
cbe

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 11

Test Case Migration: A Reference Process Model and its
Instantiation in an Industrial Context

Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer 1

Abstract: In the context of software migration, existing test cases represent important assets which
can be reused for migration validation. Doing so, one can save time as well as costs by avoiding design
of new test cases. However, migration of test cases is a quite challenging task due to the size of the
test case set and often missing conformity in the structure of the test cases. Moreover, the test cases
are implemented in the same or a compatible technology as the software system they are testing,
so they have to follow somehow the migration of the system. To overcome this complex task, we
propose a reference process model which supports systematic test case migration during software
migration projects. Our reference process model for test case migration encompasses the phases
reverse engineering, restructuring, and forward engineering. An instantiation of our reference process
model is presented based on an industrial case study.

Keywords: software migration; reengineering; model-driven testing

1 Introduction

Software migration is a well-established method for transferring software systems into new
environments without changing their functionality. For instance, legacy software systems
which are technologically obsolete, but still valuable for ongoing business, can be migrated
into a new environment [Bi99].

In this context, software testing plays an important role as it verifies whether the main
requirement, the preservation of the functionality, is fulfilled. Reusing existing test cases can
be beneficial not just from economical perspective, as the expensive and time consuming
test design is avoided [Sn99], but also from practical perspective: the existing test cases
contain valuable information about the functionality of the original system.

However, a direct reuse of existing test case is not always possible in real world migration
projects, due to system changes as well as the differences in the source and the target
environments. As test cases are coupled with the system they are testing, the system changes
need to be detected, understood and then reflected on the test cases to facilitate reuse. This
is a quite challenging task in various migration scenarios, because of the size of the test
1 Paderborn University, Software Innovation Lab, Zukunftsmeile 1, 33102 Paderborn, Germany, {ivan.jovanovikj|

enes.yigitbas|stefan.sauer}@sicp.upb.de

Ina Schaefer, Loek Cleophas, Michael Felderer (Eds.): Workshops at Modellierung 2018,
Modellbasierte und modellgetriebene Softwaremodernisierung (MMSM 2018) 153

https://creativecommons.org/licenses/by-nc/3.0/
{ivan.jovanovikj|enes.yigitbas|stefan.sauer}@sicp.upb.de
{ivan.jovanovikj|enes.yigitbas|stefan.sauer}@sicp.upb.de

12 Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer

case set which sometimes is measured in tens of thousands of test cases and the missing
conformity in the test case structure [JGY16]. Hence, first of all, a new migration method
should be able to deal with the structural complexity of the test cases. Then, it should also
provide an easy way to restructure the test cases and reflect the relevant system changes.
Last but not least, the migrated test cases should be appropriate for the target environment,
i.e., the test cases have to be re-designed for the target environment [Gr16].

The Model-Driven Engineering (MDE) software development methodology has been
established to deal with the increasing complexity of today’s software systems by focusing
on creating and exploiting domain models. The Model-Driven Architecture (MDA) initiative,
proposed by Object Management Group (OMG), puts the MDE idea in action, and clearly
separates the business logic from implementation by defining software models at different
levels of abstraction: The computation independent model (CIM) layer, platform-independent
model (PIM) layer and platform-specific model layer (PSM).

Software migration approaches that follow the MDA principles are known as model-driven
software migration (MDSM) approaches [Fu12]. Generally speaking, software migration
can be seen as a transformation of the system which is done by enacting a software
transformation method, which is an instance of the well-known horseshoe model [KWC98].
Therefrom, software migration is some kind of software reengineering, which according
to [CC90] is defined as ”examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form”. In general, software
reengineering consists of three consecutive phases: reverse engineering, restructuring, and
forward engineering. Software testing which relies on the MDA principles is known as
model-driven testing [HL03, EGL06]. Similarly to software migration, test case migration
can be seen as a transformation of test cases implemented for a specific source technology
to test cases implemented for a specific target technology.

Following the idea of model-driven software migration, we present a novel reference process
model which supports systematic test case migration during software migration projects.
Our proposed reference process model encompasses the phases Reverse Engineering,
Restructuring, and Forward Engineering (Figure 1). An instantiation of our reference process
model is presented based on an industrial case study which illustrates the applicability of
our reference process.

The structure of the rest of the paper is as follows: In the next section 2, we present our
reference process model for test case migration. The applicability of our reference process
model is shown in section 3 based on an industrial case study. In section 4, we briefly
discuss the related work and at the end, section 5 concludes the work and gives an outlook
on future work.

154 Ivan Jovanovikj, Enes Yigitbas

Test Case Migration 13

Restructuring

Reverse
Engineering

Forward
Engineering

Fig. 1: General Phases of the Test Case Migration Process

2 Reference Process Model for Test Case Migration

In this section, we present the reference process for test case reengineering as enabler for
model-driven test case migration. In general, as shown in Figure 1, our reference process
comprises the main reengineering phases: Reverse engineering, Restructuring, and Forward
Engineering [CC90]. Each phase consists of a set of activities and corresponding artifacts
in terms of textual artifacts and models on different levels of abstraction. Here, we introduce
the reference process represented as a BPMN model (Figure 2) and in the next section we
come up with a concrete instantiation.

2.1 Artefacts

Artefacts are constituting parts of each transformation process. In Figure 2, the artefacts are
represented as data objects. An artefact can either be a textual artefact, e.g., a test code, or a
model. Regarding to the abstraction level, each artefact belongs to one of the three layers:
System Layer, Platform-Specific Layer, and Platform-Independent Layer.

On the System Layer, the textual artifacts representing test code and models of the test code
(Model of the Test Code (original) and Model of the Test Code (migrated)) are placed. Test
Code (original/migrated) can be either the test cases, implemented in a specific testing
framework, e.g. jUnit2 or MSUnit3, test configuration scripts or a manually implemented
additional test framework. If the test cases depend on these artifacts, they also have to
be considered and eventually migrated along with the test cases. Model of the Test Code
(original/migrated) is an AST (Abstract Syntax Tree) representation of the test code
depending on the particular language of the original or the target environment.

On Platform-Specific Layer, technology-specific test concepts are used to represent the
test cases for both the source and the target environment. The Model of Executable Tests
(Original/Target) is considered as platform-specific as it represents the executable test cases

2 jUnit, http://junit.org/junit4/
3 MSUnit, https://msdn.microsoft.com/en-us/library/hh598960.aspx

Test Case Migration: A Reference Process Model and its Instantiation in an Industrial
Context 155

14 Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer

Restructuring

Fo
rw

ar
d

E
ng

in
ee

ri
ng

R
ev

er
se

 E
ng

in
ee

ri
ng

Model
Discovery

Test
Abstraction

Test Code
(original)

Model of the
Test Code
(original)

Test Case
Understanding

Model of the
Executable Tests

(original)

System
Behaviour
Recovery

Model of the
Abstract Tests

System Behaviour
Model

Abstract Test
Derivation

Test
Concretization
(to Test Code)

Test
Concretization

Model of the
Executable Tests

(migrated)

Code
Generation

Model of the
Test Code
(migrated)

Test Code
(migrated)

Language
Transformation

Framework
Transformation

Enrichment/
Restructuring

(optional)

Enrichment
(optional)

System Layer Platform-Specific
Layer

Platform-Independent
Layer

Textual Artefact ModelArtefact Type:

Abstraction Level:

Fig. 2: Reference Process Model for Test Case Migration

by using testing concepts which are specific for a particular testing framework, i.e., by using
meta-models of jUnit or MSUnit to model the tests.

On the Platform-Independent Layer, the models are independent of any particular testing
framework or testing technology. Here, two types of models can be distinguished, the
Model of the Abstract Tests and the System Behavior Model. The Model of the Abstract
Tests is considered to be platform-independent as it is independent of any concrete testing
technology. For the modeling of abstract test cases, standardized languages like UML

156 Ivan Jovanovikj, Enes Yigitbas

Test Case Migration 15

Testing Profile (UTP) or Test Description Language (TDL) are used. The System Behavior
Model comes at the highest level of abstraction and it is a compact representation of the
expected system’s behavior usually represented as UML activity or sequence diagrams.

2.2 Activities

Activities in the test case reengineering process model produce or consume appropriate
artifacts. These activities can be distinguished by the reengineering phase they are belonging
to. For this purpose, we rely on the classification defined by [CC90], who define the
reengineering as a process constituted of three phases: Reverse Engineering, Restructuring,
and Forward Engineering. In Figure 2, all activities are represented as BPMN tasks.

Reverse Engineering is according to [CC90] the "process of analyzing a subject system to
create representations of the system in another form or on a higher level of abstraction".
Similarly, seen from software testing perspective, we define reverse engineering as a process
of analyzing test cases to create representations of the test cases in another form or on a
higher level of abstraction, e.g., by using test models. In general, reverse engineering can
be seen as a combination of Model Discovery and Model Understanding [Br10]. Model
Discovery is an automatic text-to-model transformation activity which relies on parsers to
perform syntactical analysis. As a result, a model in terms of AST of the test case source
code is produced. Model Understanding is a model-to-model transformation activity, or a
chain of such activities, which take the initial model and apply semantic mappings in order to
generate a derived model of a higher level of abstraction. In our reengineering process, Model
Understanding comprises three sub-activities. Firstly, Test Case Understanding takes the
initial models and explores them by navigating through their structure to identify test relevant
concepts like test suite, test case or assertion. Then, in a model-to-model transformation
step, a test model of executable test cases is obtained. This model is specific to a particular
testing technology (e.g., jUnit, MSUnit). Next, by applying the Test Abstraction activity, a
model-to-model transformation as well, a model of the abstract test cases is obtained. This
model is a platform-independent representation of the test cases, thus independent of any
particular testing technology. As modeling languages, usually UML Testing Profile (U2TP)
or Test Description Language (TDL) are used. Finally, the System Behavior Recovery
activity is applied in order to obtain the highest possible level of abstraction defined by
our reengineering process, the System Behavior Model. It is a compact representation of
the expected behavior of the system. For all of the previously mentioned model-to-model
transformations, transformation languages like QVT4 or Java Development Tools (JDT)5
can be used.

Forward Engineering is "the traditional process of moving from high-level abstractions
and logical, implementation-independent designs to the physical implementation of a

4 QVT - http://www.omg.org/spec/QVT/1.1/
5 JDT - https://www.eclipse.org/jdt/

Test Case Migration: A Reference Process Model and its Instantiation in an Industrial
Context 157

16 Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer

system-[CC90]. In the testing domain, we define this as a process of moving of high-
level test abstractions and logical implementation-independent design to the physical
implementation of the test cases. The Forward Engineering phase can be seen as Model-
Driven Testing [HL03, EGL06] as the test models are used as input for a chain of automated
transformations, which at the end provides the test code. The Abstract Tests Derivation
activity gets as input the System Behavior Model and generates the Model of Abstract Test
Cases. Next, by applying Test Concretization, a Model of Executable Test Cases is obtained.
The Test Code Generation activity, takes this platform-specific model and in a model-to-text
transformation, test code of the migrated test cases is obtained.

Restructuring, according to [CC90], is ”the transformation from one representation form to
another at the same relative abstraction level, while preserving the subject system’s external
behavior (functionality and semantics)”. In our case, we define test restructuring as the
transformation from one representation to another at the same relative abstraction level,
while preserving the ßemanticsöf the tests. We use ”semantics” to denote the functionality
of the system being checked by the tests. This activity can be applied on the System Behavior
Model as well as on the Model of Abstract Test Cases. In Figure 2, we indicate Restructuring
as ”loop” symbols on the artifacts they are applicable on. The particular actions during
Restructuring are defined by the target testing environment. But, Restructuring may also be
influenced by the changes that happen in the system migration. Those system changes that
are relevant for the tests have to be considered and covered by the Restructuring activity.
Language Transformation is a direct mapping between the Models of the Test Code. More
precisely, it is actually a mapping between the programming languages of the source and
target testing environment. Framework Transformation is performed on a higher abstraction
level and defines a direct mapping between two testing frameworks, i.e., a mapping between
the test concepts inside the original an the target testing framework. In Enrichment, one can
insert an additional information to the tests by using annotations. This activity is applicable
to various models, e.g., Model of Executable Tests, Model of Abstract Tests or System
Behavior Model.

The XOR-Gateways shown in Figure 2, illustrate the flexibility of the reengineering process
and its applicability in different migration contexts. For example, in a concrete migration
scenario, as shown in the next section, one can decide to perform Framework Transformation,
and not Language Transformation. This implies that after Model Discovery, on the first
decision node, a Test Case Understanding has to be chosen.

3 Case Study: An Instantiation of the Reference Process Model in an
Industrial Context

Our reference reengineering process was applied in an industrial project which dealt with
migration of parts of the well-known Eclipse Modeling Framework (EMF)6 along with the

6 Eclipse Modeling Framework, https://www.eclipse.org/modeling/emf/

158 Ivan Jovanovikj, Enes Yigitbas

Test Case Migration 17

Restructuring

Fo
rw

ar
d

E
ng

in
ee

ri
ng

R
ev

er
se

 E
ng

in
ee

ri
ng

Model
Discovery

Test Code
(jUnit)

Model of the
Test Code
(Java AST)

Test Case
Understanding

Model of the
Executable Tests

(xUnit Model) Test
Concretization
(to Test Code)

Model of the
Executable Tests
(MSUnit Model)

Code
Generation

Model of the
Test Code
(C# AST)

Test Code
(MSUnit)

Framework
Transformation

System Layer Platform-Specific
Layer

Platform-Independent
Layer

Textual Artefact ModelArtefact Type:

Abstraction Level:

Fig. 3: Instantiation of the Reference Process Model for Test Case Migration

Object Constraint Language (OCL)7 from Java to C#. The main change performed by the
system migration, besides switching from Java to C#, was to change from a Just-In-Time
(JIT) compilation in the old system to an Ahead-Of-Time (AOT) compilation of OCL
constraints in the migrated system. As OCL is a well-tested framework, the main goal was
to reuse the existing OCL test cases to validate the migrated OCL functionality in the target
environment. Consequently, in total 13 different test suites had to be migrated, each of them
addressing different functional aspects of OCL.

According to this specific context information, we used our test case reengineering process
model shown in Figure 2 to instantiate a suitable reengineering method. At the end, the
migration method shown in Figure 3 was obtained. The Reverse Engineering phase starts
with Model Discovery, which takes as input jUnit test cases (Test Code (jUnit)) and produces
an AST (Model of the Test Code (Java AST)). Then, Test Case Understanding takes the
AST as input, and identifies and extracts testing relevant concepts, resulting in a Model of
the Executable Test Cases (xUnit) which conforms to the xUnit meta-model [Me07]. In
Framework Transformation a transformation based on mapping between xUnit and MSUnit
is performed. Here, also the transformation of OCL expressions from Java to C# was
performed. As this transformation was already implemented in the system migration, it
was reused. Then, by applying Test Concretization (to Test Code) and Code Generation
consecutively, the test code (Test Code (MSUnit)) for the target environment was obtained.

7 Object Constraint Language, http://www.omg.org/spec/OCL/2.4/

Test Case Migration: A Reference Process Model and its Instantiation in an Industrial
Context 159

18 Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer

To support the migration process, we developed two Eclipse plug-ins: TestCase2TestModel
and TestModel2TestCase. The TestCase2TestModel plug-in supports the reverse engineering
activities by using JDT for parsing and model-to-model transformation. The forward
engineering and restructuring activities, are supported by the TestModel2TestCase plug-in
which is a test code generator written using Xtend, resulting at the end in MSUnit test code.

In total, 92% of the 4000 existing jUnit test cases were migrated. It is an open question if the
migration of the test cases can further be automatized. 8% of the OCL test cases were not
migrated automatically, because these are regression tests that have an irregular structure
which complicates an automation.

4 Related Work

Focussing on the topic of model-driven test case migration, different research areas like
model-driven testing, test case reengineering, test mining and software migration have to be
analyzed.

Previous research in the area of model-driven testing already presented some proved methods
that address the automation of the test case generation in a quite efficient way. In the work
presented in [HL03], the authors aim to benefit from the separation of PIMs and PSMs in the
generation and execution of tests by redefining the classical model-based tasks. Dai [Da04]
proposes a model-driven testing methodology which takes as input UML system models
and transforms them to test-specific models as instances of the UML Testing Profile. Javed
et al. [JSW07] propose a generic method for model-driven testing that relies on an xUnit
platform independent model. Lamancha et al. [LA09] propose also a model-driven testing
method that relies on UML Testing Profile. Moreover, they present concrete transformations
using the QVT transformation language. All of this methods are related to our work as they
address the forward engineering phase of our reference process model.

Regarding the reverse engineering side, we have identified also some existing work in the
area known as test case reengineering. Hungar et al. [Hu03] extract models out of test cases
by means of automata learning. In [Jä09], test models are synthesized from test cases by
threating all test cases as a linear model and merging the corresponding states. The work of
Werner et al. [WG11] goes in the similar direction and constructs trace graphs out of test
cases to represent the system behavior.

The importance of reusing test cases can be observed in various previous software migration
projects where effort has been made to enable test case reuse. In our previous work [Jo16],
we have already presented the basic idea about reenginneering of legacy test cases. In the
SOAMIG migration project [Zi11] for example, existing test cases are used for the analysis
of the legacy system. MoDisco [Br10] is a generic and extensible framework devoted to
Model-Driven Reverse Engineering. However, migration of test cases is still not addressed
by this framework. The Artist [MA14] project proposes model-based modernization, by

160 Ivan Jovanovikj, Enes Yigitbas

Test Case Migration 19

employing MDE techniques to automate the reverse engineering and forward engineering
phases. From our point of view, it is the most interesting project as they also advocate
migration of the test cases in a model-driven way, i.e., in a similar way the system has been
migrated, thus reusing, above all, the developed tools. Our work differs in that way, that
we propose a systematic test case migration reference process model seen from software
testing perspective.

5 Conclusion and Future Work

In this paper, we present a novel reference process model for test case migration during
software migration projects. Our approach supports model-driven test case migration
through a systematic description of relevant reengineering activities represented in BPMN.
It comprises the reengineering phases Reverse Engineering, Restructuring, and Forward
Engineering as well as artefacts on different levels of abstraction specific for software
testing. The proposed reference process model is a generic model with high flexibility
and can be used in different software migration scenarios to support the model-driven
migration of test cases. This is shown by an instantiation of our reference process model
based on an industrial case study where thousand of test cases were migrated from jUnit to
MSUnit, most of them completely automatic. In future work, we intend to further extend our
reference process model based on the idea of situational method engineering. This way, we
plan to systematically cover different test case transformation methods suitable for different
migration contexts.

References
[Bi99] Bisbal, J.; Lawless, D.; Bing Wu; Grimson, J.: Legacy Information Systems: Issues and

Directions. IEEE Software, 16(5):103–111, 1999.

[Br10] Bruneliere, Hugo; Cabot, Jordi; Jouault, Frédéric; Madiot, Frédéric: MoDisco. In:
Proceedings of the IEEE/ACM international conference on Automated software engineering
- ASE ’10. ACM Press, New York, New York, USA, p. 173, 2010.

[CC90] Chikofsky, Elliot J; Cross, James H: Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1):13–17, 1990.

[Da04] Dai, Zhen Ru: Model-Driven Testing with UML 2.0. Computing Laboratory, University
of Kent, 2004.

[EGL06] Engels, Gregor; Güldali, Baris; Lohmann, Marc: Towards Model-Driven Unit Testing.
In: Models in Software Engineering, pp. 182–192. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[Fu12] Fuhr, Andreas; Winter, Andreas; Erdmenger, Uwe; Horn, Tassilo; Kaiser, Uwe; Riediger,
Volker; Teppe, Werner: Model-Driven Software Migration - Process Model, Tool Support
and Application. In: Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, pp. 153–184. 2012.

Test Case Migration: A Reference Process Model and its Instantiation in an Industrial
Context 161

20 Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer

[Gr16] Grieger, Marvin: Model-Driven software modernization: concept-based engineering of
situation-specific methods. PhD thesis, University of Paderborn, Germany, 2016.

[HL03] Heckel, Reiko; Lohmann, Marc: Towards model-driven testing. In: Electronic Notes in
Theoretical Computer Science. volume 82. Elsevier, pp. 37–47, 9 2003.

[Hu03] Hungar, Hardi; Hungar, Hardi; Margaria, Tiziana; Steffen, Bernhard: Test-Based Model
Generation for Legacy Systems. IEEE International Test Conference (ITC), Charlotte, NC,
September 30 - October 2, 2:2003, 2003.

[Jä09] Jääskeläinen, Antti; Kervinen, Antti; Katara, Mika; Valmari, Antti; Virtanen, Heikki:
Synthesizing Test Models from Test Cases. In: Hardware and Software: Verification and
Testing: 4th International Haifa Verification Conference, pp. 179–193. 2009.

[JGY16] Jovanovikj, Ivan; Grieger, Marvin; Yigitbas, Enes: Towards a Model-Driven Method for
Reusing Test Cases in Software Migration Projects. Softwaretechnik-Trends, Proceedings
of the 18th Workshop Software-Reengineering & Evolution (WSRE) & 7th Workshop
Design for Future (DFF), 32(2):65–66, 2016.

[Jo16] Jovanovikj, Ivan; Grieger, Marvin; Güldali, Baris; Teetz, Alexander: Reengineering of
Legacy Test Cases: Problem Domain & Scenarios. Softwaretechnik-Trends, Proceedings
of the 3rd Workshop Model-Based and Model-Driven Software Modernization (MMSM),
36(3):65–66, 2016.

[JSW07] Javed, A. Z.; Strooper, P. A.; Watson, G. N.: Automated Generation of Test Cases Using
Model-Driven Architecture. In: Second International Workshop on Automation of Software
Test (AST ’07). IEEE, pp. 3–3, 5 2007.

[KWC98] Kazman, R.; Woods, S.G.; Carriere, S.J.: Requirements for integrating software architecture
and reengineering models: CORUM II. In: Proceedings Fifth Working Conference on
Reverse Engineering. IEEE Comput. Soc, pp. 154–163, 1998.

[LA09] Lamancha, Beatriz Pérez; Al., Et: Automated model-based testing using the UML testing
profile and QVT. In: Proceedings of the 6th International Workshop on Model-Driven
Engineering, Verification and Validation. pp. 1–10, 2009.

[MA14] Menychtas, Andreas; Al., Et: Software modernization and cloudification using the ARTIST
migration methodology and framework. Scalable Computing: Practice and Experience,
15(2):131–152, 7 2014.

[Me07] Meszaros, Gerard.: XUnit test patterns : refactoring test code. Addison-Wesley, 2007.

[Sn99] Sneed, H.M.: Risks involved in reengineering projects. In: Sixth Working Conference on
Reverse Engineering. pp. 204–211, 1999.

[WG11] Werner, Edith; Grabowski, Jens: Model Reconstruction: Mining Test Cases. In: Third
International Conference on Advances in System Testing and Validation Lifecycle. VALID
2011, 10 2011.

[Zi11] Zillmann, C.; Winter, A.; Herget, A.; Teppe, W.; Theurer, M.; Fuhr, A.; Horn, T.; Riediger,
V.; Erdmenger, U.; Kaiser, U.; Uhlig, D.; Zimmermann, Y.: The SOAMIG Process Model
in Industrial Applications. In: 2011 15th European Conference on Software Maintenance
and Reengineering. IEEE, pp. 339–342, 3 2011.

162 Ivan Jovanovikj, Enes Yigitbas

