
RIVERtools: an IDE for
RuntIme VERification of MASs, and Beyond

Angelo Ferrando?

DIBRIS, University of Genova, Italy
angelo.ferrando@dibris.unige.it

Abstract. This work introduces RIVERtools, an IDE supporting the
use of the “trace expressions” formalism by users that want to perform
runtime verification of their own system.

Keywords: RIVERtools, Trace expressions, Engineering Multiagent Systems,
Runtime Verification (RV), Integrated Development Environment for RV

1 Introduction

During the development of software systems, it is not rare having the necessity
to state that the implemented system meets our requirements. Generally this
happens in all kind of software systems, but becomes more difficult when we
increase the system complexity. In particular, if we focus on the development
of Multiagent Systems (MASs), it is extremely common to have the need for
checking the agents’ behaviour in order to verify if what we expect in theory
is also correctly achieved by our implementation in practice. When we work
on small and centralized systems we have the chance to use standard formal
approaches, such as Static Verification (for instance Model Checking). In the
MAS community there are many ad-hoc model checking tools such as AJPF
(Agent JavaPathFinder) [11], MCMAS (Model Checking MAS) [15], MABLE
[17], just to cite some.

When the MAS becomes larger, model checking it (as well as the environment
where it is immersed) becomes quickly intractable. In these scenarios, a valid
alternative is Runtime Verification (RV). The main difference with respect to
standard static verification is the stage when it is applied, which is execution
time. In fact, in RV we do not need to simulate all possible paths that the
system may generate during its execution, but we limit the analysis directly to
the paths exposed and generated by the system during its real execution. As a
consequence, RV could be more suitable and applicable than static verification
in black-box scenarios, where there is no access to the source code of the system
we want to verify.

Differently from static verification, very few tools expressly meant to runtime
verification of MASs exist. Besides [1, 7, 10, 16] and a few others, the only works
? https://angeloferrando.github.io/website/assets/videos/RIVERtoolsDemo.mp4

on runtime verification of MASs are those that lead to the development and
refinement of the trace expression formalism1.

As it happened for tools such as Jason2, Cartago3, and Moise4, where the
need of a more modular, flexible and standardized framework brought to the
creation of JaCaMo5, also for the RV of MAS there is the pressing need of a
general purpose framework, with the objective to be modular with respect to
the target system (the system must be seen as a black-box) and “programmer-
friendly” focusing on the reuse of the developed software. Following this aim
we developed RIVERtools, an Integrated Development Environment (IDE) for
supporting the automatic generation of code to be used to implement the black-
box RV engine of a generic software systems - focusing on challenging scenarios
where the target system is a MAS.

RIVERtools is proposed as a generic, modular and domain independent IDE
to achieve the runtime verification of any target system. Rather than other so-
lutions proposed in literature, RIVERtools tries to born as a “multi-target” IDE
for the generation of monitors that can be used to achieve the runtime verifi-
cation of different systems. Obviously we can achieve the same results without
using an IDE, but using RIVERtools we have the great advantage to write our
specifications once and for all (supported by highlights, syntax and type check-
ing), leaving the technical details at a lower level that can be implemented just
one time for each new target system of interest (updating the compiler without
changing the high level specification).

The RIVERtools main features can be summarized as follows:

– support during the definition of our properties (the formalism presented in
Section 2);

– abstraction from the domain specific target, with RIVERtools we can define
our specification leaving all technical details to the IDE compiler (presented
in Section 4);

– automatic integration of the properties inside the runtime verification pro-
cess;

– extensibility since its structure is based on the presence of “connectors-to-
something” (for each new target system to be verified, we define a new
“connector-to-target” updating the RIVERtools compiler).

The main objective of RIVERtools is to separate and generalize the writing
of monitors to achieve the runtime verification of any possible target system. In
this paper we focus on its initial exploitation in the MAS context, in particular
in the Jade framework.

First of all we have to present the formalism that we can use inside RIVER-
tools, in the next section we present briefly its syntax giving the semantics by
intuition.
1 https://www.google.it/search?q=runtime+verification+of+multiagent+systems
2 http://jason.sourceforge.net/wp/index.php
3 http://cartago.sourceforge.net
4 http://moise.sourceforge.net
5 http://jacamo.sourceforge.net

2 Trace Expressions

Trace expressions are a specification formalism expressly designed for RV; they
are an evolution of multiparty global session types [4], initially proposed for RV
of agent interactions in MASs [2, 3, 8, 9, 13]; and, more recently, extended with
the notion of parameters to enhance their expressive power [6].

A trace expression τ represents a set of possibly infinite event traces, and is
defined on top of the following operators:

1. ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε;

2. ϑ:τ (prefix), denoting the set of all traces whose first event e matches the
event type6 ϑ (e ∈ ϑ), and the remaining part is a trace of τ ;

3. τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenat-
ing the traces of τ1 with those of τ2;

4. τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2;
5. τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2;
6. τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with

the traces of τ2;
7. ϑ�τ (filter), a derived operator denoting the set of all traces contained in
τ , when deprived of all events that do not match ϑ;

8. <X; τ> (binder), binds the free occurrences of X in τ ; accordingly, the
trace expression στ obtained from τ by substituting all free occurrences of
X ∈ dom(σ) in τ with σ(X).

The semantics of trace expressions is specified by the transition relation δ ⊆
T × E × T, where T and E denote the set of trace expressions and of events,
respectively. As it is usual, we write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the trace
expression τ1 specifies the current valid state of the system, then an event e
is considered valid iff there exists a transition τ1

e→ τ2; in such a case, τ2 will
specify the next valid state of the system after event e. Otherwise, the event e
is not considered to be valid in the current state represented by τ1.

Without loss of generality, in the rest of the paper we focus only on commu-
nicative events (message exchange).

3 Runtime Verification using Trace Expressions

We consider the SWI-Prolog7 implementation of the trace expression formalism;
the RV pipeline can be summarized as:

1. the implementation of the operational semantics modeled by δ in SWI-
Prolog;

2. the definition of a trace expression in SWI-Prolog;
6 To be more general, trace expressions are built on top of event types (chosen from
a set ET), rather than of single events; an event type denotes a subset of E.

7 http://www.swi-prolog.org

3. the implementation of a library to allow the communication between SWI-
Prolog and the target system we want to verify (in the following we will refer
to it as the connector);

4. the writing of a “main” file which uses this library;
5. the execution of the “main” file to perform the runtime verification of the

target system.

What is extremely important to note is that the components involved in the
RV process are: a SWI-Prolog library (1), a trace expression (2), a library to
integrate SWI-Prolog with the system (the connector) (3) and a file to start
everything correctly (4). But among these, only the trace expression (2) needs
to be defined each time by the programmer. In fact, when the target system
is chosen, (1) and (3) can be implemented once and for all; and the “main”
file (4) can be automatically generated starting from the trace expression (2).
Following this intuition, we created an IDE which supports the automatic gener-
ation of as much components as possible among the needed ones, and that helps
the programmer in correctly representing the trace expression that models the
interaction protocol to be verified.

4 RIVERtools

RIVERtools has been developed using Xtext8, a framework for development of
programming languages and domain-specific languages which can be integrated
as an Eclipse9 plugin. With respect to other frameworks, Xtext has been chosen
above all for its support to the Xtend10 language (a dialect of Java).

Connector System

userRIVERtools

τ

SWI-Prolog

compile

.pl .*

Jade

user

RIVERtools

τ
Jade

Connector

SWI-Prolog

compile

Jason
Jason

Connector

Node.js
Node

Connector

compile

compile

.pl .java

.pl .asl

.pl .js

Fig. 1. RIVERtools general representation (left) and its exploitation in three different
scenarios: Jade, Jason and Node.js (right).

8 https://eclipse.org/Xtext/
9 https://www.eclipse.org

10 http://www.eclipse.org/xtend/

In Figure 1(left), a high level summarization of how the RIVERtools IDE
works is presented. First of all, the programmer (the user) can write the trace
expression inside RIVERtools. This phase is supported by:

– syntax checking,
– type checking (contractiveness, decentralization),
– roles, event types and events definition, and so on.

Referring to the second point, a trace expression is contractive if all its infinite
paths contain the prefix ‘:’ operator [5] and can be decentralized (for decentral-
ized runtime verification purposes) only if it satisfies a set of good properties:
connectedness for sequence and unique point of choice [14]. Even if we cannot
go into the technical details for space constraints, both contractivennes and de-
centralizability checks are provided by RIVERtools.

Keeping in mind the summarization made in Section 3, we have a trace ex-
pression defined using RIVERtools, the SWI-Prolog library and the connector
to the target system. From these, we need to create the SWI-Prolog represen-
tation of the trace expression to be used inside the SWI-Prolog library (where
the trace expression operational semantics is implemented), and the “main” file
to properly initialize and run the connector. These two files are automatically
generated by RIVERtools by compiling the trace expression.

In more detail, the new RV pipeline using the trace expression formalism
with the RIVERtools integration can be summarized as:

1. the user writes the trace expression inside RIVERtools and chooses the target
system;

2. RIVERtools checks the correctness of the trace expression and, if it is correct,
generates the SWI-Prolog representation of the trace expression and the
“main” file for the target system;

3. the “main” file, using the SWI-Prolog library and the connector to the target
system, can be used by the user to start the RV process.

Figure 1(right) shows the flexibility of the proposed approach. As an example,
if the target system is Jade, RIVERtools compiles the trace expression τ in one
Prolog file and one Java file: the second file is indeed dependent on the target
system; for Jade it is a Java file, for Jason it would be an ASL file and for Node.js
it would be a Javascript one.

4.1 The grammar

The trace expression structure that is recognized and managed by RIVERtools
is expressed by the grammar below.

〈trace_expression〉 ::= ‘interaction_trace_expression’ ‘{’
‘id:’ 〈atom〉
‘target:’ 〈target〉
‘body:’ 〈term〉+

‘roles:’ 〈role〉*
‘types:’
(〈type〉 ‘:’ ‘{’ (〈role〉 ‘=>’ 〈role〉 ‘:’ 〈content〉 (‘[’ (〈condition〉)+ ‘]’)?)+ ‘}’
‘[’ 〈channel〉 ‘]’)*
(‘threshold:’ 〈reliability〉)?
(‘channels:’ (〈channel〉 (‘[’ 〈reliability〉 ‘]’)?)+)?
‘}’

We have seven different fields:

– id: is the name of the protocol;
– target: is the target system to verify;
– body: is the collection of terms representing the body of the protocol, it

follows the trace expression syntax presented in Section 2;
– roles: is the set of roles involved in the event types of the protocol;
– types: is the set of event types used in body;
– threshold: (optional) is the minimum level for the reliability allowed by the

protocol (it will be more cleare after);
– channels: (optional) is the set of channels available for the communication

between the roles.

We can better understand the syntax through an example.

interaction_trace_expression {
id : ping_pong
target : jade
body :

pingPong <− ping : pong : pingPong
roles :

a l i c e
bob

types :
ping : { a l i c e => bob : h e l l o } [emai l]
pong : { bob => a l i c e : world } [sms]

threshold : 0 . 7
channels :

emai l [0 . 8]
sms

}

This is a simple representation of a ping-pong protocol. Since the target sys-
tem is set to jade the roles involved are automatically considered as agents,
in particular here we have two agents involved: alice and bob. The protocol
identifier is ping_pong. The protocol we want to verify (the body) consists in
one ping followed by one pong followed by one ping and so on infinitely. The
event types involved in the protocol are explicitly defined: ping corresponds to
the interaction event hello sent by alice to bob using the email channel and
pong corresponds to the interaction event world sent by bob to alice using the
sms channel. These two channels must be also defined with their respective reli-
abilities, for instance in this case we have that the email channel is more reliable
than the sms channel. The threshold level for the channels is also defined.

The threshold field is used to set the level of reliability under which we do
not trust a channel. When the reliability of a channel is under the threshold

RIVERtools automatically considers “optional” all the event types using this
channel. For instance, if we have a channel sms with reliability 0.3, the threshold
set to 0.7, and an event type ping:{alice => bob : hello}[sms], each time
we use ping inside the body field, i.e. ping:t (where t is the continuation of the
trace expression after the prefix operator), RIVERtools automatically compiles it
in ((ping:epsilon)\/(epsilon))*(t) meaning that the event matching ping
can be missing. If we set the threshold to a smaller value, for instance 0.2, we
are relaxing our reliability requirements and since the sms channel has a greater
reliability value, it will not be modified by RIVERtools because we are trusting
all the channels with reliability greater than 0.2. In case of the limit scenario
where the reliability of a channel is 0, RIVERtools will remove from the protocol
all the occurrences of the event types using it. This particular case becomes
interesting when we focus on distribution features, because we can write a correct
protocol in which we explicit all the event interactions but when we exploit it in
a real world we discover that not all events are observable. This issue can bring
to have missing information during the decentralization of our specifications.
Thanks to the explicit representation of such absence of reliability, RIVERtools
can analyze the trace expression considering these kind of unavailability and can
achieve a correct decentralization without losing information (for more details
about how to decentralize properly an agent interaction protocol defined using
a trace expression see [12, 14]).

The channel integration inside the runtime verification process is a task for
the connector and it is totally domain dependent.

When a channel is not indicated for an event type, the default one is chosen
whose reliability is 1. The same happens for the channels, if the reliability is not
given, the reliability is set to 1 (in the ping_pong example the sms channel has
reliability 1).

Starting from the trace expression, RIVERtools generates its SWI-Prolog
implementation and the system dependent “main” file (in this case a Java file
since the target is Jade) to use the Jade-Connector and the SWI-Prolog library.
The programmer will provide its own MAS implemented in Jade and using the
“main” file it will be possible to perform RV on it. In more details, since Jade is a
Java framework used to implement MASs, the Jade-Connector is a Java library
containing both all the primitives to sniff the events generated by the agents
developed by the programmer and the code necessary to use the SWI-Prolog
library containing the trace expression semantics implementation. In this way,
the only part that RIVERtools must generate is the SWI-Prolog implementation
of the trace expression, all the rest is fixed and can be reused. It will be enough
to run the “main” file (Java) providing:

– the agents developed by the programmer;

– the Jade-Connector library (in the build path);

– the SWI-Prolog library (used by the Jade-Connector).

5 Example

Let us suppose to have a MAS implemented in Jade representing a book-shop
scenario. The involved agents are: alice, barbara, carol, dave, emily and
frank. The protocol that we want to verify at runtime can be summarized in
natural language as follow:

1. the agent alice sends a whatsApp message to the agent barbara asking to
buy a book;

2. the agent barbara sends an email message to the agent carol asking to
reserve the book in the bookshop;

3. the agent carol sends a whatsApp message to the agent dave asking to check
the availability of the book;

4. the agent dave checks the availability of the book, and if the book is available
(a) it sends a whatsApp message to the agent emily asking to take the book

in the bookshop;
(b) the agent emily sends an email message to the agent barbara saying

that the book is available in the bookshop.
otherwise
(a) it sends an email message to the agent frank asking to order the book;
(b) the agent frank sends a whatsApp message to the agent barbara saying

that the book will be availabel in the bookshop in two days.

The corresponding trace expression representation inside RIVERtools is:

Listing 1.1. Book-shop trace expression written inside RIVERtools.
t race_expres s ion {

id : book_purchase
target : jade
body :

purchaseBook <− buy : r e s e r v e : checkAvai l :
(take2Shop : availNow : epsilon \/
order : avai l2Days : epsilon)

roles :
a l i c e , barbara , caro l , dave , emily , f rank

types :
buy : { a l i c e => barbara : buy_me_book} [whatsApp]
r e s e r v e : { barbara => ca r o l : reserve_me_book } [emai l]
checkAvai l : { c a r o l => dave : i s_ava i l ab l e ? } [whatsApp]
take2Shop : { dave => emily : send_me_book } [whatsApp]
availNow : { emily => barbara : book_avai lable } [emai l]
order : { dave => frank : order_book } [emai l]
avai l2Days : { f rank => barbara : book_in_2_days } [whatsApp]

threshold : 0 . 6
channels :

emai l [0]
whatsApp [1]

}

In this example we have two kinds of channels used by the agents to communi-
cate: email and whatsApp. We point out the reliability of the two corresponding
channels. The whatsApp channel has reliability set to 1, while the email channel
has the reliability set to 0. This means that, during RV, we expect the monitor
not to be able to observe messages passed on the email channel. This may be due

to any reason, for example lack of permissions or unavailability of information.
Thanks to the presence of explicitly declared channels, RIVERtools can take
into account the channel reliability during the correctness checking for the trace
expression. Channel reliability may impact on contractiveness and decentraliza-
tion of the original trace expression (as observed in Section 4.1): RIVERtools
takes channel reliability into account when automatically performs those checks.

Compiling this trace expression, RIVERtools generates the two files book_-
purchase.pl and BookPurchase.java. Providing the connector library for Jade
and the MAS implementation of the book-shop, it will be enough to execute the
main method of the BookPurchase class to achieve the RV of a Jade MAS. Once
obtained this Java class and the trace expression SWI-Prolog representation, the
programmer can simply execute the verifier without adding a single line of code.

Listing 1.2. BookPurchase.java automatically generated by RIVERtools.
public c lass BookPurchase {

public stat ic void main (St r ing [] a rgs)
throws StaleProxyException , IOException {

/∗ Cal l at the SWI−Prolog l i b r a r y ∗/
JPL I n i t i a l i z e r . i n i t () ;

/∗ Regis t ra t ion of the trace express ion generated by RIVERtools ∗/
TraceExpress ion tExp = new TraceExpress ion ("book_purchase . p l ") ;

/∗ I n i t i a l i z e JADE environment ∗/
jade . core . Runtime runtime = jade . core . Runtime . i n s t ance () ;
P r o f i l e p r o f i l e = new Pro f i l e Imp l () ;
AgentContainer conta ine r = runtime . createMainContainer (p r o f i l e) ;

/∗ Create the custom def ined agents (d e f au l t are ins tances of Agent c l a s s) ∗/
List<AgentControl ler> agents = new ArrayList <>();
Agent a l i c e = new Agent () ;
AgentContro l l e r a l i c eC = conta ine r . acceptNewAgent (" a l i c e " , a l i c e) ;
agents . add (a l i c eC) ;

// the same for barbara , carol , dave , emily and frank
// . . .

/∗ Create a s i n g l e c en t ra l i z ed monitor v e r i f y i n g the trace express ion tExp∗/
Sn i f f e rMon i to rFactory . createAndRunCentral izedMonitor (tExp , conta iner , agents) ;

/∗ Channels creat ion (here are simulated)∗/
Channel . addChannel (new SimulatedChannel (" emai l " , 0)) ;
Channel . addChannel (new SimulatedChannel ("whatsapp" , 1)) ;

/∗ Run the agents ∗/
for (Agent agent : agents) {

agent . s t a r t () ;
}

}

5.1 Screenshots

In the following we reported screenshots showing some of the typical errors
handled by RIVERtools.

The book-shop scenario in RIVERtools: In Figure 2 we have defined inside
RIVERtools the book-shop trace expression presented in Section 5. Even though
the trace expression reported is the same, we can note two new fields that have
been omitted previously, decentralized and partition. These two fields are
used by RIVERtools to generate BookPurchase.java that exploits a decentral-
ized set of monitors rather than only one centralized (for more details about how
the decentralized algorithm works see [14]).

Partition not valid: In Figure 3 we change the reliability of the email channel
from 1 to 0. Unfortunately, doing in this way we cannot distribute the runtime
verification on each single role because we could lose information. This is handled
by RIVERtools that communicates to the programmer that the current proposed
partition is not allowed (because two critical points are not satisfied [14]).

Roles existence: In Figure 4 we remove a role from the roles set. Since this role
is used inside the definition of two event types, RIVERtools informs the program-
mer about an existence problem, since it is not able to find the corresponding
role inside the roles set.

Event types existence: In Figure 5 we remove an event type from the types field.
After that, RIVERtools finds the corresponding use inside the terms consisting
the protocol body, and it communicates to the programmer about the use of an
event type undefined.

Fig. 2. The book-shop scenario presented in Section 5.

Fig. 3. Error: Partition not valid

Fig. 4. Error: After having removed the role “frank”, we have an existence error.

Fig. 5. Error: After having removed the event type buy, we have an existence error.

6 Conclusions and Future Work

In this demo paper we have presented RIVERtools, an IDE that can be used for
the integration of the trace expression formalism with any possible target system.
Thanks to the presence of connectors that handle all the domain dependent
issues, we have showed that RIVERtools allows focusing on a more abstract
level leaving all technical details to the connector implementation. In this demo
paper we have presented the RIVERtools general structure and we have analyzed
its possible use through an example involving a book-shop scenario developed
as a MAS in Jade. Since RIVERtools is at the beginning, we have not already
tested it on a real scenario, but it is our intention to deploy it in some challenging
context where will be necessary to exploit the expressivity of our formalism.

The future directions of our work will include to implement connectors to
other target systems. In the MAS context, we plan to add a connector to Jason.
Outside the MAS community, we will explore the possibility of an integration
with some general purpose system, as Node.js11, which has already been used in
fascinating scenarios like the Internet of Things (IoT).

11 https://nodejs.org/

References

1. H. Alotaibi and H. Zedan. Runtime verification of safety properties in multi-agents
systems. In Proc. of ISDA 2010, pages 356–362. IEEE, 2010.

2. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Global protocols as first
class entities for self-adaptive agents. In Proc. of AAMAS 2015, pages 1019–1029.
ACM, 2015.

3. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Runtime verification of fail-
uncontrolled and ambient intelligence systems: A uniform approach. Intelligenza
Artificiale, 9(2):131–148, 2015.

4. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In Proc. of DALT
2012, volume 7784 of LNAI, pages 76–95. Springer, 2012.

5. D. Ancona, A. Ferrando, and V. Mascardi. Comparing trace expressions and linear
temporal logic for runtime verification. In Theory and Practice of Formal Methods,
volume 9660 of LNCS, pages 47–64. Springer, 2016.

6. D. Ancona, A. Ferrando, and V. Mascardi. Parametric runtime verification of
multiagent systems. In S. Das, E. Durfee, K. Larson, and M. Winikoff, editors,
Proc. of AAMAS 2017. IFAAMAS, 2017.

7. N. A. Bakar and A. Selamat. Runtime verification of multi-agent systems interac-
tion quality. In Proc. of ACIIDS 2013, pages 435–444, 2013.

8. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
and Jason multiagent systems with Prolog. In L. Giordano, V. Gliozzi, and G. L.
Pozzato, editors, Proc. of CILC 2014, volume 1195 of CEUR Workshop Proceedings,
pages 319–323. CEUR-WS.org, 2014.

9. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
multiagent systems. In D. Camacho, L. Braubach, S. Venticinque, and C. Badica,
editors, Proc. of IDC 2014, volume 570 of Studies in Computational Intelligence,
pages 81–91. Springer, 2014.

10. F. Chesani, P. Mello, M. Montali, and P. Torroni. Commitment tracking via the
reactive event calculus. In Proc. of IJCAI’09, pages 91–96. Morgan Kaufmann
Publishers Inc., 2009.

11. L. Dennis, M. Fisher, M. Webster, and R. Bordini. Model checking agent
programming languages. Automated Software Engineering, pages 1–59, 2011.
10.1007/s10515-011-0088-x.

12. A. Ferrando. Automatic partitions extraction to distribute the runtime verification
of a global specification. In Proceedings of the Doctoral Consortium of AI*IA 2016
co-located with the 15th International Conference of the Italian Association for
Artificial Intelligence (AI*IA 2016), Genova, Italy, November 29, 2016., pages
40–45, 2016.

13. A. Ferrando, D. Ancona, and V. Mascardi. Monitoring patients with hypoglycemia
using self-adaptive protocol-driven agents: A case study. In M. Baldoni, J. P.
Müller, I. Nunes, and R. Zalila-Wenkstern, editors, Proc. of EMAS 2016, Revised,
Selected, and Invited Papers, volume 10093 of LNCS, pages 39–58. Springer, 2016.

14. A. Ferrando, D. Ancona, and V. Mascardi. Decentralizing MAS monitoring with
DecAMon. In Proc. of AAMAS 2017, pages 239–248, 2017.

15. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: an open-source model checker
for the verification of multi-agent systems. STTT, 19(1):9–30, 2017.

16. D. Meron and B. Mermet. A tool architecture to verify properties of multiagent
system at runtime. In Proc. of PROMAS, volume 4411 of LNCS, pages 201–216.
Springer, 2006.

17. M. Wooldridge, M. Huget, M. Fisher, and S. Parsons. Model checking for multi-
agent systems: the Mable language and its applications. International Journal on
Artificial Intelligence Tools, 15(2):195–226, 2006.

