
IST-152 Workshop on Intelligent Autonomous Agents for Cyber Defense and Resilience 	

Moving Target Defenses as a Resilience Strategy	

Submitted by Argonne National Laboratory,
a U.S. Department of Energy National Laboratory 	

9700 S. Cass Avenue 	
Argonne, IL 60439 	

630-252-2000 	

Primary Author: 	
Nathaniel Evans 	

Global Security Sciences 	
Argonne National Laboratory 	

Argonne, Illinois 60439 	
Phone: 630-252-3733 	

Fax: 630-252-2964 	
nevans@anl.gov 	

Co-Author: 	
Michael Thompson 	

Global Security Sciences 	
Argonne National Laboratory 	

Argonne, Illinois 60439 	
Phone: 630-252-1376 	
thompsonm@anl.gov 	

The work described in this paper is cleared for public release.

The paper is technically correct.

This work was supported by the U.S. Department of Energy, Office of Science under contract
DE-AC02-6CH11357.

The paper is NATO/PfP Unclassified.

The paper does not violate any proprietary rights.

Introduction

Cyber-attacks pose a major threat to critical infrastructure [1]. For example, web servers are a
significant attack vector for would-be malicious actors in cyberspace. Due to the ubiquity of
web applications in modern computing, the server software that serves these applications is an
attractive vector for would-be attackers.

Active defense describes the activities, methods, and emerging technologies that address the
deficiencies of static security controls. Static controls focus on designing a secure architecture
and then adding structures and processes — such as firewalls and anti-malware — to protect it
from threats. These protections effectively thwart many threats, but threats evolve to exploit
weaknesses in these controls or to evade them. Social engineering attacks such as phishing often
succeed in evading static controls by enticing people to reveal their credentials or accidentally
install malware inside their organization. Active defense also includes activities and
technologies that provide additional defensive measures beyond passive and architectural
protections. Recently, Moving Target Defense (MTD) strategies have grown in popularity in the
computer-security community due to their ability to enhance resilience and force attackers into
uncharacteristic behavior.

A common vulnerability in traditional cybersecurity systems is the static nature of defense
mechanisms that are often used by programmers and IT personnel. Numerous cybersecurity
experts in both academia [2] [3] [4] and the industry [5] have acknowledged the challenges of
static defense and have suggested MTD as an ideal solution. MTD systems mitigate the
limitations of static defense by creating a dynamic attack surface, which increases uncertainty
from the perspective of the attacker(s) as well as the cost and effort that is required to launch an
attack.

MTD systems broadly fall into two categories: proactive MTD and reactive MTD. In proactive
MTD, possible adversarial behaviors are anticipated, and the corresponding defensive strategies
are incorporated into the system design to thwart attacks proactively without disrupting
operations. In addition, some elements of the defense system, such as Internet protocol (IP)
addresses, port numbers, operating systems, etc., are diversified periodically to create a varying
attack surface. In reactive MTD, systems react out of necessity to defend against a detected
malicious attack.

MTD techniques are also categorized into shuffle, diversity, and redundancy [6]. The shuffle
technique rearranges the configuration of operating systems or applications. The diversity
technique randomizes the operating system or software stack components. The redundancy
technique requires multiple replicas of network components where paths through the network are
randomized. These techniques can be applied either proactively or reactively.

MORE MTD

As cyber threats become increasingly dangerous to critical infrastructure (CI), the development
of proactive cyber defenses to enhance the resilience of CI becomes increasingly important.
Multiple Operating System Rotational Environment (MORE) MTD acts as a proactive defense
strategy that offers increased protection against an attacker being able to probe for and exploit

vulnerable operating systems (OSs). The main goals of MORE MTD are to reduce the number
of zero-day exploits on client-server applications, reduce the impact of a successful exploit, and
maintain application availability at all times.

The key to the MORE MTD technology is platform diversity; an application is designed such
that it can run on multiple OSs. During runtime, various front-end hosts – each running different
OSs – are, in turns, switched out of exposure. To accomplish this, we adjust the rotation of the
OS for a given time. This ability to control the exposure time – the length of time during which
a particular OS is public-facing and thus potentially exploitable – is a direct result of MORE.
The results of preliminary experiments that use an exploitable OS to mimic a zero-day
vulnerability show that the number of successfully exploited vulnerabilities is directly
proportional to time; when the exposure time of an individual OS decreases, the number of
successful exploits against the MORE MTD platform decreases.

Even if an attacker is successful in exploiting a host during the exposure time, that exploit lives
only for the duration of that exposure time. After the host is rotated out of exposure, it can be
isolated, cleaned, and/or forensically examined. Optionally, the host can be cleaned with every
rotation so that it is always in an uncontaminated state at the beginning of its exposure window.		
Consequently, a MORE MTD deployment scenario will have an optimal deployment formula for
an OS rotation at a given exposure time, which will affect the adversary’s decisions throughout
the attack-preparations cycle without affecting application’s performance.

Figure 1 illustrates how MORE MTD is implemented:

Figure	1:	Implementation	of	the	MORE	MTD	System	

The MORE MTD technique is a periodic rotation of the various OSs. The protected application
receives external traffic, which is passed to a private network inside the instance, and one of a
number of hosts with different OS’s is exposed to the web/network at any given time. Figure 2
demonstrates how the rotation works:

	

Figure	2:	MORE	MTD	Server	Rotation	System	

The following steps outline the rotation system of MORE MTD:

1. The Daemon establishes an SSH connection with the Live machine.
2. The Live machine is moved to the spare IP for intrusion detection.
3. The Daemon establishes an SSH connection with a selected machine in the list of

available servers (selected as a queue or randomly).
4. The selected machine is moved to the active server.
5. Intrusion detection is run on the machine that was taken out of the Live IP.
6. If the Server is not compromised, it is added to the list of available servers.
7. If the Server is compromised, it is added to the list of unavailable servers and will not be

placed into the rotation.

Testing on an internal instance of MORE MTD yields positive results and indicates that: (1) the
likelihood of a successful attack is reduced by introducing confusion during the reconnaissance
phase on a MORE MTD-enabled system; and (2) MORE MTD assures continuity of operations
during “zero-day” announcements by allowing the removal and patching of the vulnerable
systems. Moreover, initial testing of the techniques shows that the defensive deception
mechanism is transparent to the users and introduces minimal functional and performance
impacts, thus disrupting adversaries but not the friendly forces.

MORE MTD testing used manual techniques and automated tools to collect configuration
attributes in order to plan and perform attacks. While some configuration data were identified,

an actual exploitation of the system failed despite repeated attempts. To verify whether the
exploitation tools were functional, MORE MTD was deployed with a known vulnerable OS as
one of its rotational hosts. A barrage of penetration tests that were attempted on this
configuration confirmed several assumptions: the server exposure time is directly proportional to
the success of a penetration attempt; and MORE MTD increases the difficulty in identifying
system vulnerabilities, introducing real-world confusion for the attacker while allowing for
offline compromised-host remediation.

Though the recent security landscape has been fraught with major vulnerabilities, MTD has
shown itself to have validity as a defensive technique. Zero-day vulnerabilities are one of the
most difficult problems that security professionals face, as there is no real defense against them.
MORE MTD proceeds from the assumption that zero-days will be found in existing systems;
however, its proactive nature increases the difficulty for attackers to exploit such vulnerabilities
and lowers the consequences of any such exploitation.

Increasing attacker uncertainty and system resilience are themes that will continue to unite the
cybersecurity community, and strategies such as MORE MTD that do both are valuable in that
context. The next steps are to implement MORE MTD on a larger network. Although current
testing showed that the size of the rotation window was the most significant factor in reducing
the likelihood of an attack, future studies need to address other factors, such as varying the
number of open ports on different platforms and randomizing the order of rotation.

DARE MTD

Dynamic Application Rotation Environment (DARE) MTD uses the two most common and
freely available web servers, Apache and Nginx (see Figure 3). It runs a single application on
both platforms, redirecting incoming traffic to one server or the other at a random interval. The
goal is to mitigate any unknown vulnerability in one of these platforms by reducing the amount
of time that platform is exposed to a would-be attacker. Like the MORE MTD strategy, this
variability increases the cost of reconnaissance on a target and reduces the likelihood of
exploiting any zero-day, or previously unknown, vulnerability.

Figure	3:	The	DARE	MTD	Mechanism	

One virtual machine (VM) is selected at a given time to handle all network traffic, and it is
known as the active VM. At a predefined interval, which may be as short as 15 to 30 seconds,
the active VM is switched. When a VM becomes inactive, the integrity of the file system is
checked for signs of attack and removed from rotation if any integrity compromise is detected.
The procedure mirrors MORE MTD, which set the lower rotation window to 60 seconds. The
idea of both strategies is to rotate at a suitable interval in order to accomplish the following:

1. Prevent accurate fingerprinting and identification of entry points;
2. Thwart persistent attacks by reducing the exposure of vulnerable software; and
3. Reduce the viability of any gain to the attacker by consuming extra time and resources.

The DARE MTD prototype was deployed in as realistic of an environment as possible. To
accomplish this, we used common software and configurations from a typical production
environment and tested using common penetration-testing utilities (see Table 1 for testbed
components). The DARE MTD Mechanism rotates between two actively running web servers
on a single host, both supporting a single, stateless web application.
	

VM	 Software	 Purpose	

MTD	VM	 CentOS	 Operating	System	

Apache	HTTPD	Server	 Web	Server	#1.	Port	82	

Nginx	Server	 Web	Server	#2.	Port	81	
WordPress	 Stateless	Web	Application	

Web	Server	Rotation	 Custom	Service	which	
Implements	MTD	using	
IPTables	

Reconnaissance	VM	 Kali	OS	 Operating	System	

Nessus/Nmap/OpenVAS	 Fingerprinting	

Metasploit	Framework	 Penetration	Testing	

Table	1:	DARE	MTD	Testbed	Components	

For testing purposes, DARE MTD and penetration testing software were deployed on separate
virtual machines that were contained on an individual host machine. This allowed for a
consistent networking environment and a versatile template that could later be deployed to other
testbeds and production environments. Figure 4 describes the networking environment as it
existed for tests as outlined below:

	

Figure	4:	The	DARE	MTD	Networking	Environment	

DARE MTD takes incoming web traffic (on standard TCP (Transmission Control Protocol) port
80) and redirects it to one of two ports: (1) non-standard TCP port 81 for traffic served by Nginx
or (2) non-standard TCP port 82 for traffic served by Apache. The MTD mechanics are as
follows:

• Host-based firewall configuration: Linux IPTables is used to redirect incoming web
traffic either to the Nginx port or to the Apache HTTPD port.

• Web servers: both Nginx and Apache HTTPD are configured to listen to a localhost on
their respective non-standard TCP ports.

• Rotation service: custom script (running as a service), which performs the IPTables rule,
updates to redirect the web traffic from TCP port 80 either to the Nginx or the Apache
HTTPD TCP port. This update occurs at a random yet bounded time interval.

A production-environment web server typically listens for incoming traffic on port 80 (HTTP).
As such, the MTD mechanism can be installed on typical Linux production servers with minimal
effort and thus adheres to the MORE MTD ideal. The web servers are configured to listen to
localhost, which makes them unreachable on the network. IPTables is configured in a way that
only allows traffic on the defined TCP ports. In our design, we have made no assumptions in the
enterprise configuration of a system and therefore do not rely on network firewalls or other
mechanisms to aid in the Moving Target Defense.

DARE MTD offers significant promise as a proactive defense against web server application-
level vulnerabilities. It succeeds both in the goals of increasing uncertainty (as shown in the VM
fingerprinting tests) and in increasing resilience (as shown in the exploit mitigation tests). There
are a number of unsolved problems with DARE MTD and MTD solutions in general. Though in
the present set of experiments we showed that performance is actually increased over a static
Apache web server, performance during rotation remains an area that requires further
exploration. Additionally, there are several unanswered questions regarding session
maintainability, stateless transport mechanisms such as the user datagram protocol, and overall

maintainability with regard to patching and system overhead. However, the conclusion remains
that MTD technologies such as DARE MTD have the ability to offer significant benefits for
protecting high-value targets.

SS MTD
Cyber infrastructures can be attacked with relative ease, as most of the current infrastructures
have configurations with a single, static network stream for communication between any two
nodes at a particular time. The aim of Stream Splitting (SS) MTD is to explore and design a
TCP moving target defense technique by splitting the payload (data) over multiple TCP streams,
making it difficult for the attacker to access the entire communication payload and gain
meaningful information. TCP stream splitting (SS) splits a network stream into multiple streams
(see Figure 5), making it difficult for an attacker to attack the system by eliminating the
advantage of fixed-system configurations and network architecture.

Figure	5:	Splitting	TCP	Network	Streams	

By mathematically defining a diversity quotient and a desirable state, it follows that we would
want to design our software to attempt to reach the desired state.

§ At the launch of a network transmission, we compute a diversity quotient Q and compare
it to a user-configured threshold.

§ If Q is greater than the threshold, the software attempts to increase diversity by adjusting
the number of sub-streams.

Counterintuitively, in some cases, reducing the number of sub-streams may actually reduce Q
(increasing diversity).

§ This could happen when the number of intermediary hosts is limited.
§ To combat this phenomenon and allow for increased diversity, we propose the use of on-

demand cloud provisioning to increase intermediary host quantity and geographical
diversity (many cloud providers allow a user to choose geographical locality).

SS MTD is designed to be media-agnostic. Although initial prototypes focus on traveling over
different paths on the Internet using TCP/IP, the protocol itself is designed to operate at the
application layer, over any protocol, and over any media. To accomplish this, when not using a
stateful, lower-level protocol like TCP, we have a dual-layer reassembly algorithm. Our full-
stream reassembly algorithm still focuses on the integrity of the original communications stream,
but our sub-stream reassembly algorithm allows for the retransmission of individual packets or
chunks without triggering a failure of the channel.

SS MTD is similar to multipath TCP (MPTCP), though it has several key differences. SS-MTD
does not aim for layer-4 backward compatibility but rather runs totally at the application
layer. This means that there are no flags in the TCP headers to signal that this stream is running
over multiple paths. In addition, MPTCP has no way to measure the diversity of the paths on
which communication passes.

A proactive MTD anticipates adversarial behaviors by continuously changing in some
randomized fashion, while a reactive MTD adapts when an attack occurs as a preventative
measure. As discussed above, a proactive approach to cyber defense effectively maintains the
integrity and accessibility of the application(s) in use.

Conclusion
This paper presents multiple MTD solutions for hardening security by increasing adversarial
uncertainty of the target system. Existing MTD solutions are not practical, and their ability to
protect networks from attacks has received little attention in literature; the proposed solutions fill
these gaps. Experimental results show that the presented MTD techniques are effective in
protecting the server environment from adversarial attacks by reducing the likelihood of
reconnaissance and other attacks and by limiting an attacker's access time to a compromised
host.

The findings have several implications. First, converting from static defense to dynamic defense
through the rotation of system components improves security by reducing the value of, and the
window of opportunity for, gathering information and deploying exploits while increasing the
cost of doing so. Second, the MTD techniques can be improved further by diversifying other
elements of the networking environment, such as applications and database servers.

References
[1] US House, Subcommittee on Cybersecurity, Infrastructure Protection, and Security

Technologies, “Examining the Cyber Threat to Critical Infrastructure and the American
Economy,” Washington: Government Printing Office, 2012.

[2] Cox, B.; Evans, D.; Filipi, A.; Rowanhill, J.; Hu, W.; Davidson, J.; Knight, J.; Nguyen-
Tuong, A.; Hiser, J., editors. N-variant systems: a secretless framework for security through
diversity: Defense Technical Information Center; 2006.

[3] Colbaugh, R.; Glass, K. Proactive defense for evolving cyber threats. Intelligence and
Security Informatics (ISI), 2011 IEEE International Conference on: IEEE; 2011. p. 125–130.

[4] Zhuang, R.; Zhang, S.; DeLoach, S.A.; Ou, X.; Singhal, A. Simulation based Approaches to
Studying Effectiveness of Moving-Target Network Defense. National Symposium on
Moving Target Research; 2012.

[5] Zank, A. Moving Target Defense: Coronado Group. Available from:
http://www.coronadogroup.com/images/Moving-Target-Defense- Coronado.pdf. Accessed
June 18, 2012.

[6] Colbaugh, R. and Glass, K., Proactive Defense for Evolving Cyber Threats, 2011 IEEE
International Conference on ISI, p. 125-130, 10-12 July 2011.

