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Abstract. In this paper, we present an approach to human navigation
and mapping using semantic techniques. The main idea is to enhance a
map produced by a mapping algorithm with additional contextual infor-
mation. The key advantage of our approach is the presence of a human
in the loop, that can provide reliable semantic information. Several sim-
ulations of the proposed algorithm were conducted using a simulation
framework developed particularly for this research.

1 Introduction

Human navigation attracts some attention over the last decade. A number of
works addressed this problem by applying various techniques from different re-
search fields such as Mobile Robotics and Artificial Intelligence. In this work
we focus on the application of semantic techniques in human navigation and
mapping.

A number of works were using semantic techniques in various forms and have
achieved significant results. For instance, the authors of [1],[2],[3] and [4] propose
to use indoor features, such as walls, stairs, doors and door-signs as landmarks
of the environment for building the maps.

The above mentioned works focus on mobile robots mapping and naviga-
tion, whereas [5,6,7,8] and [9] present a semantic mapping approach for humans,
which is more relevant to our case. In [5], the mapping system builds a map by
classifying the indoor environment into places and transitions and transitions
between places, after processing the images acquired from a catadioptric camera
worn by a human. The authors of [6] and [7] propose a human-centered naviga-
tion system which uses an ontology repository and the human profile in order to
perform navigation based on the user’s physical and perceptual/cognitive char-
acteristics. In [8] a semantic approach to SLAM leveraging the Android smart-
phones’ sensors is presented. The system detects nearby landmarks in order to
reset the dead reckoning errors. The PlaceSLAM, presented in [9], extends the
well-known odometry based SLAM algorithm - FootSLAM. This approach in-
creases the accuracy of FootSLAM by adding additional contextual information
to a map. This information is acquired by prompting a user to describe the place
that she sees.

In this paper, we propose an approach which tends to solve the correspon-
dence (also known as loop-closing) problem in mapping process applying seman-
tic techniques. Our approach uses graph structure as representation of places



and spatial relations between them. By these means, it can be identified as
topological mapping with the use of semantic techniques. The key advantage of
our approach is the presence of a human in the loop, that can provide semantic
information in reliable way. In order to test our approach, a naive algorithm for
topological map-building has been adopted: this allows us to measure the im-
pact of semantic information on loop closure even in absence of complex SLAM
optimization techniques.

2 Semantic Mapping

Semantic Mapping In our approach we model a world as a graph G. This graph
contains nodes which represent places of the environment that the agent explores.
More formally G = (N, E), where N denotes a set of nodes N = { n1, n2, n3 . . .
ni }, and E is a set of directed edges that signify a path traveled by an agent and a
linkage between semantic objects on a map. Each node ni carries supplementary
information about its position Xi in a Cartesian coordinate system, and a set
of labels Li denoting objects or environmental features discovered in this place.
For instance, the label may include the typology of relevant buildings that can
be found in the corresponding place (e.g. Church, Hospital, Shop). As the reader
can imagine, one purpose of such structure is that the information labeling nodes
might be used to minimize the possible errors in localization of a person on a
map, by recognition of already visited or known objects, buildings and other
environmental features.

Knowledge base The presence of a human in the loop cannot guarantee an abso-
lute precision in semantic information. In different time steps, the human may
describe the same place at different levels of abstraction, she may use synonyms
for the same environmental feature or even another feature. Some examples are
"shop", "bakery", "traffic lights" and so on. At the first visit, the human may
detect a "shop", at the second visit to the same place she may recognize a "bak-
ery" (subclass of shop), at the third visit a "traffic lights" (a different feature in
the same place). To handle ambiguities and hierarchical relationships between se-
mantic objects, we suggest to use ontology techniques, modeling an environment
as a hierarchy of environmental features connected to each other depending on
the topology of the environment. We use the structure of the ontology to define
a metrics that measures "how far" two labels are in a semantic sense comparing
the classes that these labels belong to. The rationale is that the farther two
classes are in the ontology tree, the less likely it is that the two labels are meant
to represent the same environmental features in the real-world.

Localization algorithm The approach proposed in this article may be adapted to
different starte-of-the-art SLAM approach: however, for sake of simplicity, here
we suggest an algorithm that is based on Markov Localization for detecting the
most probable node in which the person is located, and simply add a new node
to the map whenever the probability of being in a pre-existing node is below a



given threshold. As usual in Markov Localization we estimate the pose of the
agent in two steps: action prediction and observation update.

In the first step, the probability distribution over the nodes at time t is
updated by applying the control AT starting from each node Nt−1. Notice that,
as the agent moves in the real world, the path is updated using dead reckoning;
however, the probability distribution is updated only when the agent thinks to
have reached a new node, i.e., the agent recognizes environmental features that
are worth being recorded and tells the system what she can see in its current
location.

P (Nt = ni|O0:T , A1:T ) =
∑
Nt−1

P (Nt = ni|Nt−1, AT )× P (Nt−1|O0:T−1, A1:T−1)

(1)
The second step is an update phase, when we obtain posterior probability

(observation update vector), incorporating measurement acquired by the agent
according to the observation model. At this stage, the probability of the obser-
vation at time t does not depend on previously acquired observations. We use
our ontology as the reference for observation model.

P (Nt = ni|O0:T , A1:T ) = α′P (OT |Nt = ni)× P (Nt = ni|O0:T−1, A1:T ) (2)

From a practical point of view, if the pre-existing and observed labels belong
to the same class in the ontology (e.g., Shop-Shop), the probability of the ob-
servation is equal to 1.0. If the two labels have a direct parent-child relationship
(e.g., Supermarket-Shop), the probability of the observation is 0.5. If the two la-
bels have a sibling relationship (e.g., Supermarket-Bakery) the probability of the
observation is 0.25. In those cases when the two labels do not have any relation-
ship the probability is relatively small value that leaves a minimum probability
of observation, which we set to 0.05.

Notice also that whenever a new label is observed in a node ni, the new
label is added to the set Li, thus increasing the probability of a matching during
future observations.

3 Simulation

In order to assess the difference between using and not using semantic infor-
mation during the mapping process, we have performed over 140 experimental
simulations in our specialized simulation framework. We have created 18 ar-
tificial maps simulating a real world. These maps may be classified according
to their difficulty level from simple to complex on the basis of their topology.
We consider those maps containing many places situated close to each other as
complex. Vice versa, simple map’s nodes are rather distant from each other.

The agent explores the environment moving in a Manhattan-like way, hor-
izontally and vertically. We assume that the agent has sensors for measuring
odometry, which return its heading and path with a given error. The errors in



measurements are generated randomly, basing on the angle deviation (e.g. from
-3.0 to 3.0 degrees). We repeated the experiments with different error distribu-
tions, with a 0 mean and a standard deviation ranging from 1 to 7. The error
is accumulated during the entire process, thus making localization more com-
plicated. Once the agent reaches a place, it updates the system with a label
describing it. We assume that the user should provide the system with verbal
information through a microphone, however for the simulation process we have
implemented an algorithm which randomly generates the labels from a prepared
list that contains the labels for all classes that we have in our knowledge base.
Figure 1 shows that our algorithm recognizes previously visited places (orange
circle) also in those cases when a node has multiple environmental features be-
longing to the different classes. In the current example, the node 4 contained
a set of labels Pizzeria, Pizzeria, Clinic. The new label Pizzeria is equal to at
least one label in the set, thus the observation probability in this case is equal
to 1.0.

Fig. 1. The labels belonging to the multiple
classes

In order to evaluate the perfor-
mance of the map building algo-
rithm in presence of semantic in-
formation we use the number of
created nodes. We assume that,
if all loops are correctly closed,
the number of nodes in the map
shall be equal to the nodes in the
environment after the whole en-
vironment has been explored. In
presence of errors, the map will
likely contain a higher number of
nodes, since the algorithm adds a
new node to the map whenever a
node is not recognized as an al-
ready visited node. The results of
the simulations for each type of
maps are presented in the Table
1. Each cell of the Table reports
the ratio between the number of nodes created with or without Semantic infor-
mation divided by the actual number of nodes in the map after a number S of
"node-to-node" navigation steps: a lower ratio means better performance. Notice
that this ratio may increase by increasing the number of navigation steps: then
the number S is set to a value which is proportional to the number of nodes in
the map, i.e., if a map has N nodes the number of steps will be 5×N .

4 Conclusion

In this extended abstract, we briefly presented a method for enhancing the pro-
cess of topological mapping with semantic information. The results obtained



Table 1. The results of the simulations.

Errors range Simple Medium Hard

Semantic NonSemantic Semantic NonSemantic Semantic NonSemantic
-1 to 1 1.09 1.72 1.07 1.40 1.05 1.21
-3 to 3 1.29 2.33 1.36 2.40 1.55 3.85
-5 to 5 1.36 2.79 1.69 3.44 2.52 4.84
-7 to 7 1.57 3.26 2.87 4.65 3.20 4.89

from the simulation process show that the presence of semantic information
allows for improving the number of loops that are correctly closed during navi-
gation. Thus, we can state that the implementation of semantic information can
significantly improve the quality of localization and mapping process.
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