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Abstract— Dictionary attacks are a prevalent phenomenon,
which was lately amplified with the onset of insecure SOHO
and IoT devices. Some of these devices use their own protection
against dictionary attacks and some offload their security
to mechanisms deployed in the infrastructure, such as flow-
based IPS systems. These mechanism often operate with the
notion of a typical attacker, who represent common attacks
against the infrastructure and lacks sophistication. However,
the emergence of stealthy and distributed dictionary attacks
indicate that detection mechanisms should take sophisticated
attackers into account. In this paper we explore the capability
of a sophisticated attacker, who can estimate parameters of
detection methods deployed on target and can then craft an
attack which could go undetected for arbitrary long time. For
this, we propose a new model of attacker-target interaction dur-
ing dictionary attacks, which is based on attacker’s perspective.
Using this model we then postulate and experimentally evaluate
an algorithm for estimating parameters of target detection
method, illustrating that an attacker requires only a handful
of attack attempts to correctly guess these parameters.

I. INTRODUCTION

Despite introduction of various authentication methods,
one-factor password-based authentication is still prevalent.
Although home computers and servers are usually reasonably
protected by local monitoring, there exist two groups of
devices which gain notoriety for their lack of security and
susceptibility to dictionary attacks: SOHO devices, such as
routers, and IoT devices, as can be clearly demonstrated
by existence of tools like Shodan. [1] Their widespread
deployment, tendency to use default credentials and subse-
quent abuse in various botnets returns the issue of dictionary
attacks back to forefront. Although many of these devices
are, especially in a corporate environment, monitored by
IDS/IPS solutions to offset their lack of security, these
solutions expect a certain class of attackers with relatively
visible behavior. However, as the emergence of stealthy and
distributed attacks, and advanced persistent threats revealed,
there are attacks that are predominantly stealthy and which
can go unnoticed for a long time. [2] In our networks
we have detected such long-running low-profile attacks,
which convince us that they are commonly used and remain
unchecked by many today systems.

In this paper we analyze the method for estimating pa-
rameters of target defense and for tailoring dictionary attacks
which can go unnoticed with maximum efficiency. We hope
that our research will motivate further research in detection
of dictionary attacks and that the provided data will be used

for better and more realistic evaluation of current and future
detection methods.

This paper contributes to the state of the art in four ways:
• We present a simple model of interaction between an

attacker and host or network based systems for detection
of dictionary attacks. This model covers most currently
available and deployed systems.

• We analyze available detection methods and derive a
set of three classes of detection methods which are
recognizable by an attacker and useful for parameter
estimation.

• We present an algorithm for estimation of detection
methods’ parameters, which can be used for crafting
attacks undetectable by target detection mechanism.

• We provide a tool for generation of datasets of detec-
tors’ behavior. This tool can be used to create training
and testing datasets and also to evaluate efficiency of
different attack strategies.

This paper is divided into six sections. The Section II sur-
veys the state of the art in the area of host and network-based
detection of dictionary attacks against common protocols and
derives three classes of detection mechanisms. The Section
III derives a model of interaction between attacker and host
and network-based detectors based on six distinct features.
The Section IV presents a tool for generation of detectors’
datasets and for evaluation of attack strategies. The Section
V introduces an algorithm for estimation parameters of de-
tection methods, and presents its evaluation. The Section VI
concludes the paper and outlines further research directions.

II. STATE OF THE ART
The majority of dictionary attacks target the following pro-

tocols: HTTP(S), SSH and RDP. The measures for preventing
dictionary attacks can be divided into two groups: industrial
and academic.

The industrial group is represented by host-based tools
such as SSHGuard [3], fail2ban [4], denyhosts [5], or ssh-
black [6], which, after a predefined number of login attempts
is reached, block the attacker by means of firewall configu-
ration. Despite some of them having SSH in the name, they
are useful for a number of protocols susceptible to dictionary
attacks, such as IMAP, POP3, FTP, or HTTP. For securing
web applications, there are many options to prevent or delay
attacker, ranging from custom scripts, to large commercial
solutions like Sucuri firewall [7] or Wordfence [8]. There



are also network-based industrial solutions, such as Flowmon
ADS [9]

The academic group focuses mostly on network-based
attack detection to alleviate the need for end machine man-
agement and to enable security of otherwise unsecurable de-
vices. The SSH protocol is being the most common use-case.
The approaches ranges from heuristics [10], statistics [11],
detecting abnormal behavior using flat traffic detection [12],
[13] or using hidden Markov models [14], to abnormalities
in DNS traffic [15]. Recently, most work is focused on
correctly distinguishing attack attempts in the network from
legitimate traffic, e.g., [2] who detects stealthy dictionary at-
tacks by measuring transition points of SSH protocol or [16],
[17], who used machine learning for traffic classification.
Additionally [14] presented an algorithm for detecting an
actual compromise of an ssh service. From the point of
defender, these academic approaches are all striving to make
the detection more precise, with less false positives and less
noise generated. From the point of an attacker, however, these
enhancements make very little difference, unless they are
actively trying to be stealthy.

Despite a large number of methods and tools, detection
mechanisms can be divided into three types, depending on
how they would react to the attack:
• immediate detection [e.g., SSHGuard, fail2ban]: After

the attacker tries a predefined threshold of attempts, they
are blocked.

• delayed flow-based detection [e.g., SSHCure, Flowmon
ADS]: If the attacker tries a certain number of attempts
in a given measured time window, they are blocked.
Such evaluation is done in batches of typically five
minutes.

• rate limiting [e.g., custom delay scripts]: The attacker
faces delays in allowed attempts.

These types can be combined [e.g., fail2ban on host and
flow-based solution on the network-level] and each of these
groups have to be coupled with blocking mechanism to have
any impact on the attacker.

III. MODEL OF HOST- AND NETWORK-BASED
DETECTION MECHANISMS

In this section we present a model of detectors based
on a number of assumptions, which are discussed in the
text. As the aim of this paper is an estimation of detection
methods’ parameters, the model is built from the perspec-
tive of an attacker who has a number of unique attacking
machines at hand. It is expected that every detection method
is accompanied by a mechanism for blocking an attacker,
regardless whether this block happens on the host or on the
network level. Because this model is considered from the
perspective of an attacker, a detection without action would
be inconsequential for the attacker. It is also expected that
a detector can differentiate each authentication attempt and
that the attacker can discern target response correctly. This
does not preclude modelling of detection methods which use
technical means to fool automated attackers, but it leaves out
the part that is largely implementation specific.

In this model, every detection method is described by the
following six parameters:
• Processing mode: Either continuous or batch. The

processing mode largely differentiates between flow-
level network-based methods from the host-based ones.
The flow-based methods usually process data in batches
of a few minutes (processing window).

• Response delay: The delay between an attempt and
any possible action. In the batch processing mode
this represents the length of a processing window. In
continuous processing mode this parameter is seldom
used and can represent a processing delay caused by
technical means (e.g., time required to update firewalls).

• Time window: A time span in which attacks are
evaluated.

• Blocking threshold: The number of unsuccessful login
attempts in a time window before block is issued.

• Inter-attempt delay: A delay between particular login
attempts. The delay does not have to be a fixed number,
it can, e.g., grow exponentially with each unsuccessful
attempt.

• Block duration: A time required for attacker to be
able to attempt another login on one target after being
blocked.

An attacker and a target work in request-response fashion.
An attacker initiates a login attempt and the target responds
with one of the following:
• Success: A login attempt succeeded in trying an authen-

tication. This does not mean that an attacker guessed
the correct credentials, as this is an implementation
detail depending on attacker’s dictionary and target’s
authentication policy.

• Delay: A login attempt did not lead to authentication,
because of being delayed.

• Block: A login attempt led to a blocking of the attacker.
Despite a target and its associated detector being two

separate entities, as is in case of network-based detection,
they act as one target with blocking capability.

In our model, an attacker interacts with a target only
through authentication attempts and acquires all knowledge
only from targets’ responses. The attacker is thus able to
collect the following statistics, which are later used for clas-
sification of detection methods and for estimating detection
parameters:
• Attempted intensity: The number of login attempts per

given timeframe, which the attacker tried.
• Achieved intensity: The number of login attempts per

given timeframe, which the attacker managed (i.e., this
number is lowered by delayed attempts).

• Successful attempt count: The number of successfully
tried authentication attempts.

• Block time: Time elapsed before the attacker was
blocked.

A. Limitations
The model as described has several limitations, which

were considered and deemed as not considerably limiting



model’s descriptive power.
The model cannot fully describe detection methods based

on trend analyses, similarity search, etc. However, from the
attacker’s point of view, the specifics of these methods can
be treated as an implementation detail, because on smaller
time scales, even these detection methods can be expressed
by this model.

The model currently considers only 1:1 relation between
an attacker and a target. However, distributed attacks against
an infrastructure with network-based detection indicate the
need for N:M relation. This will very likely require an
additive change to the model, but is unlikely to considerably
impact the proposed detection parameters estimation. It is,
however, one of future research directions.

The model does not consider attacks with large variations
in intensity. However, given the applicability of constant/flat
traffic characteristics as a basis for detection [13], [12], this
limitation is not that important.

B. Examples

To give an example of an application of the model, we rep-
resent three detection methods: fail2ban [4], SSHCure [18],
and a delaying web authentication script. The parameters are
in Table I. Fail2ban was configured to block after 5 attempts
in a day and to block for a day. SSHCure is processing data
in five-minute windows and blocks if there are more than
20 attempts a minute in a time window. Because we are
considering only a simple attacker, who attack with constant
intensity, this translates to 100 attempts in the entire time
window. The script allowed 10 attempts with exponential
delays between them before blocking. Similitude between
the model and real-life implementation was evaluated by
comparing the results of the detection evaluation tool from
the Section IV and the respective detection tools.

IV. DETECTION EVALUATION TOOL

We have developed a tool, which is able to build detection
methods according to our model for evaluation. The tool is
available at [19]. The tool consist of two types of objects:
detectors and attackers. Detectors are created by supplying
model parameters, attackers have to be implemented from
scratch. However, we readily provide two types of attackers:
a simple attacker which takes a number of attempts and a
time window and then performs these attempts against a
selected detector, and a sophisticated attacker which esti-
mates detection parameters of selected detector and attempts
to maximize the successful attempt count.

The tool can be used for two tasks: generating a detection
dataset for a detector and direct evaluation of attacker and
its strategy.

To generate our datasets, we ran an attacker with in-
creasing intensity against particular detectors and gathered
the statistics with attempted and achieved intensities, the
successful attempt count, and a time to block. The scripts for
generating these datasets are also a part of the repository.

To directly evaluate attackers’ strategy, each attacker was
given a number of lives, which represented the number of

proxies the attacker can use. The attacker then made attempts
against a detector, until it was blocked. After the block, if
the attacker has some lives left, it subtracted life, changed
the intensity and attacked again. The evaluation criteria were
losing as little life possible and maximizing the number of
attempts the attacker could do in span of fourteen days.

V. ESTIMATION OF DETECTION PARAMETERS

In order to optimize the attack, we need to know the exact
type and parameters of the detector protecting the target.
The estimates must be derived solely from the reactions
of the detector. In this chapter we describe an algorithm,
which determines the type and parameters of the detection
by modifying the intensity of the attack.

A. Detection Method Type

The estimation of the detection method type is rather
simple:
• if the achieved intensity is lower than attempted inten-

sity, the detector exerts rate limiting
• if the successful attempt count is independent of the in-

tensity and low, the detector exerts immediate detection
• otherwise the detector uses delayed flow-based detec-

tion.

B. Detection Method Parameters

We will now discuss how the parameters can be derived
for each detection method type.

1) Rate Limiting: The parameters of the rate limiting
method can be easily derived from the timing of the actual
authentication attempts.

2) Immediate detection: The estimation of detection pa-
rameter for immediate detector is very simple. The only
parameter is the successful attempt count, which remains
constant through attacks.

3) Delayed flow-based detection: The estimation of de-
layed flow-based detection parameters is slightly more com-
plicated. Three parameters of the model play a role:
• response delay: how often is the detection run (e.g.,

every 5 minutes),
• time window: the length of the interval over which

the number of attempts is counted and compared to a
detection threshold,

• blocking threshold: the number of attempts in a detec-
tion window, which is considered to be an indication of
attack and a signal to block.

From the attacker’s point of view, the most important is the
ratio between blocking threshold and time window (detection
intensity), because it specifies the maximal intensity of an
undetected attack.

The only way to estimate the detection intensity is by
trial and error. The attacker attacks the target with given
intensity, waits for the detector’s reaction, improves their
estimate of the detection intensity and selects an intensity
for the next attack until they are certain about the detection
intensity. The goal is to choose the attacks’ intensity so that
the attacker minimizes the number of iterations to achieve



Method Processing mode Response delay Time window Blocking threshold Inter-attempt delay Block duration
Fail2ban Continuous 0 sec. 86400 sec. 5 0 sec. 86400 sec.
SSHCure Batch 300 sec. 300 sec. 100 0 sec. 86400 sec.

Delay script Continuous 0 sec. 86400 sec. 10 Exponential 86400 sec.

TABLE I
MODEL PARAMETERS FOR DIFFERENT DETECTION METHODS

precise estimation of the detection intensity, as well as the
number of times the attacker is detected during the iterations.

We propose an algorithm, that selects efficiently the attack
intensity for next iteration based on the history of detector’s
reactions to previous attacks, so that both number of required
attacks and detections are minimized.

Assume the detector has the time window of length W
and the blocking threshold R and the detection intensity
I = R/W . The algorithm bounds the area containing the
actual combination (W,R) of time window and blocking
threshold (Figure 1) and refines the bounds with each attack.
The boundary consists of a lower and upper bound on
the detection intensity (i0, i1), an upper bound on blocking
threshold (r0) and a lower bound for time window (w0). Each
step, the intensity of the next attempt i′ is selected so that
the bounded area is halved by the line i′w. The algorithm
stops once the span between i0 and i1 is lower than the error
level established in advance.
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Fig. 1. Area Bounds

The algorithm improves the bounds as follows: assume we
did an attack with given intensity i attempts per second. If
the attack was not blocked, then the detection intensity must
be greater than the intensity of the attack, therefore we can
update the lower bound for the detection intensity

ik+1
0 = max(ik0 , i).

On the other hand, if the attack was blocked after t seconds,
following the same logic, we can update the upper bound on
the detection intensity.

ik+1
1 = min(ik1 , i)

Moreover, the total number of attempts in the attack is
definitely higher than the threshold (can be actually much

higher) and the time the detector needed to block the attack
is not higher than twice the detection window. Therefore we
can update the upper bound on the blocking threshold and
the lower bound on the time window as follows:

rk+1
0 = min(rk0 , i · t),

wk+1
0 = max(wk

0 ,
t

2
).

To evaluate the efficiency of our method, we compared
it with the bisection method. The bisection method selects
the intensity of the next attack as the average of the upper
and lower bound on the detection intensity and updates the
upper/lower bound when the attack is or is not blocked.
We tested both methods on 180 combinations of blocking
thresholds and time windows. The thresholds ranged from
10 to 40 with the step of 2. The time windows ranged from
5 seconds to 60 seconds with the step of 5 seconds.
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Fig. 2. Number of Detections

First, we compared the average number of times the
attacker was detected by the detector. The overall results are
shown in the Figure 2. The average number of detections for
each step is shown in the Figure 3. Our method was detected
fewer times during the process of estimating the detection
method parameters than the bisection method. Since the
attacker either needs a new proxy server or new attacking
machine each time they are blocked by the detector, our
method puts less strain on resources.

Another important property is how fast a method con-
verges to the detection intensity. The Figure 4 summarizes
how many attacks with different intensity the attacker needs
to correctly estimate the detection intensity. The Figure 5
displays the speed of the convergence to the result. For each
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step the average value of the span between the lower and
upper bound is shown.

C. Combination of detection methods types

If the detector employs more than one detection methods
types, the algorithm proceeds as follows:
• rate limiting + immediate detection: from the at-

tacker’s point of view, the immediate method is dom-
inant. The rate limiting usually does not influence the

achieved intensity for low number of attempts and the
number of attempts is limited by the immediate method.
In the rare case that rate limiting is triggered by a few
attempts, the rate limiting parameters can be estimated
from attempt timing.

• rate limiting + delayed flow-based detection: First, the
rate limiting parameters are estimated from the timing of
the attempts. For the purpose of estimating the delayed
flow-based detection parameters, we can use the same
algorithm with a minor modification, that the achieved
intensity, not the attempted intensity, must be considered
for limiting the area.

• immediate detection + delayed flow-based detection:
Similarly to the combination of rate limiting and im-
mediate, the delayed flow-based detection usually does
not have any effect when combined with immediate
detection, because it is always triggered before the
delayed flow-based detection is triggered.

• rate limiting + immediate detection + delayed flow-
based detection: see rate limiting + immediate de-
tection and immediate detection + delayed flow-based
detection.

VI. CONCLUSION
The increase in attackers’ sophistication contests the typ-

ical notion of an attacker, which is prevalent in currently
deployed and researched detection methods. In this paper
we take on the role of a moderately sophisticated attacker
and demonstrate, how such an attacker can craft dictionary
attacks undetectable by target’s detection mechanisms. To
achieve this, we first present a short survey of currently used
detection methods and demonstrate how, from the perspective
of an attacker, all methods can be classified into one of three
categories which dictate an attack strategy. We then present a
model of attacker-target interaction during an attack, which
is then used to derive an algorithm for precise estimation
of parameters of target’s detection mechanisms. With these
information at hand, crafting an undetectable attack against
arbitrary detection method is easy. To test capabilities of
detection methods and to evaluate different attack strategies,
we provide open access to a simulation tools which builds
upon the presented model.

A. Future work

Despite the presented model’s ability to capture current
detection methods, it is still quite simple and not suitable for
modeling more complicated attack scenarios and strategies.
This include multiple attackers and multiple targets, and
attacks with variable timing. In our future work, we want
to provide such extension to this model and to evaluate it
against deployed detection methods.
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