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Abstract. In this work, we propose a multimodal interaction framework
for robust human-multirobot communication in outdoor environments.
In these scenarios, several human or environmental factors can cause er-
rors, noise and wrong interpretations of the commands. The main goal
of this work is to improve the robustness of human-robot interaction sys-
tems in similar situations. In particular, we propose a multimodal fusion
method based on the following steps: for each communication channel,
unimodal classifiers are firstly deployed in order to generate unimodal
interpretations of the human inputs; the unimodal outcomes are then
grouped into different multimodal recognition lines, each representing a
possible interpretation of a sequence of multimodal inputs; these lines
are finally assessed to recognize the human commands. We discuss the
system at work in a real world case study in the SHERPA domain.

Introduction

In this work, we tackle the problem of robust multimodal communication be-
tween a human operator and a team of robots during the execution of a shared
task in outdoor environments. In these scenarios, the robots should be able to
timely respond to the operator’s commands, minimizing chances of misunder-
standing due to noise or user errors. This crucial problem is well illustrated by
the domain of the SHERPA project [10, 3], whose goal is to develop a mixed
ground and aerial robotic platform supporting search and rescue (SAR) activi-
ties in an alpine scenario. One of the peculiar aspects of the SHERPA domain is
the presence of a special rescue operator, called the busy genius, that cooperates
with a team of aerial vehicles in order to accomplish search and rescue missions.
In this context, the human operator is not fully dedicated to the control of the
robots, but also involved in the rescue operations. On the other hand, he/she
can exploit light wearable devices to orchestrate the robotic team operations in
a multimodal manner, using voice and gestures based commands, in order to en-
able a fast and natural interaction with the robots. This scenario challenges the
command recognition system, since the environment is unstructured and noisy,
the human is under pressure, and the commands are issued in a fast and sparse
manner. In order to support the operator in similar scenarios, a robust and
reliable multimodal recognition system is a crucial component. In multimodal



interaction frameworks [8,2, 4,7, 12], multimodal fusion is a key issue and differ-
ent strategies have been proposed [1] to combine the data provided by multiple
input channels (gestures, speech, gaze, body postures, etc.). Analogously to [11,
9], in order to make the system interaction robust, extensible, and natural, we
adopt a late fusion approach where the multimodal inputs provided by the hu-
man are first processed by dedicated unimodal classifiers (gestures recognition,
speech recognition, etc.) and then recognized by combining these outcomes. In
this setting, multimodal data are usually first synchronized and then interpreted
according to rules or other classification methods. In contrast with these solu-
tions, in this work we propose a novel multimodal fusion approach that avoids
explicit synchronization among incoming multimodal data and it is robust with
respect to several sources of errors, from human mistakes (e.g. delays in ut-
terances or gestures, wrong and incomplete sequencing, etc.) and environmental
disturbances (e.g. wind, external noises), to unimodal classification failures. The
main idea behind the approach is to continuously assess multiple ways to com-
bine together the incoming multimodal inputs in order to obtain a subset of
events that better represent a human multimodal command. In particular, com-
mand recognition is performed in two decision steps. In the first one, we generate
multiple hypothesis on multimodal data association given a Bayesian model of
the user way of invoking commands. For this purpose, we estimate the probabil-
ity that new samples are related to others already received. Then, in a second
step, a Naive Bayes classifier is deployed to select the most plausible command
given the possible data associations provided by the previous step.

Multimodal Human-Robot Interaction Architecture

In Figure 1(a) we illustrate the human-multirobot architecture. The human op-
erator interacts with the robotic platform using different communication chan-
nels (i.e. Voice, Arm Gestures, Touch Gestures and Hand Poses) by means of
his/her wearable devices. In particular, the operator exploits a headset to issue
vocal commands, a motion and gesture control brand (Myo Thalmic Armband®)
and a mobile device (tablet) with a touch based user interface. The multimodal
interaction system (MHRI) should then interpret these commands passing them
to the Distributed Multi-Robot Task Allocation (DMRTA) (see [5] for details).
In this work, we focus on the MHRI describing the multimodal command recog-
nition system illustrated in Figure 1(b). Raw device data are directly sent and
simultaneously elaborated by the unimodal classifiers Cy), ..., C}, in order to gener-
ate the unimodal samples s;. These samples are then received by the Multimodal
Fusion module to generate different recognition lines { Ly, ..., L, } exploiting the
Bayesian Network and the Training Set. Each multimodal command is succes-
sively interpreted as a user command by the Command Classification module.

! https://www.myo.com/
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(a) Human-Robot Interaction archltecture (b) Multimodal Recogni-

tion System.

Command Recognition

Multimodal command recognition relies on a late fusion approach in which het-
erogeneous inputs provided by the user through different channels are first classi-
fied by unimodal recognizers and then fused together in order to be interpreted as
human commands. More specifically, given a sequence of inputs S generated by
the unimodal classifiers, the command recognition problem consists in finding the
command ¢ that maximizes the probability value P(c|S). This problem is here
formulated as follow. We assume a set C' = {cg, 1, ..., ¢ } of possible commands
invokable by the operator. Each command is issued in a multimodal manner,
hence it is associated with a sequence of unimodal inputs S = {so, ..., s, }, each
represented by the triple s; = (wj;, chy, t;), where w; € W is the label provided
by the unimodal classifier associated with the ch; € I channel and t; € Rt
is its time of arrival. In our approach, the user commands are interpreted in
two decision steps: firstly, the outputs of unimodal classifiers are fused together
(Multimodal Fusion) in order to be assessed an recognized as user commands in
the second step (Command Recognition).

Multimodal Fusion. The multimodal fusion step allows the system to select and
group together unsynchronized inputs provided by the unimodal classifiers as-
sociated with the same current command. For this purpose, in correspondence
to the input sequence S of unimodal classified data, we generate different pos-
sible subsets of elements, called Recognition Lines, each representing a possible
way to associate these inputs to the invoked command. Therefore, during the
command interpretation process, different Recognition Lines are generated and
collected into a Recognition Set in order to be interpreted in the second step.
These multiple ways of grouping the inputs, allow the proposed framework to
fuse unsynchronized unimodal inputs in a robust fashion, coping with distur-
bances like environmental noise, command invocation errors, or failures of the



single unimodal recognition subsystems. The Recognition Line generation pro-
cess works as follows. First of all, for each new input, a new Recognition Line
containing only this data is generated; then the incoming data is also assessed
in order to be included into other Recognition Lines already available in the
Recognition Set. In order to assign an input sample to a Recognition Line we
rely on a Bayesian Network (BN) approach suitably trained in order to infer the
probability that a new incoming unimodal sample s, belongs to a Recognition
Line given the others s, ..., s; already associated to the same line. Specifically,
the BN proposed in this work consists of three different nodes (see Figure 1(c)).
The Word node, that contains the list of input data in the recognition line, the
Channel node that is for the input channels and the Line node that represents
the probability of the new incoming samples to belong to the considered line.
In this setting, a recieved input data is associated with a recognition line the
probability to belong to that line is greater than a suitable threshold 71 and the
temporal distance of the received sample (s,) with respect to the previous one
(sp) on the same line is within a specific interval (|ts, —t5,| < 7).

Command Recognition. In the command recognition phase, the previously gen-
erated Recognition Lines are to be interpreted as user commands. Our approach
exploits a Naive Bayes classifier to associate each element of the Recognition
Set with a label and a score representing, respectively, the recognized command
class and its classification probability. More specifically, given a sequence of sam-
ples S = {sq, ..., s}, the list of semantic labels S,, = {wy, ..., w,} is extracted.
Given the list of possible commands cq, ..., ¢k, the class ¢ and its score is assessed
by through the formula: ¢ = argmax ¢ P(c) Hli“{l p(c|lw;). Once all the Recog-
nition Lines have been classified, the line with maximum score is selected as
the recognized user command (see Figure 1(d)). Also in this case, a command is
properly recognized only if the probability returned by the Naive Bayes classifier
is higher than a trained threshold 75 .

Word Channel
(wo, ..., wi) (che,...,chi)
\ -argmax P(c|sg, ..., $n)
. cec
My _argmax P(c[si, ..., sn)
cec
___________ arg max P(c|so, ..., 8¢)
cec
(¢) Bayesian Network for mul- (d) Recognition lines and scores.

timodal command fusion.

System Training. The multimodal system is trained exploiting a Training Set
that collects, for each sample: the requested command coupled with the gener-
ated samples, the associated channel, and the elapsed time between the samples.



This way, the Bayesian Network for multimodal fusion is trained by with list
of pairs (w;,ch;) for each command invocation in the dataset. The command
recognition system is trained with the list of (w;) of the samples used to inter-
pret the user commands. Moreover, once the multimodal fusion system has been
trained, a final training session is needed to adapt the thresholds (71, T2, 7).
This is obtained by asking the users to validate both the generated Recognition
Lines and the associated classification result.

SHERPA Case Study

The proposed system has been demonstrated and tested in a real Alpine en-
vironment. In order to communicate with the robotic platforms, the operator
is equipped with wearable devices: a standard headset, a mobile device (tablet)
along with a gesture/motion control bracelet. Speech recognition is based on
the PocketSphinz? software adopting a bag-of-words model instead of the most
commonly used context-free grammars. Grammar based models exploit the word
ordering in the sentence, which is not reliable in our setting since the user can
accidentally skip words because the interaction is sparse and incomplete or the
recognizer fails to catch words, because the environment is noisy. In contrast,
we adopt a less restrictive model where the recognized sentences are represented
as bags of words, which are then further processed in the late fusion step of the
multimodal recognition system described above. Gesture based commands are
used to control the robotic team via complete or complementary information
(i.e. pointing or mimic gestures). We designed and implemented a continuous
gesture recognition module based on the approach by [13]. Gesture classifica-
tion is here based on the acceleration of the operator’s arm, which is detected
by a lightweight IMU-based bracket. We defined 14 different types of gestures
used to invoke high level actions (i.e. direction movements, circles, approaching,
etc). These gestures have been trained using a data set that collects gestures
from 30 users, each providing 10 trials of each gesture class. The operator is
also able to issue commands by drawing 2D gestures on a touch user interface
(see Figure 1(e)). In this case, areas to explore, trajectories or target points can
be specified using geometrical shapes like Circles, Squares or Lines eventually
paired with voice information. The operator can also specify commands or part
of them using hand poses. The hand pose recognition system is implemented
exploiting the built-in Myo Armband classifier able to discriminate five differ-
ent hand poses from EMG sensors, namely double-tap, spread, wave left, Wave
Right and Make Fist. As for the user dataset, we mainly focus on commands
suitable for interacting with a set of co-located drones during navigation and
search tasks. Namely, selection commands enable the operator to select single or
groups of robots; for this purpose the operator can issue speech (e.g. all drones
take off, red drone land), speech and gestures in combination (e.g. you go down),
including touch gestures for the user interface. Similar combination of modalities

% http://wiki.ros.org/pocketsphinx



can be exploited to invoke motion and search during navigation and exploration
tasks.

(e) Touch Screen User Interface. In red an (f) Human operator interacting with
area to explore, in green a path to navigate. multiple drones in a snow-clad field.

System Training. The overall system requires three training sessions. The first
one is related to the unimodal classifiers set up. The second training phase
concerns the multimodal fusion engine. It requires the Training Set introduced
above, exploited by the system to learn how the operator generates commands,
that is, how he/she composes the unimodal samples to invoke commands. Notice
that in our scenario the operator is an expert rescuer already aware about the
system and the operative domain, therefore we trained the system with 4 trained
users (involved in the research project), asking them to repeat 45 commands 10
times each. The collected data are then used to train both the multimodal fusion
and the command recognition system. A final training phase is needed to tune
the 7y and 75 thresholds.

System Testing. The robotic platform set up and the scenario is analogous to the
one described in [5]. The testing site is the one depicted in Figure 1(f). In this
context, we collected data from 14 different missions lasting about 15 minutes
each and performed in two different days. A more extended description and
discussion of these tests can be found in [6], here we only summarize the main
results about the system robustness with noisy communication. Specifically, we
collected data about 107 commands (and 708 samples) achieving a success rate
of 96.8%, even though more than half of the samples generated by the user
have been marked as mistakes and rejected by the multimodal fusion algorithm
(66.9% rejected samples), among these, 74.3% have been correctly rejected in
the recognition line exploited for multimodal classification.
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