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Abstract
We present a weighted algebraic non-monotonic
logic we refer to as LogAG for reasoning with
uncertain beliefs. In LogAG, the classical logical
formulas could be associated with ordered grades
representing measures of uncertainty. The revision
of beliefs in LogAG, when contradictions arise,
is done according to the grades of the contradic-
tory propositions. Throughout the paper, we present
the syntax and semantics of LogAG, extending the
classical notion of logical consequence to handle
graded propositions. A proof theory for LogAG is
thoroughly described, discussing its soundness and
completeness. Finally, we demonstrate the utility
of LogAG in non-monotonic reasoning and in rea-
soning about information provided by a chain of
sources of varying degrees of trust.

1 Introduction
Most of the commonsense reasoning we perform in our every-
day lives typically involves uncertain, possibly contradicting,
beliefs. Consequently, any intelligent agent emulating human
reasoning must be able to handle uncertain knowledge in a
way that facilitates drawing reasonable conclusions, and re-
solve contradictions when they arise. Tremendous research
effort has been made over the years to attempt to understand
and model uncertain reasoning [Halpern, 2017]. The work
presented in this paper is one such attempt.

In this paper, we extend a logic we refer to as LogAG
for reasoning with uncertain beliefs by presenting its proof
theory. The syntax and semantics of LogAG is thoroughly
described in [Ehab, 2016; Ismail and Ehab, 2015]. “Log”
stands for logic, “A” for algebraic, and “G” for grades. In
LogAG, a classical logical formula could be associated with
a grade representing a measure of its uncertainty. Non-graded
formulas are taken to be certain. In this way, LogAG is a
logic for reasoning about graded propositions. LogAG is al-
gebraic in that it is a language of only terms, some of which
denote propositions. Both propositions and their grades are
taken as individuals in the LogAG ontology. Thus, the lan-
guage includes terms denoting graded propositions, grades
of propositions, grading propositions, and graded grading
propositions in an arbitrary compositional structure. While

some multimodal logics such as [Demolombe and Liau, 2001;
Milošević and Ognjanović, 2012] may be used to express
graded grading propositions too, unlike LogAG, the grades
themselves are embedded in the modal operators and are
not amenable to reasoning and quantification. We will show
throughout this paper that this is not the case with LogAG.
This makes LogAG a quite expressive language that is still
intuitive and very similar in syntax to first-order logic.

While most of the weighted logics we are aware of em-
ploy non-classical modal logic semantics by assigning grades
to possible worlds [Dubois et al., 2014], LogAG is a non-
modal logic with classical notions of worlds and truth val-
ues. This is not to say that LogAG is a classical logic, but it
is closer in spirit to classical non-monotonic logics such as
default logic [Reiter, 1980] and circumscription [McCarthy,
1980]. Following these formalisms, LogAG assumes a clas-
sical notion of logical consequence on top of which a more
restrictive, non-classical relation is defined selecting only a
subset of the classical models. In defining this relation we
take the algebraic, rather than the modal, route.

In Sections 2 and 3, the syntax and semantics of LogAG
are reviewed. In Section 4, we show that LogAG is a stable
and well-behaved non-monotonic logic by discussing some
of the properties of the extended logical consequence rela-
tion. Next, we present in Section 5 the LogAG proof theory
discussing its soundness and completeness. Finally, we show
running examples from an implementation of LogAG in Sec-
tion 6 demonstrating the utility of LogAG in non-monotonic
reasoning and in reasoning about information provided by a
chain of sources of varying degrees of trust.

2 LogAG Syntax
LogAG consists of algebraically constructed terms from
function symbols. There are no sentences in LogAG; in-
stead, we use terms of a distinguished syntactic type to denote
propositions. Propositions are included as first-class individ-
uals in the LogAG ontology and are structured in a Boolean
algebra giving us all standard truth conditions and classi-
cal notions of consequence and validity. The inclusion of
propositions in the ontology, though non-standard, has been
suggested by several authors [Church, 1950; Bealer, 1979;
Parsons, 1993; Shapiro, 1993]. Additionally, grades are in-
troduced as first-class individuals in the ontology. As a result,



propositions about graded propositions can be constructed,
which are themselves recursively gradable.

A LogAG language is a many-sorted language composed
of a set of terms partitioned into three base sorts: σP is a set
of terms denoting propositions, σD is a set of terms denot-
ing grades, and σI is a set of terms denoting anything else. A
LogAG alphabet includes a non-empty, countable set of con-
stant and function symbols each having a syntactic sort from
the set σ = {σP , σD, σI}∪{τ1 −→ τ2 | τ1 ∈ {σP , σD, σI}}
and τ2 ∈ σ} of syntactic sorts. Intuitively, τ1 −→ τ2 is the
syntactic sort of function symbols that take a single argument
of sort σP , σD, or σI and produce a functional term of sort τ2.
(Given the restriction of the first argument of function sym-
bols to base sorts, LogAG is, in a sense, a first-order lan-
guage.) In addition, an alphabet includes a countably infinite
set of variables of the three base sorts; a set of syncategore-
matic symbols including the comma, various matching pairs
of brackets and parentheses, and the symbol ∀; and a set of
logical symbols defined as the union of the following sets:
{¬} ⊆ σP −→ σP , {∧,∨} ⊆ σP −→ σP −→ σP , {≺, .=
} ⊆ σD −→ σD −→ σP , and {G} ⊆ σP −→ σD −→ σP . 1

3 LogAG Semantics
We will begin this section by presenting the interpretation of
the LogAG syntactic structures along with the algebraic def-
inition of logical consequence. Next, we will thoroughly de-
scribe our proposed extension of logical consequence to ad-
dress uncertain reasoning with graded propositions. Through-
out this section, only sketches of the proofs will be shown for
space limitations.

3.1 Logical Consequence
A key element of defining the semantics of LogAG is the
notion of a LogAG structure.

Definition 3.1. A LogAG structure is a quintuple
S = 〈D,A, g, <, e〉, where

• D, the domain of discourse, is a set with two dis-
joint, non-empty, countable subsets: P denoting a set
of propositional terms, and G denoting a set of grading
terms.
• A = 〈P,+, ·,−,⊥,>〉 is a complete, non-degenerate

Boolean algebra.
• g : P × G −→ P is a grading function.
• <: G × G −→ P is an ordering function.
• e : G × G −→ {⊥,>} is an equality function, where for

every g1, g2 ∈ G:
e(g1, g2) = > if g1 = g2, and e(g1, g2) = ⊥ otherwise.

The three blocks of the domain of discourse P,G, and
P ∪ G stand in correspondence to the three base syntactic
sorts σP , σD, and σI respectively. The set of propositions P
is interpreted by a complete, non-degenerate Boolean algebra
A. g is a function that maps a proposition p ∈ P and a grade
g ∈ G to the proposition that the grade of p is g. By not im-
posing any further restrictions on g, we allow any reasonable

1Terms involving ⇒, ⇔, and ∃ can always be expressed in terms
of the above logical operators and ∀.

Figure 1: The interpretation of the LogAG terms.

notion of grading. < is an ordering function on the grades in
G. It maps two grades g1 and g2 to the proposition that g1

is less than g2. Some restrictions are imposed on < as men-
tioned in [Ismail and Ehab, 2015] to give rise to an irreflexive
linear order on G which is serial in both directions.

A valuation V of a LogAG language is a triple
〈S,Vf ,Vx〉, where S is a LogAG structure, Vf is a function
that assigns to each function symbol an appropriate function
on D, and Vx is a function mapping each variable to a cor-
responding element of the appropriate block of D. An inter-
pretation of LogAG terms is given by a function [[·]]V . Figure
1 summarizes the operation of [[·]]V . The formal definition of
[[·]]V can be found in [Ismail and Ehab, 2015].

We define logical consequence using the familiar notion
of filters from Boolean algebra [Sankappanavar and Burris,
1981]. A propositional term φ is a logical consequence of a
set of propositional terms Γ if it is a member of the filter of
the interpretation of Γ, denoted F ([[Γ]]V).

Definition 3.2. Let L be a LogAG language. For every φ ∈
σP and Γ ⊆ σP , φ is a logical consequence of Γ, denoted
Γ |= φ, if, for every L-valuation V , [[φ]]V ∈ F ([[Γ]]V) where
[[Γ]]V =

∏
γ∈Γ

[[γ]]V .

3.2 Graded Consequence
The definition of logical consequence presented in the previ-
ous section cannot address uncertain reasoning with graded
propositions. To see that, consider an agent reasoning with a
set of propositional terms Q as shown in Figure 2. It would
make sense for the agent to be able to conclude p even if
p is uncertain (and, hence, graded) since it has no reason
to believe ¬p. The filter F (Q), however, contains the clas-
sical logical consequences ofQ, but will never contain p. For
this reason, we extend our classical notion of filters into a
more liberal notion of graded filters to enable the agent to
conclude, in addition to the classical logical consequences of
Q, propositions that are graded in Q or follow from graded
propositions in Q. This should be done without introducing
inconsistencies. Due to nested grading, graded filters come
in degrees depending on the depth of nesting of the admitted
graded propositions. In Figure 2, F1(Q) is the graded filter
of degree 1. F1(Q) contains everything in F (Q) in addition
to the nested graded propositions at depth 1, p and g(¬q, d1).
q and r are also admitted to F1(Q) since they follow classi-
cally from {p, p ⇒ q} and {p, p ⇒ r} respectively. To com-
pute the graded filter of degree 2, F2(Q), we take everything



Figure 2: Graded Filters

in F1(Q) and try to add the graded proposition ¬q at depth
2. The problem is, once we do that, we have a contradiction
with q. To resolve the contradiction, we admit to F2(Q) ei-
ther p (and consequently q and r) or ¬q. In deciding which of
p and ¬q to kick out we will allude to their grades. The grade
of p is d1, and ¬q is graded in a grading chain containing d1

and d2. To get a fused grade for ¬q, we will combine both d1

and d2. If d1 is less than the fused grade of ¬q, p will not be
admitted to the graded filter, together with its consequences
q and r. Otherwise, ¬q will not be admitted, and p, q, and r
will remain. If we try to compute F3(Q), we get everything
in F2(Q) reaching a fixed point. In general, the elements of
F i(Q) will be referred to as the graded consequences at depth
i. In what follows, graded filters will be formally defined.

The key to defining graded filters is the intuition that the
set of consequences of a proposition set Q may be further
enriched by telescoping Q and accepting some of the propo-
sitions graded therein. For this, we need to define (i) the pro-
cess of telescoping, which is a step-wise process that consid-
ers propositions at increasing grading depths, and (ii) a cri-
terion for accepting graded propositions which, as mentioned
before, depends on the grades of said propositions. Since the
nesting of grading chains is permissible in LogAG, it is nec-
essary to compute the fused grade of a graded proposition p
in a chain C to decide whether it will be accepted or not. The
fusion of grades in a chain is done according to an opera-
tor ⊗. Further, since a graded proposition p might be graded
by more than one grading chain, we define the notion of the
fused grade of p across all the chains grading it by an operator
⊕.
Definition 3.3. Let S be a LogAG structure with a depth-
and fan-out-bounded P 2. A telescoping structure for S is a
quadruple T = 〈T ,O,⊗,⊕〉, where
• T ⊆ P , referred to as the top theory;
• O is an ultrafilter of the subalgebra induced by
Range(<) [Sankappanavar and Burris, 1981];
• ⊗ :

⋃∞
i=1 Gi −→ G; and ⊕ :

⋃∞
i=1 Gi −→ G.

Recasting the familiar notion of a kernel of a belief base
[Hansson, 1994] into the context of LogAG structures, we
say that a ⊥-kernel of Q ⊆ P is a subset-minimal inconsis-
tent set X ⊆ Q such that F (E(F (X ))) is improper (= P)

2P is depth-bounded if every grading chain has at most d distinct
grading propositions and is fan-out-bounded if every grading propo-
sition grades at most fout propositions [Ismail and Ehab, 2015].

where E(F (X )) is the set of embedded graded propositions
in the filter of X . LetQ� ⊥ be the set ofQ kernels that entail
⊥. A proposition p ∈ X survives X in T if p is not the weak-
est proposition (with the least grade) in X . In what follows,
the fused grade of a proposition p in Q ⊆ P according to a
telescoping structure T will be referred to as fT(p,Q).
Definition 3.4. For a telescoping structure T =
〈T ,O,⊗,⊕〉 and a fan-in-bounded 3 Q ⊆ P , if X ⊆ Q,
then p ∈ X survives X given T if
1. p is ungraded in Q; or
2. there is some ungraded q ∈ X such that q /∈ F (T ); or
3. there is some graded q ∈ X such that q /∈ F (T ) and

(fT(q,Q) < fT(p,Q)) ∈ O.
The set of kernel survivors of Q given T is the set

κ(Q,T) = {p ∈ Q| if p ∈ X ∈ Q� ⊥ then p survives X
given T}.

The notion of a proposition p being supported in Q is de-
fined as follows.
Definition 3.5. Let Q, T ⊆ P . We say that p is supported in
Q given T if

1. p ∈ F (T ); or
2. there is a grading chain 〈q0, q1, . . . , qn〉 of p in Q with
q0 ∈ F (R) where every member ofR is supported inQ.

The set of propositions supported in Q given T is denoted by
ς(Q, T ).
Observation 1. If F (T ) is proper, then F (ς(κ(Q,T), T )) is
proper.

Proof. If F (ς(κ(Q,T), T )) is not proper, then ς(κ(Q,T), T )

has at least one kernel X ∈ Q� ⊥. According to Definitions
3.4 and 3.5, this can only happen if X ⊆ T . Thus, F (T ) is
proper.

In what follows, the graded propositions at depth 1 of the
filter ofQ will be denoted asE1(F (Q)). The T-induced tele-
scoping of Q is defined as the set of propositions supported
given T in the set of kernel survivors of E1(F (Q)).
Definition 3.6. Let T be a telescoping structure for S, IfQ ⊂
P such thatE1(F (Q)) is fan-in-bounded, then the T-induced
telescoping of Q is given by

τT(Q) = ς(κ(E1(F (Q)),T), T ).

If F (Q) has finitely-many grading propositions, then
τT(Q) is defined, for every telescoping structure T. Hence,
provided that the right-hand side is defined, let

τnT(Q) =

{
Q if n = 0
τT(τn−1

T (Q)) otherwise

Finally, a graded filter of a top theory T , denoted Fn(T),
is defined as the filter of the T-induced telescoping of T of
degree n.4

3Q is fan-in-bounded if every graded proposition is graded by at
most fin grading propositions.

4In general, even with a finite and fan-in-bounded T , the exis-
tence of a fixed-point for graded filters is not secured as discussed in
[Ismail and Ehab, 2015].



Example 3.1 in Figure 3 illustrates the construction of
graded filters.

Example 3.1
Consider Q = {−p + q,−p + r, g(p, 2), g(g(−q, 2), 3)} and T =
〈Q,O,⊗,⊕〉 where⊕ = max, and⊗ = mean.

• τ0
T = Q

• τ1
T = τT(τ0

T) = ς(κ(E1(F (Q)),T), T )
F (Q) = Q ∪ {−p+ q.g(p, 2), g(g(−q, 2), 3) + g(p, 2), ....}
E1(F (Q) = F (Q) ∪ {p, g(−q, 2)}
κ(E1(F (Q),T) = E1(F (Q)
τ1
T = κ(E1(F (Q),T) = ς(κ(E1(F (Q),T),Q)

F1(T) = F (τ1
T)

Upon telescoping to degree 1, there are no contradictions inE1(F (Q))
(no X ⊆ E1(F (Q)). Hence, everything in E1(F (Q)) survives tele-
scoping and is supported.

• τ2
T = τT(τ1

T)

E1(F (τ1
T)) = F (τ1

T) ∪ {−q}
κ(E1(F (τ1

T)),T) = F (τ1
T)− {p}

τ2
T = ς(κ(E1(F (τ1

T)),T),Q) = κ(E1(F (τ1
T)),T)− {q, r}

F2(T) = F (τ2
T)

Upon telescoping to degree 2, there are two ⊥−kernels {q,−q} and
{p,−p + q,−q}. q survives the first kernel as it is not graded in Q.
−q survives the first kernel as well as it is the only graded proposition in
the kernel with another member q /∈ F (Q). p does not survive the sec-
ond kernel as the kernel contains another graded proposition−q and the
grade of p (2) is less than the fused grade of−q (2.5). Accordingly, q and
r lose their support and are not supported in the set of kernel survivors.
The graded filter of degree 2 does not contain p, q or r.

• τ3
T = τT(τ2

T)

τ3
T = ς(κ(E1(F (τ2

T)),T),Q) = κ(E1(F (τ2
T)),T)

F3(T) = F (τ3
T) = F2(T) reaching a fixed point.

Figure 3: The construction of graded filters.

We use graded filters to define graded consequence as
follows. Given a LogAG theory T ⊆ σP and a valuation
V = 〈S,Vf ,Vx〉, let V(T) = {[[p]]V | p ∈ T}. Further,
for a LogAG structure S, an S grading canon is a triple
C = 〈⊗,⊕, n〉 where n ∈ N and ⊗ and ⊕ are as indicated
in Definition 3.3.

Definition 3.7. Let T be a LogAG theory and V =
〈S,Vf ,Vx〉 a valuation, where S has a set P which is depth-
and fan-out-bounded, for some LogAG language L. For ev-
ery p ∈ σP and S grading canon C = 〈⊗,⊕, n〉, p is a
graded consequence of T with respect to C, denoted T |'C p,
if Fn(T) is defined and [[p]]V ∈ Fn(T), for every telescop-
ing structure T = 〈V(T),O,⊗,⊕〉 for S, where O extends
F (V(T)∩Range(<)). (An ultrafilter U extends a filter F , if
F ⊆ U .)

It is worth noting that |'C reduces to |= if n = 0 or
if F (E(V(T))) does not contain any grading propositions.
However, unlike |=, |'C is non-monotonic in general.

4 Properties of LogAG
One way of evaluating non-monotonic formalisms in litera-
ture (for instance [Gabbay, 1985; Makinson, 1994]) is to ex-
amine the properties of their logical consequence relations.
Accordingly, we will briefly present in this section some
properties of the LogAG consequence relation.

Since according to Definition 3.7 the graded consequence
relation of LogAG is based on graded filters, we first present
a property of graded filters. The following theorem states that

graded filters of a consistent theory are always consistent.
This implies that reasoning in LogAG is consistency preserv-
ing.
Theorem 4.1. If T is a telescoping structure where F (T ) is
proper, then, if defined, Fn(T) is proper, for every n ∈ N.

Proof. For n = 0, the statement is trivial, since F0(T) =
F (T ). Otherwise, the statement follows directly from Obser-
vation 1 since, by the definition of graded filters, Fk+1(T) =
F (K), for some K ⊆ κ(E1(Fk(T)),T).

A widely accepted view of Gabbay [Gabbay, 1985] for as-
sessing whether a formalism is considered to be a reasonable
non-monotonic logic asserts that reasoning the formalism’s
logical consequence relation should observe reflexivity, cut,
and cautious monotony.

The following lemma will be useful in the proof of the fol-
lowing theorem.
Lemma 4.1. For any proposition p, let T1 = 〈T ,O,⊗,⊕〉,
T2 = 〈T ∪ {p},O,⊗,⊕〉, and i ∈ N. If F i(T1) is a fixed
point where p ∈ F i(T1), then there is some j ∈ N such that
F j(T2) is a fixed point and F i(T1) = F j(T2).
Theorem 4.2. For any proposition p, let T1 = 〈T ,O,⊗,⊕〉
and T2 = 〈T ∪ {p},O,⊗,⊕〉. Further, let Fn(T1) and
Fm(T2) be fixed points where n,m ∈ N. The graded conse-
quence relation of LogAG defined in terms of graded filters
observes the following extended versions of reflexivity, cut,
and cautious monotony.

1. Reflexivity: If p ∈ T , then p ∈ Fn(T1).
2. Cut: If p ∈ Fn(T1) and q ∈ Fm(T2),

then q ∈ Fn(T1).
3. Cautious Monotony: If p ∈ Fn(T1) and q ∈ Fn(T1),

then q ∈ Fm(T2).

Proof. Reflexivity follows directly from Clause 1 in Defini-
tion 3.5 and the definition of graded filters.

If q ∈ Fm(T2), then according to Lemma 4.1 it must be
the case that q ∈ Fn(T1). Accordingly, the graded conse-
quence of LogAG relation observes cut.

Similarly, if p ∈ Fn(T1) and q ∈ Fn(T1), then it follow
from Lemma 4.1 that q ∈ Fm(T2). Accordingly, the graded
consequence relation ofLogAG observes cautious monotony.

5 LogAG Proof Theory
In order to compute the graded filter of degree n, all ⊥-
kernels are to be computed, which is undecidable for first-
order logic according to Church’s Theorem [Börger et al.,
2001; Raatikainen, 2015]. For this reason, the proposed proof
theory takes an alternative approach. A set of supports is kept
track of for every proposition enabling the computation of
some of the ⊥-kernels. Further, the natural deduction rules of
classical logic are modified to update the supports of the in-
ferred propositions, and a special derivation rule of telescop-
ing is added. This special rule of inference will extract any
graded proposition in any grading chain. It is worth noting
that this is different from our semantic notion of telescop-
ing presented in the last section. As will be shown, this new



derivation rule can introduce contradictions. Hence, a way of
handling said contradictions is proposed.

5.1 Supported Knowledge Bases
We refer to a belief space as a context. To accommodate rea-
soning with graded propositions, a context is defined as a pair
C = 〈HS, TS〉 where HS is a set of hypotheses (facts), and
TS is a set of telescoped (graded) propositions. The context
where the current inference is done is referred to as the cur-
rent context.

Each propositional term p is associated with a set of sup-
ports, where each support corresponds to a unique derivation
of p. We extend the structure of a support suggested in [Mar-
tins and Shapiro, 1988] to include graded supports.
Definition 5.1. A support of a proposition p is a pair s =
〈O, T 〉 where O ∪ T |= p. O will be referred to as the origin
set, and T will be referred to as the telescoped supports set.

To accommodate the supports of propositions, a supported
knowledge base is defined as follows:
Definition 5.2. A Knowledge base (KB) is defined as a triple
〈P,S,G〉 where:
• P ⊆ σP .
• S is a function mapping each propositional term p ∈ P

to a set of supports of p.
• G is a function mapping each propositional term p ∈ P

to a set of sequences of grade terms of the syntactic sort
σD.

In what follows, we will assume that all grade terms ap-
pearing in P are numerals. Each sequence in G(p) contains
the grades associated with p in a particular chain. This will
facilitate computing the fused grade of p. Given a grading
canon C = 〈⊗,⊕, n〉 the fused grade of a proposition p ∈ P
is defined as follows.
Definition 5.3. Let KB = 〈P,S,G〉, for any proposi-
tion p ∈ P, the fused grade of p is defined as f(p) =⊕

(f⊗(Gi)
length(G(p))
i=1 ) for every Gi ∈ G(p) such that

length(Gi) ≤ n.
At any point of time, not all propositional terms p ∈ P will

be believed in a context.
Definition 5.4. Let KB = 〈P,S,G〉 be a supported knowl-
edge base. A propositional term p ∈ P is said to be asserted
(believed) in a context C = 〈HS, TS〉 if there is a support
〈O, T 〉 ∈ S(p) where O ⊆ HS and T ⊆ TS.

5.2 The Inference Rules
The proposed proof theory is similar in spirit to the Fitch-
style natural deduction rules. However, it does not enforce
specific inference rules for the classical rules of inference (the
introduction and elimination rules for ¬,⇒,∧,∨, and ∀) for
the sake of generality. Any inference rule I will be applied to
a supported KB, and will result in an updated supported KB
(I(KB = 〈P,S,G〉) = KB′ = 〈P′,S′,G′〉). We can think
of any classical inference rule as one of the following two
types 5:

5An example set of classical Fitch-style inference rules is pre-
sented in [Ehab, 2016].

1. Rules that require a particular set of premises to
be in the set of propositions belonging to the KB
({p1, p2, ..., pn} ⊆ P) to derive a proposition p. The up-
dated knowledge base KB′ = 〈P′,S′,G′〉 where P′ =
P∪{p}, S′(p) = S(p)∪CombineSups({p1, p2, ..., pn}),
and G′(p) = G(p) ∪ {〈〉}.
In order to define CombineSups, two helper functions
need to be defined first. The set of origin sets of a
premise p is defined as O(p) = {o | 〈o, t〉 ∈ S(p)}.
Similarly, the set of telescoped propositions supporting a
proposition p is defined as T (p) = {t | 〈o, t〉 ∈ S(p)}.
CombineSups({p1, p2, ..., pn}) = {〈O, T 〉 | O =
{o | o =

⋃n
i=1 oi where (o1, o2, ..., on) ∈×ni=1O(pi) and

T = {t | t =
⋃n
i=1 ti where

(t1, t2, ..., tn) ∈×ni=1 T (pi)}.
2. Rules that add an assumption δ to the KB generating an

updated temporaryKB′′ = 〈P′′,S′′,G′′〉where P′′ = P∪
{δ}, S′′(δ) = {〈{δ}, {}〉}, and G′′(δ) = {〈〉}. If ψ is
derived fromKB′′, then some proposition p will be added
to KB. The updated knowledge base KB′ = 〈P′,S′,G′〉
where P′ = P ∪ {p}, S′(p) = S(p) ∪ FilterSups(S′′(p))
where FilterSups(S′′(p)) = {〈O − {δ}, T 〉 | 〈O, T 〉 ∈
S′′(p)}, and G′(p) = G(p) ∪ {〈〉}〉.
In addition to the classical rules of inference, the pro-

posed proof theory adds a special inference rule of telescop-
ing (Tel). Tel will extract a graded proposition from a grad-
ing proposition, and result in a new updated supported knowl-
edge base. Tel will also change the TS set of the current
context. The TS set of the current context will contain the
propositional terms telescoped using the telescoping rule of
inference from grading propositional terms in HS, or deriv-
able from HS using any of the inference rules. Tel is defined
as follows:
Telescoping (Tel):
If G(p, g) ∈ P, the updated knowledge base KB′ =
〈P′,S′,T′〉 where P′ = P ∪ {p}, S′(p) = S(p) ∪ TelSup(p),
and G′(p) = G(p)∪TelGrades(p). TelSup(p) = {〈O, T ∪
{p}〉 | 〈O, T 〉 ∈ S(p)} and TelGrade(p) = {Gi �
〈g〉 | Gi ∈ G(G(p, g)) and � denotes sequence concatena-
tion}. The new current context is C = 〈HS, TS ∪ {p}〉.

A support for a propositional term p, s = 〈O, T 〉 ∈ S(p),
is a hypothesis support if O = {p}. s is a telescoped support
if p ∈ T . Otherwise, s is a derived support.

5.3 Handling Contradictions
In the sequel, we assume a non-contradictory KB such that
any contradictions are only derived by applying the rule of
telescoping, or by applying any sequence of inference rules
on a minimal set containing a telescoped proposition. Once
p and ¬p are derived, the ⊥ kernels are constructed using
the support sets S(p) and S(¬p). Only the graded proposi-
tions are added to the constructed ⊥-kernels as non-graded
propositions always survive telescoping. The fused grade of
all the propositions in the constructed kernels are computed.
For each kernel, the propositions with the least fused grade
are removed from the set of telescoped supports of the cur-
rent context, disbelieving the propositions. The contradictions
handling algorithm is shown in Figure 4.



Input: - Current supported knowledge baseKB = 〈P, S,G〉
- Contradictory propositions p ∈ P and ¬p ∈ P
- Current context C = 〈HS, TS〉, - Grade fusion operators⊗ and⊕.
⊥-kernels = ∅
if Either p or ¬p is graded then

if p is graded then
For each derived s = {O, T} ∈ S(¬p) {
⊥-kernels =⊥-kernels ∪ {{T ∪ {p}}}
}

else
For each derived s = {O, T} ∈ S(p) {
⊥-kernels =⊥-kernels ∪ {{T ∪ {¬p}}}
}

end
end
For each s1 = {O1, T1} ∈ S(p) and s2 = {O2, T2} ∈ S(¬p) {
⊥-kernels =⊥-kernels ∪ {{T1 ∪ T2}} }

ComputeGrades(⊥− kernels,⊗,⊕)
//computes the fused grades of each proposition in each kernel in⊥-kernels.
For each kernel k in⊥-kernels do {
min =MinimumGrade(k)
// gets the propositions with the minimum fused grade in k
TS = TS −min }

Figure 4: Handling Contradictions Algorithm

5.4 Graded Derivation
In order to define a notion of graded derivation correspond-
ing to the notion of graded consequence described in Defi-
nition 3.7, an order must be enforced between applying the
rules of classical inference, applying the rule of telescoping,
and handling contradictions. Just like graded consequence,
graded derivation is defined at a nesting depth n.

Definition 5.5. A supported knowledge base KB =
〈P,S,G〉 |∼n φ iff φ is asserted in the current context after
performing the following three steps n times:

1. Forward chain with every proposition p ∈ P on the clas-
sical rules of inference.

2. Apply the rule of telescoping once to all graded propo-
sitions in the resulting KB after the forward chaining.

3. Handle the contradictions according to the contradic-
tions handling algorithm.

5.5 Soundness and Completeness of LogAG
In this section, the discussion of soundness and completeness
will be restricted to the class of finite LogAG theories with
the unique names assumption. The formal proofs of the the ar-
guments presented in this section will be reserved for a longer
version of this paper.

In general, the proposed proof theory using |∼ is not sound.
The main reason behind that is the uncomputability of all the
⊥-kernels due to the undecidability of FOL. The proof theory
provides an alternative way to computing all the ⊥-kernels
by making use of the supports of the propositions. Since not
all the ⊥-kernels can be constructed from the set of supports,
some propositions in the non-constructed kernels will remain
asserted after running the contradictions handling algorithm
as the algorithm removes the propositions with the least grade
only from the constructed kernels. Accordingly, some propo-
sitions might be derived using |∼ from, but are not logically
implied using |' by, a LogAG theory. Such unsound infer-
ences can block the derivation of other propositions that are
logically implied at successive nesting levels. This results in
the proof theory being not complete as well.

It is worth noting though that the presented proof theory
will be sound and complete if and only if LogAG theories
are restricted to decidable fragments of FOL such as those
discussed in [Börger et al., 2001]. This can be accomplished
by restricting LogAG theories to be finite where all σI terms
are only constants and variables, no functional terms other
than G are allowed to have σP terms as arguments, and no
quantifiers or logical connectives except ¬ should appear in
σP terms inside G. Under these restrictions, each σP term
can be replaced by a propositional symbol. We can then per-
form inferences on the propositionalized theory from which
computing the ⊥− kernels will be decidable.

6 Running Examples
In this section we show running traces from an implementa-
tion we developed of the LogAG proof theory in the SNePS
reasoning and acting system originally developed at Univer-
sity at Buffalo [Shapiro, 2000]. We refer to the graded version
of SNePS as GSNePS [Ehab, 2016]. We will illustrate how
the examples can be represented in GSNePS, and how the
implemented LogAG proof theory in GSNePS can be used
to derive conclusions from uncertain information.

Example 6-1: Nixon’s Diamond
You know that Nixon was both a Quaker and a Republican.
It is arguable though how devout a Quacker Nixon was. You
also know that usually Quackers are Pacifists, and Republi-
cans are not Pacifists. How do you decide whether Nixon was
a Pacifist given being a Quacker, or not a Pacifist given being
a Republican? One way of representing the above situation in
GSNePS is as shown in Figure 5.

WFF2: G(Quacker(Nixon),6).
WFF4: G(Republican(Nixon),10).
WFF9: all(x)(Quacker(x) => G(Pacifist(x), 10)).
WFF13: all(x)(Republican(x) => G(˜Pacifist(x),10)).

Figure 5: Nixon’s Diamond in GSNePS
Since we are not sure how devout a Quacker Nixon

was, we assign to Quacker(Nixon) a less grade than
Republican(Nixon). We express our uncertainty in the
pacifism of any Quacker and non-pacifism of any Republican
by grading the consequents in WFF9 and WFF13 respectively
(de-re representation).

In what follows, asserted well-formed formulas will be
appended with a “!”. The supports of the propositions are
shown with each proposition annotated with one of two sup-
port types: telescoped (TEL), or derived (DER).

We ask the knowledge base next if Nixon is a
Pacifist. The result of the query is shown in Fig-
ure 6. First, the telescoping rule of inference is ap-
plied on WFF2 deriving Quacker(Nixon)(WFF1).
Similarly, Republican(Nixon)(WFF3) is telescoped
from WFF4. Both WFF1 and the rule WFF9 are used
to derive G(Pacifist(Nixon),10)(WFF8). Simi-
larly, WFF3 and the rule WFF13 are used to derive
G(˜Pacifist(Nixon),10)(WFF12) at nesting depth
level 1. At the next nesting depth level, the telescoping rule
of inference is applied on both WFF8 and WFF12 to de-
rive Pacifist(Nixon) and ˜Pacifist(Nixon) re-



: Pacifist(Nixon)?
Contradiction derived between
WFF7: PACIFIST(NIXON) <TEL,{WFF2,WFF9},{WFF1,WFF7}>
and
WFF11: ˜PACIFIST(NIXON) <TEL,{WFF3,WFF13},{WFF3,WFF11}>

The construced bottom kernels are
{WFF1(6), WFF3(10), WFF7(10), WFF11(10)}.
From {WFF1, WFF3, WFF7,WFF11}, WFF1! will be removed.
The updated current context is
((HS (WFF13 WFF9 WFF4 WFF2)) (TS (WFF11 WFF7 WFF3)))

WFF7: PACIFIST(NIXON) <TEL,{WFF2,WFF7},{WFF1,WFF10}>
WFF11!: ˜PACIFIST(NIXON) <TEL,WFF5,WFF13,WFF4,WFF16>

Figure 6: The Result of the Query Pacifist(Nixon) in GSNePS.

sulting in a contradiction. To resolve the contradiction, the
⊥−kernels are first constructed using the supports of the
contradicting propositions as illustrated by the contradictions
handling algorithm in Figure 4. The proposition with the least
grade (WFF1) is removed from the current context disbeliev-
ing WFF1 and depriving WFF7 of one of its supports. Accord-
ingly WFF7 is disasserted and we end up believing that Nixon
is not a pacifist.

It is worth noting that one other possible way of repre-
senting this example is to grade the entire rules in WFF9
and WFF13 (de-dicto representation). Accordingly, the con-
structed ⊥-kernel will include both rules instead of WFF7
and WFF11. If WFF9 for instance happens to have the least
grade, we will end up disbelieving the whole rule depriving
Pacifist(Nixon) of one of its supports and disasserting
it. However, disasserting the whole rule will result in blocking
the derivation of any other individual being a pacifist given
him being a quacker. This will not be the case given the de-re
representation since only the consequent is disasserted.

Example 6-2: The Case of Superman
You open the Daily Planet and read a report by Lois Lane
claiming that Superman was seen in downtown Metropolis
at noon. You happen to have seen Clark Kent at his office at
noon, and you have always had a feeling that Superman is
Clark Kent. What should you believe about the whereabouts
of Superman if you trust Lois Lane’s honesty, you only mildly
trust the Daily Planet, and you still have your doubts about
whether Superman is indeed Clark Kent?

One way of representing the above example in GSNePS is
as shown in Figure 7. Since At(SM,DT,NOON) is obtained

WFF3: G(G(At(SM,DT,NOON),11),4).
WFF4: At(KC,Office,NOON).
WFF6: G(all(l,t)(At(KC,l,t)<=>At(SM,l,t)),10.5).
WFF7: all(l1,l2,x,t)((Disjoint(l1,l2) and
At(x,l1,t)) => ˜At(x,l2,t)).
WFF8: Disjoint(Office,DT).

Figure 7: The Case of Superman in GSNePS

from a chain of two uncertain sources (Lois Lane and the
Daily Planet), it is represented as a chain of grading proposi-
tions. Since we trust Lois Lane more than the Daily Planet, we
assign to At(SM,DT,NOON) a grade of 11, and the graded
proposition G(At(SM,DT,NOON),11) a grade of 4. This
illustrates one possible use for the nesting of grading propo-
sitions to indicate the varying degrees of trust of a chain of
knowledge sources. We assign to our uncertain belief that Su-

perman is Clark Kent (and hence Superman will always be in
the same location as Clark Kent) a grade of 10.5.

We ask the knowledge base next if At(SM,DT,NOON).
The graded proposition At(SM, DT, NOON) (WFF1) is
telescoped with a grade of 7.5 (⊗ = mean and ⊕ =
max) by applying the telescoping rule of inference on
WFF3. Similarly, the graded rule (WFF5) in WFF6 is tele-
scoped with a grade of 10.5. Using the graded rule and
WFF4, At(SM,Office,Noon) will be derived. Given
At(SM,Office,NOON) together with WFF7 and WFF8,
˜At(SM,DT,NOON) will be derived contradicting with
WFF1. To resolve the contradiction, the proposition with
the least grade (WFF1) is removed from the constructed
⊥−kernel and from the current context disbelieving WFF1.

: AT(SM,DT,NOON)?
Contradiction derived between
WFF11: ˜AT(SM,DT,NOON)
<DER,{WFF4,WFF6,WFF7,WFF8},{WFF5(10.5)}>}} and
WFF!: AT(SM,DT,NOON)
<TEL,{WFF3},{WFF1(7.5),WFF2(4)}>

The construced bottom kernels are
{WFF5(10.5), WFF1(7.5)}.
From {WFF5 WFF1}, WFF1! will be removed.
The updated current context is
((HS (WFF8 WFF7 WFF6 WFF4 WFF3))(TS (WFF5 WFF2))

WFF11!: ˜AT(SM,DT,NOON)
<DER,{WFF4,WFF6,WFF7,WFF8},{WFF5}>
WFF1: AT(SM,DT,NOON)
<TEL,{WFF3},{WFF1,WFF2}>

Figure 8: The Result of the Query AT(SM,DT,NOON) in GSNePS.

Note that if the degree of trust in the Daily Planet is in-
creased to 15, the grade of WFF1 will increase to 13. In this
case, WFF5 will be removed from the current context disas-
serting WFF11 instead.

7 Conclusion
In this paper, we presented LogAG, a weighted non-
monotonic logic for reasoning with uncertainty. Not with-
standing the abundance of graded logics in the literature, it
is our conviction that LogAG provides an interesting alter-
native. We hope to have demonstrated the utility of LogAG
in uncertain reasoning with graded propositions based on
an algebraic framework as an alternative to the commonly
used modal frameworks employed by the other graded log-
ics in the literature. The main power of LogAG is the ability
to express a chain of graded propositions where the grades
are amenable to reasoning and quantification which is not
the case in many other graded logics. We showed in this
paper the utility of LogAG in reasoning with information
provided by a chain of sources of varying degrees of trust.
LogAG is also demonstrably useful in other types of com-
monsense reasoning including default reasoning and reason-
ing with paradoxical sentences as discussed in [Ehab, 2016;
Ismail and Ehab, 2015]. As a next step, we plan to to care-
fully investigate how LogAG relates to other graded logics
and non-monotonic formalisms. We have some preliminary
results showing thatLogAG subsumes circumscription, some
default theories, and Nute’s defeasible logic [Nute, 2001].
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