all classical TBox statements and the universal
role u defined for classical SROIQ [Horrocks et al., 2006,
Lemma 8][Schild, 1991], extended to the case of dSROIQ
concepts. Hence, from now on we can assume that all
classical concept subsumptions (as well as occurrences of u
therein) have been eliminated.

The next theorem summarises the reduction outlined in this
section:
Theorem 1 Let KB = 〈A,R, T 〉 and let D := {C @∼rD |
C @∼rD ∈ T }. Satisfiability of dSROIQ-concepts w.r.t. KB
can be polynomially reduced to satisfiability of dSROIQ-
concepts w.r.t. 〈∅,R,D〉 where all role assertions inR are of
the form Dis(r, s) and dDis(r, s).

We leave an investigation of a reduction of the axioms inD
for future work.

7 Concluding remarks
In this paper, we have made a case for a context-based notion
of defeasible concept inclusion in description logics. We have
seen that roles can be used to provide a simple yet powerful
context for such a notion. We have shown how the semantics
of the resulting family of defeasible subsumption relations
can be anchored to that of preferential roles, which we studied
in previous work.

From the knowledge-representation standpoint, context-
based subsumption provides the user with more flexibility
in making defeasible statements in ontologies. From a mod-
elling point of view, the semantic characterisation we propose
here resolves an important limitation of many defeasible ex-
tensions of description logics, namely the restriction in the
semantics of defeasible concept subsumption to a single pref-
erence order on objects.

The definitions and preliminary results reported in this pa-
per raise a number of immediate questions:

• How to obtain the other direction of the KLM-style repre-
sentation result (cf. Lemma 3)?

• How to reduce satisfiability w.r.t. defeasible TBoxes and
RBoxes to satisfiability w.r.t. only defeasible RBoxes?

• How to extend the tableau system for dSROIQ to ac-
count for multi-defeasible subsumptions of the kind we in-
troduced here?

• How to define and compute rational closure of a family of
defeasible concept inclusions?

• Can a notion of context, together with our more expres-
sive language, give rise to new KLM-style postulates char-
acterising defeasible subsumption relations that are more
powerful than the rational ones?

These are some of the questions that will drive future investi-
gation of the topic.
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