
cbe

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Hierarchical, Reconfigurable Petri Nets

Jan-Uriel Lorbeer, Julia Padberg1

Abstract: Hierarchical Petri nets allow a more abstract view whereas reconfigurable Petri nets model
dynamic structural adaptation. In this contribution we present the combination of reconfigurable
Petri nets and hierarchical Petri nets yielding an hierarchical structure for reconfigurable Petri nets.
Hierarchies are established by substituting transitions by subnets. These subnets are themselves
reconfigurable, so they are supplied with their own set of rules, so-called local rules. Moreover, global
rules, that can be applied in all of the net, are provided.

Keywords: reconfigurable Petri nets; Petri net transformations; hierarchical Petri nets

1 Introduction

Modelling modern systems presents a lot of challenges some of which can be eased by the
use of appropriate models. A well known technique for system modelling are Petri nets.
Petri nets provide a graphical language for constructing system models as well as a precise,
mathematical semantics. These models can be used for simulations and to analyse the
model’s properties. This allows locating possible faults in the system at earlier stages which
also can decrease overall development costs. The increasing sizes of modern systems results
in models becoming rather large and possibly hard to comprehend. Additional abstraction
layers as for example hierarchies present one solution for the increasing size. Hierarchical
Petri nets use hierarchy to break down the complexity of a large model, by dividing it
into a number of submodels. This helps to concentrate on a specific system part without
the need to take the whole system into account. Also submodels can be reused with less
effort at multiple locations in the same system or even in a different system where similar
components are used.

Advanced systems that need dynamic structural adaptation can be modelled using reconfig-
urable Petri nets, an approach for dynamic changes in Petri nets. A reconfigurable Petri net
consist of a Petri net and set of rules that modify the Petri net’s structure at runtime. Hence
they increase flexibility enabling the modification of a net while allowing the transitions to
fire. The characteristic feature of reconfigurable Petri nets is the possibility to discriminate
between different levels of change as they consist of a Petri net and a set of rules that can
modify the Petri net. They provide powerful and intuitive formalisms to model dynamic
software or hardware systems that are increasingly executed in dynamic infrastructures.
1 Hamburg University of Applied Sciences, Hamburg, Germany, julia.padberg@haw-hamburg.de

Ina Schaefer, Loek Cleophas, Michael Felderer (Eds.): Workshops at Modellierung 2018,
Petri Nets and Modeling 2018 (PeMod18) 167

https://creativecommons.org/licenses/by-nc/3.0/
julia.padberg@haw-hamburg.de

2 Lorbeer, Padberg

Such infrastructures are dynamic as they are themselves subject to change and support
various applications that may or may not share some of the resources. Reconfigurable Petri
nets have been used in many different application areas, that require both the representation
of their processes and of the system changes within one model. Examples are concurrent
systems [LO04], mobile ad-hoc networks [Pa07], workflows in dynamic infrastructures
[HEP08], communication spaces [MGH10, GE12], ubiquitous computing [GNH12, Bo06],
flexible manufacturing systems [Tâ12], reconfigurable manufacturing systems [KBD16]). In
[PK18] a comprehensive overview of reconfigurable Petri nets is given, including theoretical
foundations and application areas. The term reconfigurable Petri nets is used since the
underlying type of Petri net may vary (for example being place/transition nets, object nets,
timed and/or stochastic nets, or high-level nets). Hence, this approach can be considered a
family of formal modelling techniques (see [PK18] for details). Reconfigurable Petri nets
are an instantiation of abstract transformation systems, calledM- adhesive transformations
systems, that are formulated in category theory. The fundamental idea is to characterize
those categories that allow double-pushout transformations: therefore only the diagrammatic
descriptions are needed. This has the advantage of a thorough theory that yields a vast
amount of results concerning the transformation part. Nevertheless, in this contribution we
omit the categorical foundation.

Hierarchical, reconfigurable Petri nets combine the hierarchical Petri net types and reconfig-
urable Petri net types into one, allowing a focused design of submodels and their reusability
and the ability for dynamic changes at runtime. The main idea is to use the hierarchies purely
at the surface, so the semantics is defined in terms of the underlying flattened reconfigurable
net.

Main Concept: Hierarchy as a syntactic extension
The hierarchy based on transitions being replaced by subnets is given as a syntactic
abbreviation. The hierarchical reconfigurable net is defined purely by it’s flattening into a
reconfigurable net.

This fundamental design decision has the following advantages: First, only the consistency
of the flattening construction can be guaranteed using well-known results, but no further
semantic correctness needs to be proven. Second, this corresponds directly to the intended
implementation of hierarchies in ReConNet [Re17, Pa12] (ReConfigurable Net).
Moreover, the transformation systems needs not to be shown for another category of
hierarchical nets. And, apart from the flattening construction, which needs to be done once,
the analysis and verification of a hierarchical Petri net requires no more effort than it’s
counter part with no hierarchy, since the whole behaviour is defined in terms of the flattened
net.

The software tool ReConNet has been developed so that the modelling and simulation
capabilities of reconfigurable nets are supported adequately. The most important feature
of the tool is the ability to create, modify and simulate reconfigurable nets in a single tool
through an intuitive graphic-based user interface. It allows the design and verification of

168 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 3

reconfigurable place/transition nets. In this paper we discuss the basis for the integration of
hierarchical reconfigurable Petri nets in ReConNet.

This paper is organised as follows: We start by given a very simple introductory example of
hierarchical reconfigurable Petri nets in Sect. 2. In Sect. 3 related work, namely approaches to
hierarchical Petri nets and hierarchical graph transformations are discussed. The subsequent
section introduces reconfigurable place/transition nets with labels. Sect. 5 elaborates the
formal definition of hierarchical reconfigurable Petri nets and their flattening, the definition of
transformation rules and proves the correctness of the flattening construction. The integration
of reconfigurable hierarchical Petri nets into the simulation tool for reconfigurable Petri
nets ReConNetis discussed in Sect. 6. The conclusion in Sect. 7 completes this paper.

2 Introductory Example

Reconfigurable Petri nets extend classical Petri nets to include the possibility of dynamic
changes. This is achieved through the use of a rewriting system and allows the modification
of the net’s structure at run time. Such a system provides two kinds of changes:

• a change of state accomplished through the firing of the net’s transitions

• a change of the process itself induced by the rules.

A reconfigurable Petri net N can either fire an activated transition or execute a transformation
step N

r
=⇒ M . An example for this process is displayed in Fig. 1. In Fig. 1a a reconfigurable

Petri net N is shown and in Fig. 1b it’s rule r with r’s nets L, K and R is given. N consists
of two places, two tokens and one transition which is black when activated. When rule r
is executed the net’s arcs are inverted. In it’s initial state (1) the rule r is not executable
because there is no match to the rule’s left-hand net L. The net L specifies that at least two
tokens are required at the place P at the figure’s bottom where the edges lead to. So only the
transition T can fire. Firing transition T twice state (3) is reached. In this state two tokens are
located on the bottom place P and r can be executed inverting the arc directions resulting
in state (4). If in state (3) there would have been an additional token on the upper place P
either the transition T could have fired or r could have been executed. In state (4) r is no
longer executable because the edges now lead to the upper place P, so only the transition T
can fire. State (4) is very similar to state (1) and after T firing twice r would be executable
once again.

Hierarchical, Reconfigurable Petri Nets 169

4 Lorbeer, Padberg

(a) State sequence of net N (b) Rule r

Fig. 1: Reconfigurable Petri net RN = (N, {r})

To give an intuition of hierarchical reconfigurable Petri nets we subsequently give an
example that comprises the ideas presented in the following sections. Imagine some simple
but adaptive process that can alternatively execute three different tasks task1, task2, and
task3. An abstract view of this process is given in Fig. 2.

Fig. 2: Abstract view: Net AN Fig. 3: Flattened net FL AT(AN)

The tasks task2 and task3 are more complex and are given by subnets, where task2 is a
sequence of steps and task3 includes some forking. The hierarchy concept in Sect. 5 allows
the substitution of the transitions with the subnets. The substitution of the transition task2
replaces the transition and its adjacent places, that is Net(task2), by the subnet SN1 and
Net(task3) is replaced by SN2, both in Fig. 4. Applying these substitutions to the abstract
nets in Fig. 2 yields the flatted net in Fig. 3.

Fig. 4: Substitution of transitions

170 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 5

Now we add rules for the subnets for the adaptation of the tasks: task1 is so simple, it
requires no adaptation. In task2 the sequence of steps can be changed (rules SN1:r1 and
SN1:r2) or an intermediate steps is introduced or removed (rules SN1:r3 and SN1:r4). So
we have the four rules that belong to subnet SN1 and are given in light grey in Fig. 5. In
task3 the intermediate step can be adapted by rule SN2:r5 so that parallel step may require
something from the intermediate result. And this adaptation can be reversed by rule SN2:r6.
Both rules belong to subnet SN2 and are given in dark grey in Fig. 5. These six rules are
local rules, that should be only applied in the corresponding subnet. The transitions have
the name space AT = {initialise, task1, task2, task3, fork, join, step, step1, step2,
intermediate step, parallel step} that ensures the locality of the rules by the labels.

Fig. 5: Local rules for the subnets SN1 and SN2

Additionally, we want a global rule that adds to all steps a counting place. This rule is given
below in Fig. 6. This rule can be applied at each transition with a lesser label. The name
space AT for the transition is ordered in the following way:
gT ≥ l for all l ∈ AT and
step ≥ l for all l ∈ {step1, step2, intermediate step, parallel step}

which are the other local steps.

Fig. 6: Global rule for adding counter

Hierarchical, Reconfigurable Petri Nets 171

6 Lorbeer, Padberg

3 Related Work

The main related research areas for hierarchical reconfigurable Petri nets are obviously
hierarchical Petri nets and hierarchical graph transformations.

From 1991 on, hierarchies in Petri nets [HJS91] have been used in numerous papers and
contributions and are still prominent, e.g. [HW18, Ak17]. In [HW18] the HiPS tool provides
a common operating method, graphical user interface, the ability to describe hierarchical
Petri nets and an on-the-fly linear temporal logic model checker. [Ak17] defines a hierarchy
of places, and with various arcs as inhibitor arcs, reset arcs and transfer arcs that respect
this hierarchy. A total ordering over the places encodes the hierarchy depending on the
arc types various extensions are given. The decidability for almost all these extensions
has been shown using different reductions and proof techniques. Besides hierarchical Petri
nets based on transition substitution as e.g. in [JR91] nets based on place substitution and
Object-Oriented Petri nets [La01, MK05] have been considered. CPN [CP17] also supports
fusion places by defining sets of places that are functionally identical. The net-in-nets
approach [Va98, Va04] as well as object nets [KH10, KH11] yield hierarchical composition
as well.

There are a number of tools similar to ReConNet. CPN tools [Ra03, CP17] is the main tool
for the modelling and simulation of coloured Petri nets. Using a graphic user interface CPN
tools features syntax checking, code generation and state space analysis. Snoopy [He12]
is a unifying Petri net framework with a graphical user interface. It allows the modelling
and simulation of coloured and uncoloured Petri nets of different classes, supports analytic
tools and the hierarchical structuring of models. The HiPS tool [Hi17] developed at the
Department of Computer Science and Engineering, Shinshu University is a tool written in
C# and also employs a graphical user interface. HiPS is a platform for design and simulation
of hierarchical Petri nets. It also provides functions of static and dynamic net analysis. While
all of these tools support the design of hierarchical Petri nets it is evident that they lack
reconfiguration, ReConNet’s core feature.

Hierarchical graphs (and graph transformations) add some hierarchy to the nodes or to
the edges. Various approaches to graphs with hierarchy have been proposed, e.g. [BH01,
DHP02, BKK05, Br14]. The resulting techniques were used for modelling hierarchical
hypermedia, distributed project management, mobile and ubiquitous systems among others.
Hypergraphs in [DHP02] consist of two finite sets of nodes and hyperedges. The hierarchy
is given in layers, in the sense that subsets in the same layer have the same nesting depth. In
[BKK05] hierarchical graph is a system of graphs of various types that are grouped into
packages. Hierarchical graphs in [Pa04] are obtained from hypergraphs by adding a parent
assigning function to them. Nodes and edges can be assigned as a child of any other node or
edge. But in contrast to our approach only the graph is structured, whereas the rules only
are given at the topmost level.

172 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 7

4 Basics of Reconfigurable Petri Nets

In this section we give the basic notions. Note that in ReConNet the underlying type of nets
are decorated place/transition nets. To concentrate on the essential notions, in this paper we
use place/transition nets, but the corresponding technical report [Pa18] deals explicitly with
decorated place/transition nets. Moreover, in [Pa18] the underlying categorical requirements
are proven for place/transition nets, decorated place/transition nets, as well as for algebraic
high-level nets.

We use the algebraic approach to Petri nets, where the pre- and post-domain functions
pre, post : T → P⊕ map the transitions T to a multiset of places P⊕ given by the set of
all linear sums over the set P. A marking is given by m ∈ P⊕ with m =

∑
p∈P kp · p. The

≤ operator can be extended to linear sums: For m1,m2 ∈ P⊕ with m1 =
∑

p∈P kp · p and
m2 =

∑
p∈P lp · p we have m1 ≤ m2 if and only if kp ≤ lp for all p ∈ P. The operations “+ “

and “– “ can be extended accordingly.

Here, we introduce reconfigurable place/transition nets with labels and subtyping of labels
for the rules. These labels need a name space that is given by a partial order (A, ≤, gA) with
a greatest element, a ≤ gA for all a ∈ A. gA is similar to the common supertype in a type
hierarchy. The labelling function is provided with an order for subtyping, this allows more
abstract rules that can be applied for occurrences with lesser labels, for an example see
Sect.2.

Definition 4.1 (Labelled place/transition nets) A (marked labelled place/transition) net
is given by N = (P,T, pre, post, pl, tl,M) over the name space A = (AP, AT) with partial
orders (AP, ≤A, gp) and (AT , ≤T , gT). P is a set of places and T is a set of transitions.
pre : T → P⊕ maps a transition to its pre-domain and post : T → P⊕ maps it to its
post-domain. Moreover, pl : P → (AP, ≤A, gp) is a label function mapping places to a
name space, tl : T → (AT , ≤T , gT) is a label function mapping transitions to a name space
and M ∈ P⊕ is the marking denoted by a multiset of places.

A transition t ∈ T is M-enabled for a marking M ∈ P⊕ if we have pre(t) ≤ M. The
successor marking m′ is computed by M ′ = M − pre(t) + post(t) and represents the result
of a firing step M[t > M ′.

Note, we do not require P ∩ T = ∅ since this is not necessary. This condition would require
constructing the transformation step explicitly to ensure that the target net M in Fig. 7
satisfies this construction as well.

A reconfigurable Petri net RN = (N,R) consists of a Petri net N and a set of rules R. This
allows reconfigurable Petri nets to modify themselves. Rules and occurrences are defined
by net morphisms. Net morphisms are given as a pair of mappings for the places and the
transitions preserving the structure, the labels and the marking. Given two nets N1 and N2 as
in Def. 4.1 a net morphism f : N1 → N2 is given by f = (fP : P1 → P2, fT : T1 → T2), so

Hierarchical, Reconfigurable Petri Nets 173

8 Lorbeer, Padberg

that pre2◦ fT = f ⊕P ◦pre1 and post2◦ fT = f ⊕P ◦post1 and m1(p) ≤ m2(fP(p)) for all p ∈ P1.
The labels are mapped so that tl2 ◦ fT (t) ≤ tl1(t) for all t ∈ T1 and pl2 ◦ fp(p) ≤ pl1(p) for
all p ∈ P1.

T1
pre1 //
post1

//

tl1vv
fT

��

P1
⊕

pl1

((
fP
⊕

��

(AT , ≤T , gT) (AP, ≤P, gP)

T2
pre2 //
post2

//

tl2

hh

P2
⊕

pl2
66

Moreover, the morphism f is called strict if both fP and fT are injective, if tl2 ◦ fT = tl1
and pl2 ◦ fp = pl1, and if m1(p) = m2(fP(p)) holds for all p ∈ P1.

Rules r = (L ← K → R) consist of a span of strict net morphisms where L is the left-hand
side and K is an interface between L and R the right-hand side. The basic idea is to find L in
the net N and replace it by R. Therefore an occurrence morphism o : L → N is required to
identify the relevant parts of the left-hand side L in N . Given a rule r and an occurrence o a

transformation step N
(r,o)
===⇒ M is constructed in two steps by the commutative squares via a

gluing construction, that is a pushout. Fig. 7 illustrates the transformation of a net using
two pushouts (PO1) and (PO2). An intuitive explanation for a pushout is to take two nets
N1, N2 that overlap in some I. Now we glue N1 and N2 together over this common interface
I, obtaining a new net N1 +I N2 that is the union of both nets factorized by an equivalence
relation induced by the inclusion of I into N1 and N2.

L

o

��
(PO1)

Koo //

��
(PO2)

R

��
N Doo // M

Fig. 7: Net transformation

Given a rule with an occurrence o : L → N the gluing condition has to be satisfied in order
to apply a rule at a given occurrence. Its satisfaction requires that the deletion of a place
implies the deletion of the adjacent transitions, and that the deleted place’s marking does
not contain more tokens than the corresponding place in L. After finding an occurrence of a
left-hand side L in a net, the effect of applying a rule is to remove all obsolete elements and
add all fresh elements. The elements of K are preserved, providing us with well-defined
attachment points for R.

This transformation concepts is based onM-adhesive transformation systems [Eh06] and is
given in terms of category theory, so that is allows the application of the concepts and results

174 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 9

to high-level structures such as graphs, typed attributed graph, hyper-graphs, various types of
Petri nets, algebraic signatures and specifications. This is possible because place/transition
nets can be proven to be anM-adhesive transformation category [Eh06, Pa15] and nets
with labels and subtyping in [Pa18]. Hence these results hold for the corresponding type of
Petri net:

• Local Church-Rosser Theorem for pairwise analysis of sequential and parallel
independence
see Thm. 5.12 in [Eh06]

• Parallelism Theorem for applying independent rules and transformations in parallel
see Thm. 5.18 in [Eh06]

• Concurrency Theorem for applying E-related dependent rules simultaneously
see Thm. 5.23 in [Eh06]

• Embedding and Extension Theorem for transferring transformations and analysis
results to more complex scenarios
see Thms. 6.14 and 6.16 in [Eh06]

• Local Confluence Theorem and Completeness of critical pairs for analysing conflicts
and for showing local Confluence
see Thm. 6.28 and Lemma 6.22 in [Eh06]

5 Hierarchies of Nets and Rules

A hierarchical reconfigurable Petri net uses substitution transitions to implement the
hierarchy. A substitution transition is a special kind of transition that itself does not fire,
instead it contains a subnet that defines the behaviour that takes place in its stead. Following
this basic definition of substitution transitions, different implementations suited for specific
purposes are possible, this work focuses on the variant of the substitution transition based
hierarchical Petri net that have been presented in [JK09].

Each substitution transition has its own subnet with its own local rules. All places that share
an edge with a substitution transition are called the transition’s connecting places. For each
connecting place of the substitution transition there exists a corresponding connecting place
in the transition’s subnet with the same marking. Via these places tokens enter and leave the
subnet. Any transition that may fire belongs either to the main net or to some subnet, but it
cannot be a substitution transition. Any net may contain multiple substitution transitions,
each instantiating exactly its own subnet. Although multiple substitution transitions may
instantiate the same subnet layout, each substitution transition has it’s own permanent
instance. This leads to a behaviour of the main nets that relies solely on the firing of the
subnets, i.e the firing of the flattened net.

Hierarchical, Reconfigurable Petri Nets 175

10 Lorbeer, Padberg

Fig. 8: Flattening of a substitution transition.

Figure 8 shows in the top half a hierarchical net with it’s main net MN and a subnet SN .
In the main net the substitution transition st1 has two connecting places: p0 has an edge
connecting it to st1 and st1 has an edge connecting it to the place p1. These places can also
be found in the subnet as connecting places with edges to and from different transitions. If
tokens are added to the place p0 via the transition t1 these also appear in the subnet. There
SNs transition sub_t1 can fire and remove tokens from p0 resulting in the removal of the
same tokens from p0 in MN .

Subnets may contain substitution transitions containing further subnets resulting in a nested
hierarchy. Reconfigurable Petri nets use transformation rules to reconfigure themselves. The
chosen hierarchical model allows two different rule concepts: global rules and local rules.

176 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 11

Fig. 9: Application of global rules to a hierarchical Petri net.

A global rule is a general rule that may be applied in any net on any level of the whole
hierarchical net. So occurrences can be in the main net, its subnets, all their subnets and so
forth.

Fig. 10: Application of individual rules to a hierarchical Petri net.

Hierarchical, Reconfigurable Petri Nets 177

12 Lorbeer, Padberg

A local rule that is applied to a (sub-)net allows occurrences to be found in that specific
net only. Local rules enable the dynamic modification of a specific part of a hierarchical
net. The advantage is that rules can be created without knowledge of other parts of the
hierarchical net. Local rules are given for one subnet only, whereas global rules belong to
the hierarchical net. They can be applied in all subnets since their labels are greater than the
labels in the subnet. For details see Subsection 2.2 in [Pa18]. The name space is given by
the disjoint union of all local name spaces, so that local rules can be applied only with in the
given subnet. Local rules respect the hierarchical net borders so that no transformation may
effect more than one (sub-)net. Hence, one restriction is imposed on the rules: Substitution
transitions may not be part of a rule. As a consequence connecting places may not be deleted
or added by a rule, but they can be part of one. This is due to the gluing condition which
requires that places may only be deleted if the adjacent transition is deleted as well and no
tokens are left over. Since connection places are neighbours of substitution transitions that
cannot occur in a rule, they remain unchanged.

Subsequently, we define substitution os transition by subnets formally. Figure 11 shows
an example for a very basic substitution rule. Substitution transition are mapped to such
rules given by the mapping subst : sT → SRN where SRN is a set of substitution rules.
The definition of the reconfigurable hierarchical Petri net requires the substitution transition

Fig. 11: An exemplary basic substitution rule.

together with its adjacent places, called net Net(t) of a transition t.

Definition 5.1 (Net(t)) Given N = (P,T, pre, post, pl, tl) then for a transition t ∈ T the
net of t is the net Net(t) = (•t ∪ t•, {t}, pre |t, post |t, pl |•t∪t•, tl | {t }).

With this, reconfigurable hierarchical Petri nets can be formally defined. A reconfigurable
hierarchical Petri net consists of a reconfigurable net with substitutions and a set of global
rules. They both are defined over a common name spaceA = (AP, AT)The reconfigurable
net with substitutions consist of a place/transition net N , a set of local rules RN and a set of
substitution rules SRN together with the mapping of substitution transitions to substitution
rules subst : sT → SRN .

178 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 13

Definition 5.2 (Hierarchical reconfigurable Petri net) A hierarchical reconfigurable
Petri net HN = (RN, A,GR) is given by its name space A = (AP, AT), a set of global rules
GR over A = (AP, AT), and a reconfigurable net with substitutions RN = (N,RN, SRN):
1. N = (P,T, pre, post, pl, tl,M) is a place/transition net over (AN

P , A
N
T) so that,

• P is a set of places.

• T is a set of transitions.

• T contains substitution transitions sT ⊆ T .

• pre : T → P⊕ is a function used for the pre-domain of each transition.

• post : T → P⊕ is a function used for the post-domains of each transition.

• tl : T −→ AN
T is a naming function for transitions, where substitution transitions

have their own name space AsT ⊆ AN
T so that tl(sT) ⊆ AsT and injective tl |sT .

Moreover, regular transitions are not allowed to use that name space. tl(T\sT) ⊆
AN
T \AsT .

• pl : P −→ AN
P is a naming function for places, where the set of connecting places

cP = {•t ∪ t• | t ∈ sT} ⊆ Pis given by the neighbourhood of the substitution
transitions and the name space of the connecting places AcP ⊆ AN

P satisfies
pl(cP) ⊆ AN

P .
Moreover, regular places are not allowed to use that name space. tl(P\cP) ⊆
AN
P \AcP .

• M is a set of tokens withM ∈ P⊕.

2. RN is a set of local rules over (AN
P , A

N
T \ AsT).

3. SRN is a set of substitution rules together with a mapping of substitution transitions
to substitution rules subst : sT → SRN so that subst(t) = (Net(t) ←− CP(t) −→ SN t)
with
• the interface CP(t) = (•t ∪ t•, ∅, ∅, ∅, pl |•t∪t•, ∅) consisting of connecting places

only.

• a reconfigurable net with substitutions SN t = (RN t,Rt, SRt) over At =

(At
P, A

t
T) with AcP ⊆ At

P .

Chapter 5 in [JK09] states that the flattening of a hierarchical net that uses substitution
transitions must remove each substitution transition and insert its subnet into the supernet
by fusing the connecting places. This process corresponds to applying the substitution rules
from Def. 5.2. Only one substitution for each substitution transition is applicable to RN .

Corollary 5.3 (Set of substitutions SN) Given a reconfigurable net with substitutions
RN = (N,RN, SRN). For every substitution transition t ∈ sT and its substitution rule
sr = subst(t) there exists exactly one injective occurrence o of sr . These substitutions are

Hierarchical, Reconfigurable Petri Nets 179

14 Lorbeer, Padberg

collected in a set of substitutions SN = {(sr, o) | sr = subst(t) and injective o : Net(t) ↪→
RN}.

Due to the global and local rules, flattening construction is more complex than for a normal
hierarchical Petri net. Flattening of a normal hierarchical Petri net looses all information of
the hierarchical borders, but this information is needed for the correct application of local
and global rules in the flattened net. Hence, we use the disjoint union of the subnet’s name
spaces.

First we investigate the parallel independence [Eh06] of the substitution rules. If any two
s1, s2 ∈ S with s1 , s2 are pairwise parallel independent the Parallelism Theorem states that
they are also sequentially independent [Eh06]. All substitution rules sr together with their
occurrences are independent from each other if any two sr1, sr2 with sr1 , sr2 are pairwise
independent. So the proof of parallel independence of two arbitrary substitutions s1, s2 ∈ S
is sufficient to prove Lemma 5.4.

Lemma 5.4 (Pairwise Independence of Substitutions) Given a reconfigurable net with
substitutions RN = (N,RN, SRN). Any two substitutions s1, s2 ∈ SN with s1 , s2 are
pair-wise independent.

Proof:
We show for two arbitrary substitutions s1 , s2 the set theoretic representation of parallel
independence o1(ST1) ∩ o2(ST2) ⊆ o1(l1(CP1)) ∩ o2(l2(CP2)) holds.

SN t1

n1

��

CP(t1)
k1

��

r1oo l1 // Net(t1)
o1

""

g1

))

Net(t2)
o2

||

g2

uu

CP(t2)
k2

��

r2oo l2 // SN t2

n2

��
H1 D1r′1oo l′1 // G D2r′2oo l′2 // H2

The left-hand side of any rule rs of (rs, o) ∈ SN contains by Def. 5.2 only a net Net(t).
As specified in Def. 5.1 Net(t) contains only a substitution transition t and t’s pre- and
post-domains. The interface CP(t) contains only t’s pre- and post-domains. Considering
two substitutions s1, s2 ∈ SN with s1 , s2, the intersection between their occurrences only
considering transitions must be empty because otherwise t1 = t2 and thus s1 = s2. Since
CP(t1) only contains places and since Net(t1) contains one distinct transition t1 and Net(t2)
the another one t2, it follows:

o1T (Net(t1)) ∩ o2T (Net(t2)) = ∅ ⊆ ∅ = o1T (l1(CP(t1))) ∩ o2T (l2(CP(t2)))
Now we consider the places. Let p ∈ o1P(Net(t1)) ∩ o2P(Net(t2)).
Hence p ∈ (•t1 ∪ t•1) ∩ (•t2 ∪ t•2) that is p ∈ CP(t1) ∩ CP(t2) by definition of CP.
Since l1, l2, o1P and o2P are functions we conclude that p ∈ (l1(CP(t1))) ∩ (l2(CP(t2))) and
p ∈ o1P(l1(CP(t1))) ∩ o2P(l2(CP(t2))). Thus:
o1P(Net(t1)) ∩ o2P(Net(t2)) ⊆ o1P(l1(CP(t1))) ∩ o2P(l2(CP(t2))) which proves any two
s1, s2 ∈ S with s1 , s2 are pairwise parallel independent. �

180 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 15

Theorem 5.5 is proven using Lemma 5.4.

Theorem 5.5 (FL AT(N, SRN) Flattening of reconfigurable net with substitutions)
Given a reconfigurable net with substitutions (N, SRN) any possible transformation sequence

of rules SN yields the same (up to isomorphism) well-defined net N
SN

==⇒ FL AT(N, SRN).

Proof:
With all s ∈ SN being mutually independent, [Eh06] states all the transformation sequences

HN
∗
=⇒ F are equivalent and there exists a parallel transformation sequence HN

∑
s∈SN s
=======⇒ F.

Let FL AT(N, SRN) := F. Such a parallel transformation sequence can always be constructed
and is unique up to isomorphism. �

The flattening of a hierarchical reconfigurable Petri net to a reconfigurable net needs to
include global as well as local rules and is given recursively based on flattening of nets with
substitution.

Definition 5.6 (Flattening) The flattening is defined for a hierarchical net HN =

(RN, A,GR) given by a reconfigurable net RN = (N,RN, SRN), a name space A = (AP, AT)
and a set of global rules GR as given in Def. 5.2 recursively by:
1. Given RN = (N,RN, SRN) over A = (AN

P , A
N
T) with substitution transitions sT = ∅

we have:
f lat(RN) = (N,RN) over A

2. Given RN = (N,RN, SRN) over A = (AN
P , A

N
T) with substitution transitions sT , ∅

we have:
f lat(RN) = f lat(FL AT(N, SRN),R, SR) over A with

• A =
⊎

t∈sT (At
P \ Acp)] AcP

• R = (⊎t∈sT Rt)] RN

• SR = (⊎t∈sT SRt

3. f lat(HN) = (NFlat,GR∪RFlat) over A with f lat(RN) = (NFlat,RFlat) where the
name space A is the union of the name spaces, so that the global labels are greater
than the corresponding local labels (see [Pa18]).

Definition 5.7 (Well-defined hierarchical reconfigurable Petri net) A hierarchical re-
configurable Petri net HN = (RN, A,GR) is well-defined if and only if the f lat(HN)
is well-defined.

Hierarchical, Reconfigurable Petri Nets 181

16 Lorbeer, Padberg

6 Hierarchies in ReConNet

During the simulation ReConNet’s simulation engine uses the flat representation of a
hierarchical reconfigurable Petri net for transition firing and rule application, because this
allows using ReConNet’s simulation engine to handle the hierarchical net, i.e its flattened
net. However, for the user this remains transparent and the visual interface continues
presenting the hierarchical view. While transitions are fired and transformations are made
on the flat net the hierarchical view visualizes the changes accordingly. While developing
the nets and transformation rules, the hierarchy is established and the simulation requires
the flattened net that is the result of the flattening construction.

The application of local rules in the flat net needs one single name space for places and
transitions A = (AN

P , A
N
T). This name space needs to include all of the disjoint name

spaces of the (sub-)nets. This single name space is created during the flattening. Whenever
a subnet is inserted into its supernet all places and transitions that are not connecting
places get a prefix to their names that is unique to the substitution transition that was
replaced. This way the naming preserves hierarchy borders and (sub-)net identities and so
the names of places and transitions are specific enough that a rule meant for only a specific
(sub-)net can be limited to the correct part of the flat net. For persistence of a hierarchical
reconfigurable Petri net from ReConNet the hierarchical reconfigurable Petri net’s flat
net and the substitution rules. The hierarchical reconfigurable Petri net is saved as a tuple
of the main net, as a reconfigurable Petri net, its substitution rules and the flat net, so that
HN = 〈RN, SR, Flat(RN, SR)〉. So, the flat net can be loaded directly and needs not to be
computed each time again.

In a transformation unit N1
R!
==⇒ N2 [KKR08] the as-long-as-possible operator ! forces

the rule set R to be applied as long as possible. Since ReConNet is provided with
transformation units [Ho16] the flattening construction can be realized using this as-long-

as-possible operator !. In the transformation unit RN
SN !
===⇒ F an applicable substitution rule

s with an injective occurrence is randomly picked and applied. This step is repeated until all
s ∈ SN have been applied, since each s has by construction only one occurrence.

Lemma 6.1 (Flattening based on the as-long-as-possible operator !) Given a reconfig-
urable net with substitutions (N, SRN) the result F of (N, SRN) sr!

==⇒ F is well-defined up to
isomorphism and isomorphic to FL AT(N, SRN).

Proof:
Given the set of substitutions Sn based on (N, SRN) as in Cor. 5.3, any two substitutions
s1, s2 ∈ SN are pairwise independent, then the fact that F is well-defined up to isomorphism
is proven indirectly:

If F is not well-defined the transformation sequences (N, SRN) SN !
===⇒ F and (N, SRN) SN !

===⇒

182 Jan-Uriel Lorbeer, Julia Padberg

Hierarchical, Reconfigurable Petri Nets 17

F̂ exists so that F � F̂. So, there has to exist some M in diagram (1) with
RN

∗
=⇒ M

sj
=⇒ Mj and RN

∗
=⇒ M

si
=⇒ Mi so that there is neither Mi

∗
=⇒ F nor Mj

∗
=⇒ F:

Mj

∗q
�$

RN ∗ +3 M

sj
:B

si �$

(1) F

Mi

∗
/
:B

Mj

sir
�%

RN ∗ +3 M

sj
:B

si �$

(2) Mi j
∗ +3 F

Mi

sj

.
9A

For RN
sr!
==⇒ F and RN

sr!
==⇒ F̂ both substitutions si and sj have to be applied. All s ∈ S are

pairwise sequential independent, so any sequence can be applied in arbitrary order yielding
the same well-defined resulting net [Eh06]. Hence, we obtain diagram (2). Any two s ∈ S
are pairwise parallel independent, so are si and sj , thus their sequence is interchangeable
si is always applicable to Mj and sj is always applicable to Mi both always leading to the

same net Mi j . So F � F̂ for HN
sr!
==⇒ F and HN

sr!
==⇒ F̂ and thus F is well-defined up to

isomorphism. �

Since all s ∈ S are independent from another, each s ∈ SN of the transformation RN
sr!
==⇒ F̂

can be applied exactly once for each of its occurrences. RN
∑

s∈S s
=====⇒ F can equivalently be

applied as a transformation sequence RN
∗
=⇒ F = RN

s1
=⇒ ... sn

==⇒ F. So to prove that F � F̂
requires to show that no s can be applied more than once.

Theorem 6.2 (Equivalence of Flattening Constructions) Given a reconfigurable net
with substitutions (N, SRN). The transformation using the as-long-as-possible opera-
tor ! is equivalent to the flattening construction in Thm. 5.5:

RN
∑

s∈SN s
=======⇒ FL AT(N, SRN) and RN

SN !
===⇒ F implies FL AT(N, SRN) � F.

Proof:
For any s ∈ S to be able to be applied more than once it would have to be independent
from itself. s1 = s2 implies they contain the same substitution transition t1 = t2, it follows:
(o1T (net(t1)) ∩ o2T (net(t2)) , ∅) * ∅ = o1T (l1(CP1)) ∩ o2T (l2(CP2)). Thus s1 and s2 are
not independent.
Hence any s is not independent from itself and thus can only be applied once. �

7 Conclusion

This paper introduces substitution transitions for hierarchical reconfigurable Petri nets. The
main contribution is a formal definition of hierarchical reconfigurable Petri nets and its
flattening construction.

Hierarchical, Reconfigurable Petri Nets 183

18 Lorbeer, Padberg

This work presents a first step to the integration of reconfigurable hierarchical Petri nets into
the ReConNet tool [Pa12, Re17]. Ongoing work will accomplish support of hierarchical
Petri nets in ReConNet. First a hierarchy needs to be introduced into ReConNet to allow
transformation simulation, including an appropriate update to ReConNet’s persistence
module to allow proper storing and restoring of hierarchical nets. Then individual rules
will be added to allow the functionality of a reconfigurable net. For net verification and
validation purposes the flat representation of the hierarchical reconfigurable Petri net will
be used.

References
[Ak17] Akshay, S.; Chakraborty, Supratik; Das, Ankush; Jagannath, Vishal; Sandeep, Sai: On Petri

Nets with Hierarchical Special Arcs. In: 28th International Conference on Concurrency
Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany. pp. 40:1–40:17, 2017.

[BH01] Busatto, Giorgio; Hoffmann, Berthold: Comparing Notions of Hierarchical Graph Trans-
formation. Electr. Notes Theor. Comput. Sci., 50(3):310–317, 2001.

[BKK05] Busatto, Giorgio; Kreowski, Hans-Jörg; Kuske, Sabine: Abstract hierarchical graph
transformation. Mathematical Structures in Computer Science, 15(4):773–819, 2005.

[Bo06] Bottoni, Paolo; Rosa, Fabio De; Hoffmann, Kathrin; Mecella, Massimo: Applying Algebraic
Approaches for Modeling Workflows and their Transformations in Mobile Networks.
Mobile Information Systems, 2(1):51–76, 2006.

[Br14] Bruni, Roberto; Montanari, Ugo; Plotkin, Gordon D.; Terreni, Daniele: On Hierarchical
Graphs: Reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs. Fundam. Inform.,
134(3-4):287–317, 2014.

[CP17] CPN-Tools. http://http://cpntools.org/, 2017. Last accessed: 2017-11-01.

[DHP02] Drewes, Frank; Hoffmann, Berthold; Plump, Detlef: Hierarchical Graph Transformation.
J. Comput. Syst. Sci., 64(2):249–283, 2002.

[Eh06] Ehrig, H.artmut; Ehrig, Karsten; Prange, Ulrike; Taentzer, Gabriele: Fundamentals of
Algebraic Graph Transformation. EATCS Monographs in TCS. Springer, 2006.

[GE12] Gabriel, Karsten; Ehrig, Hartmut: Modelling of Communication Platforms Using Algebraic
High-Level Nets and Their Processes. In (Heisel, Maritta, ed.): Software Service and
Application Engineering: Essays Dedicated to Bernd Krämer on the Occasion of His 65th
Birthday. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 10–25, 2012.

[GNH12] Gottmann, Susann; Nachtigall, Nico; Hoffmann, Kathrin: On Modelling Communication
in Ubiquitous Computing Systems using Algebraic Higher Order Nets. ECEASST, 51,
2012.

[He12] Heiner, Monika; Herajy, Mostafa; Liu, Fei; Rohr, Christian; Schwarick, Martin: Snoopy–a
unifying Petri net tool. In: International Conference on Application and Theory of Petri
Nets and Concurrency. Springer, pp. 398–407, 2012.

184 Jan-Uriel Lorbeer, Julia Padberg

http://http://cpntools.org/

Hierarchical, Reconfigurable Petri Nets 19

[HEP08] Hoffmann, Kathrin; Ehrig, Hartmut; Padberg, Julia: Flexible Modeling of Emergency
Scenarios using Reconfigurable Systems. ECEASST, 12, 2008.

[Hi17] HiPS : Hierarchical Petri net Simulator. https://sourceforge.net/projects/hips-
tools/, 2017. Last accessed:2017.03.22.

[HJS91] Huber, Peter; Jensen, Kurt; Shapiro, Robert M.: Hierarchies in coloured Petri nets. In
(Rozenberg, Grzegorz, ed.): Advances in Petri Nets 1990. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 313–341, 1991.

[Ho16] Hoff, Christian: Transformationseinheiten als Kontrollstruktur für rekonfigurierbare
Petrinetze in ReConNet. Master’s thesis, University of Applied Sciences Hamburg, 2016.

[HW18] Harie, Yojiro; Wasaki, Katsumi: A Petri Net Design and Verification Platform Based on The
Scalable and Parallel Architecture: HiPS. In: Information Technology-New Generations,
pp. 265–273. Springer, 2018.

[JK09] Jensen, Kurt; Kristensen, Lars M: Coloured Petri nets: modelling and validation of
concurrent systems. Springer, 2009.

[JR91] Jensen, Kurt; Rosenberg, Gregorz: High-Level Petri nets: Theory and Application. 1991.
Springer, 1991.

[KBD16] Kahloul, Laid; Bourekkache, Samir; Djouani, Karim: Designing reconfigurable manufac-
turing systems using reconfigurable object Petri nets. Int. Journal of Computer Integrated
Manufacturing, pp. 1–18, 2016.

[KH10] Köhler-Bußmeier, Michael; Heitmann, Frank: Safeness for Object Nets. Fundam. Inform.,
101(1-2):29–43, 2010.

[KH11] Köhler-Bußmeier, Michael; Heitmann, Frank: Liveness of Safe Object Nets. Fundam.
Inform., 112(1):73–87, 2011.

[KKR08] Kreowski, Hans-Jorg; Kuske, Sabine; Rozenberg, Grzegorz: Graph Transformation Units–
An Overview. Lecture Notes in Computer Science, 5065:57–75, 2008.

[La01] Lakos, Charles: Object Oriented Modeling with Object Petri Nets. In (Agha, Gul; de Cindio,
Fiorella; Rozenberg, Grzegorz, eds): Concurrent Object-Oriented Programming and Petri
Nets, Advances in Petri Nets. Lecture Notes in Computer Science. Springer, pp. 1–37,
2001.

[LO04] Llorens, Marisa; Oliver, Javier: Structural and Dynamic Changes in Concurrent Systems:
Reconfigurable Petri Nets. IEEE Trans. Computers, 53(9):1147–1158, 2004.

[MGH10] Modica, Tony; Gabriel, Karsten; Hoffmann, Kathrin: Formalization of Petri Nets with
Individual Tokens as Basis for DPO Net Transformations. ECEASST, 40, 2010.

[MK05] Miyamoto, Toshiyuki; Kumagai, Sadatoshi: A survey of object-oriented Petri nets and
analysis methods. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 88(11):2964–2971, 2005.

[Pa04] Palacz, Wojciech: Algebraic hierarchical graph transformation. J. Comput. Syst. Sci.,
68(3):497–520, 2004.

Hierarchical, Reconfigurable Petri Nets 185

https://sourceforge.net/projects/hips-tools/
https://sourceforge.net/projects/hips-tools/

20 Lorbeer, Padberg

[Pa07] Padberg, Julia; Hoffmann, Kathrin; Ehrig, Hartmut; Modica, Tony; Biermann, Enrico;
Ermel, Claudia: Maintaining Consistency in Layered Architectures of Mobile Ad-Hoc
Networks. In (Dwyer, Matthew B.; Lopes, Antónia, eds): Fundamental Approaches to
Software Engineering 2007. volume 4422 of Lecture Notes in Computer Science. Springer,
pp. 383–397, 2007.

[Pa12] Padberg, Julia; Ede, Marvin; Oelker, Gerhard; Hoffmann, Kathrin: ReConNet: A Tool
for Modeling and Simulating with Reconfigurable Place/Transition Nets. ECEASST, 54,
2012.

[Pa15] Padberg, Julia: Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs. In
(Parisi-Presicce, Francesco; Westfechtel, Bernhard, eds): Graph Transformation - 8th Int.
Conf. volume 9151 of Lecture Notes in Computer Science. Springer, pp. 104–120, 2015.

[Pa18] Padberg, Julia: Subtyping for Hierarchical, Reconfigurable Petri Nets. ArXiv e-prints,
2018.

[PK18] Padberg, Julia; Kahloul, Laid: Overview of Reconfigurable Petri Nets. In: Festschrift in
Memory of Hartmut Ehrig. Springer, 2018. accepted.

[Ra03] Ratzer, Anne Vinter; Wells, Lisa; Lassen, Henry Michael; Laursen, Mads; Qvortrup,
Jacob Frank; Stissing, Martin Stig; Westergaard, Michael; Christensen, Søren; Jensen,
Kurt: CPN tools for editing, simulating, and analysing coloured Petri nets. In: International
Conference on Application and Theory of Petri Nets. Springer, pp. 450–462, 2003.

[Re17] ReConNet. https://reconnetblog.wordpress.com/, 2017. Last accessed: 2017.05.16.

[Tâ12] Târnauca, Bogdan; Puiu, Dan; Comnac, Vasile; Suciu, Constantin: Modelling a flexible
manufacturing system using reconfigurable finite capacity Petri nets. In: 13th Int. Conf.
on Optimization of Electrical and Electronic Equipment. pp. 1079–1084, May 2012.

[Va98] Valk, Rüdiger: Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In
(Desel, Jörg; Suárez, Manuel Silva, eds): Application and Theory of Petri Nets 1998, 19th
International Conference, ICATPN ’98, Lisbon, Portugal, June 22-26, 1998, Proceedings.
volume 1420 of Lecture Notes in Computer Science. Springer, pp. 1–25, 1998.

[Va04] Valk, Rüdiger: Object Petri nets. In: Lectures on Concurrency and Petri Nets, pp. 819–848.
Springer, 2004.

186 Jan-Uriel Lorbeer, Julia Padberg

https://reconnetblog.wordpress.com/

