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Introduction 
The breadth and magnitude of the challenges facing computation for human-cyber-physical systems—examples 

include Internet of Things (IoT) and Internet of Battle Things (IoBT) (Kott et al., 2016)—is staggering.  

According to CISCO, there will be over 500 billion entities in an IoT environment by 2030 (CISCO, 2016).  

Many of these entities were previously unidentified as requiring networked communications (Trappe et al., 

2015), and network security and system resilience concepts have often been excluded from their system design 

(Kott et al., 2016).  On the battlefield, future warfighter operations and missions will rely more heavily on 

networked devices designed with autonomous cognitive decision-making capabilities to perform a broad range 

of tasks, including cognitive sensing, communicating with human warfighters, conducting operations in 

congested environments, and securely processing and communicating data to other autonomous agents (Adler et 

al., 2016; Kott et al., 2016).  Furthermore, the modeling challenges related to autonomous cyber defense of IoT 

and IoBT1 in contested and congested environments are complex.  That is, the confidentiality, integrity and 

availability of IoT data combined with proper device functioning—this process is a key aspect of cyber 

resilience—can each be manipulated by a skilled adversary.  Specifically, intrusion detection plays a key role 

IoT security and resilience: enhancing cyber systems for IoT in regularly congested environments so that the 

systems autonomously switch functionalities is a rich research area.  Detecting cyberattacks that leverage novel 

methods to exploit previously unidentified (i.e., “zero-day” attacks) is infeasible with signature-based detection 

models for intrusion prevention or detection systems (IPS/IDS).   

 

Here, we narrow our focus to some of the modeling challenges related resilient wireless communications for 

connected the radio frequency (RF) sensors in contested and congested environments.  In this paper, we propose 

a framework for an autonomous cyber defense agent (ACDA) to enhance intrusion detection for IoT which, in 

addition to cybersecurity quantification, directly impacts cyber-risk and resilience assessments.  This notional 

agent acts in a mediatory role between the entities in the IoT and some host: monitoring the network traffic with 

distributed or centralized network controls, preventing cyberattacks with IPS such as firewalls, and detecting 

anomalous and malicious traffic with anomaly-based, semi-supervised, and unsupervised learning algorithms.  

For example, the Routing Protocol for Low-Power and Lossy Networks (RPL) is a standard routing protocol for 

the IoT, and it is known that wireless sensor networks (WSN) using IPv6 over Low-powered Wireless Personal 

Area Networks (6LoWPAN)—entities, such as cognitive RF sensors—are vulnerable to cyberattacks 

originating on the Internet and from within the network (Raza et al., 2013).  Motivated by Raza et al. (2013), we 

define a notional framework for an ACDA (see Figure 1) that places an IDS in the router and lightweight IDS 

modules (Yu and Leslie, 2017) on the entities in the network.  Using a semi-supervised learning model, we 

show that an IDS can effectively detect botnet traffic for the datasets considered that the algorithm has not 

previously detected.  This is critical for our understanding of the applicability of anomaly-based detection 

algorithms in IDS deployed in an IoBT environment.  

                                                 
1 For the remainder of this paper, we will use the acronym IoT, if IoT, IoBT, or industrial IoT can be used interchangeably. 
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IoBT in Contested Environments: Cybersecurity Modeling 
In a contested environment, IoT security requires successful autonomous cyber defense which is in part 

characterized by detecting cyberattacks and protecting against them. Similarly, network intrusion detection 

systems (NIDS) and related algorithms, of necessity, must be fast, of low computational complexity, and have 

some degree of autonomy with advanced cognition, where decision-making normally reserved for human 

analysts is automatically performed by IoT NIDS (Kott et al., 2016; Shearer et al., 2017; Yu and Leslie, 2017). 

One of the simplest unsupervised learning algorithms is the k-means algorithm (Lloyd, 1982)—it has several 

successful applications to anomaly detection models in NIDS for large-scale enterprise networks (Wang & 

Paschalidis, 2015)—and machine learning models with similar properties will be critical to IoT and IoBT 

operations in adversarial environments (Chang et al., 2013; Raza et al., 2013; Kott et al., 2016).  The k-means 

algorithm is a clustering algorithm characterized by two iterative steps that produce a Voronoi tessellation of the 

feature space: (i) assign training examples to closest centroid; and (ii) (re)compute the mean of each centroid 

which is the mean of the training examples assigned to it.  Because the k-means algorithm is very simple and 

many of its implementation challenges are shared among other unsupervised learning algorithms, we use k-

means as a representative for anomaly-based detection models in NIDS to stage our discussion of IoT security 

modeling, namely, whether the challenges of cyber security and resilience modeling for large-scale networks 

have parallels in IoT and IoBT.  For example, anomaly-based detection models tend to have high false positive 

rates (often misclassifying normal activity as an attack), and signature-based NIDS tend to have high false 

negative rates (misclassifying actual attacks).   

  

 
 

Figure 1. Notional ACDA framework. 

 

We further explore these modeling challenges with the Czech Technical University (CTU)-13 botnet packet 

capture (pcap) scenarios which provide a labeled, real dataset with background, normal, and malicious traffic, 

where each of the thirteen pcap scenarios is characterized by a unique type of botnet (Garcia et al., 2014).  In 

this study, we focus on three of the thirteen CTU-13 botnet scenarios (see Table 1 for some details about CTU-

13 scenarios), where each of the scenarios is a different type of distributed denial of service (DDoS) attack: IDs 

4, 10, and 11 (Gu et al., 2008). 

 

Table 1. Characteristics of three of the CTU-13 botnet pcap scenarios: IDs 4, 10, 

and 11 are different types of DDoS attacks (Gu et al., 2008).  

 ID 4 ID 10 ID 11 

Brief description of DDoS type UDP & ICMP UDP ICMP 

Duration (hrs.) 4.21 4.75 0.26 

Number of flows 4,238,045 5,180,852 40,836 

Number of bots 1 10 3 

RouterHost
IPv6 Thing

Secure communications needed

Internet RPL for 6LoWPAN

F
ir
e
w
a
ll

IDS

IDS



 

We implement a semi-supervised learning algorithm for a NIDS based on the k-means algorithm, where we use 

the labels from the training set only in the centroid initialization phase of the algorithm—this centroid 

initialization phase occurs before the two main iterative steps of this nearest neighbor model.  In addition, prior 

to model implementation, we pre-process the IP flow data and characterize each example by the following nine 

categorical and quantitative features: duration (in hours), protocols (e.g., TCP, UDP), server IP address, server 

port, client IP address, client port, total number of packets, total bytes, and number of client bytes.  Additional 

pre-processing steps are converting categorical features to quantitative features with one-hot encoding (Garcia 

et al., 2014), and then standardizing the feature space.  We follow by performing principal component analysis 

(PCA) for dimension reduction of the feature space such that 99% of the variance is explained by the principal 

components resulting in as much as a 20-dimensional feature space for CTU-13 Scenario ID 11.  Using 4-fold 

cross validation, we present the k-means prediction performance results for the testing dataset in Table 2, where 

k = 2 for the normal and malicious clusters.  

 

Table 2. The k-means performance results for 3 of the CTU-13 

botnet pcap scenarios characterized in Table 1: IDs 4, 10, and 11. 

 ID 4 ID 10 ID 11 

accuracy 1.00 0.97 0.97 

precision 0.98 0.85 0.82 

recall 0.26 0.90 0.89 

FPR 0.0 0.02 0.02 

 

Although our semi-supervised modeling approach for an ACDA is very simple, we are able to detect cyber 

intrusions with success (see Table 2 for prediction performance results), where FPR is 0.0 for scenario ID 4 and 

accuracy is above 0.97 for each botnet scenario considered.   Nonetheless, modeling challenges exist even for 

detecting these botnets with DDoS attack which are masked by high accuracy results and low FPR (see Table 

2).  Low recall results can be detrimental to IoBT mission success for botnet scenario ID 4 (see Table 2) 

indicating a high number of false negatives.  NIDS prediction performance must be prioritized to match IoBT 

mission needs.  In addition, IoBT security must operate efficiently to secure mobile ad hoc networks 

(MANETs) and ensure that the computational resource utilization constraints are met (Chang et al., 2013; Leslie 

et al., 2017 b).   

IoBT in Congested Environments: Cognitive Sensor Spectrum Sharing 
IoBT security and resilience challenges are multi-faceted—its sensors and communications are interactive, 

adaptive, dynamically-configured, and goal-driven.  These challenges include effectively and efficiently 

operating in a congested environment to develop situational awareness by collecting and refining data (Kott et 

al., 2016).  The technology needed to develop situational awareness for sensors is an ongoing research 

challenge that has been given much attention from the RF sensor community in the application areas of 

cognitive radio and cognitive radar (Martone, 2014).  Fueled by the ever-growing wireless communication 

industry and its need for more frequency bandwidth, regulatory institutions [such as the Federal 

Communications Commission (FCC)] are motivated to explore new spectrum access technologies (FCC, 2013; 

FCC, 2015). These technologies would allow radio and communications systems to effectively share the 

frequency spectrum and mitigate mutual RF interference. This technology is necessary for “blue force” radar 

and communication systems to coexist within the IoBT. 

 

An enabling radar technology that could be leveraged for communication system spectrum sharing is the 

spectrum sensing, multi-objective optimization (SS-MO) technique (Martone et al., 2015 a). SS-MO is a 

bandwidth sharing approach, where the radar attempts to identify a sub-band (or channel), within an overall 

frequency band of interest, by passively sensing the electromagnetic spectrum. The goal of SS-MO is to 



simultaneously maximize radar performance while mitigating mutual interference. To maximize performance 

SS-MO uses multi-objective optimization to jointly maximize bandwidth and signal to interference plus noise 

(SINR) ratio. A maximum radar bandwidth is required to preserve radar range resolution and resolve closely 

spaced targets.  SS-MO has been shown to significantly increase SINR (Martone et al., 2015 a; Martone et al., 

2016), mitigate range sidelobes (Martone et al., 2015 b), and effectively share the frequency spectrum with 

communication systems (Martone et al., 2017). 

Conclusion 
Central to the task of an ACDA is defending mission-critical IoBT assets operating in a contested and/or 

congested environment so that they are secure and resilient—that is, able to recover from attacks to the physical 

and cyber environments.  Furthermore, to promote IoT security and situational understanding, the risks of 

cyber-attacks must be assessed with predictive computational modeling (Leslie et al., 2017 b).  To communicate 

and collaborate on the battlefield and ensure cyber situational awareness and understanding for IoBT entities 

(e.g., cognitive RF sensors), enabling technologies and cognitive techniques (such as SS-MO), provide 

spectrum access for RF sensors and optimized performance in congested electromagnetic environments.  

Researchers will need to continue to fuse these existing technologies with intrusion detection for cyber-risk, 

security, and resilience modeling for IoBT. 
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