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Abstract. This paper describes and evaluates a localization algorithm
that was originally designed to overcome known issues of classic geomet-
ric localization algorithms, and that is now implemented in the local-
ization add-on module of JADE. The algorithm is designed to support
self-localization of agents running on smart devices in known indoor en-
vironments, and its current implementation acquires needed ranging in-
formation from ordinary WiFi infrastructures, with no need of dedicated
infrastructures. First, the agent estimates the distances of the smart de-
vice where it is running from WiFi access points by using received signal
strength during ordinary network discovery. Then, the agent uses com-
puted distance estimates to generate estimates of its position by solving
an appropriate optimization problem using particle swarm optimization.
The robustness of the algorithm is discussed in the last part of the paper
by comparing the performance of the algorithm against the performance
of a classic algorithm in a representative scenario. Presented experimen-
tal results emphasize that the described algorithm is more robust than
the classic alternative because it does not suffer from well-known numer-
ical instability problems of geometric localization algorithms.

1 Introduction and Motivation

AAL (Ambient Assisted Living) systems aim at improving the quality of life of
the elderly by increasing their autonomy, assisting them in their daily activities,
and by enabling them to feel secure, protected and supported (see, e.g., [29]).
The space in which AAL systems typically operate is an indoor environment
where intelligent agents integrate a wide range of sensors and actuators spread
in the environment to deliver AAL services to users. It is therefore far from
surprising that the possibility of timely providing agents with the position of
users within the environment is one of the key assets needed to implement AAL
systems. Indoor localization is so closely related to AAL that the first edition of
the EvALL (Evaluating AAL Systems through Competitive Benchmarking) [1]
international competition was entirely dedicated to benchmark available indoor
localization technologies in the scope of AAL. The first EvAAL competition
was held in an open space environment composed by a kitchen, a dining room,



a bedroom and a bathroom, and the competition requested to implement the
personal activity management scenario, as described in the AAL road map [29].
The main challenge that this scenario puts forward to AAL systems regards
their abilities to track the position of users, to identify if they are standing or
sitting, and to sense if they are performing actions, which can possibly involve
the use of an appliance interfaced with the system. By making reference to the
personal activity management scenario, where users are localized during their
home activities, a resolution finer than 30 cm looks useless: this is about the
size of a foot, is less than the body diameter and is less than the extent to
which a stretched arm or leg can go. Similarly, a time resolution of half a second
seems adequate in the considered scenario because no high-speed activity is
expected from users. Therefore, as suggested for the EvALL competition, indoor
localization can be considered sufficiently accurate to support AAL if it can
provide estimates of the positions of users with an accuracy of 30 cm every 0.5 s.

Unfortunately, even if smart devices [26] offer enormous possibilities, they
still have inadequate localization capabilities in indoor environments, which are
considered essential to deliver effective location-aware services in indoor sce-
narios. If accuracy of few meters is satisfactory, outdoor localization has been
already solved by ubiquitous technologies like GPS (Global Positioning System),
which allows estimating the position of a smart device cheaply and effectively [6].
On the contrary, indoor localization is still an open problem and various re-
search efforts are documented in the literature to try to solve it. For example,
the use of UWB (Ultra-Wide Band) technology seems very promising with this
respect because it uses short high-frequency pulses that guarantee accuracy and
robustness [9, 20]. However, common smart devices are not yet equipped with
UWB transceivers, and, most importantly, UWB technology is still experimented
mostly to support localization, which means that the use of UWB technology
for indoor localization still requires a dedicated infrastructure [16]. The cost of
a dedicated infrastructure is normally considered too high for widespread adop-
tion of UWB technology for AAL, even if its performance in localization is better
than available alternatives (see, e.g., [12, 13, 15, 17, 18]).

In order to overcome the limitations that the need for a dedicated infras-
tructure imposes, we looked for valid alternatives to the use of UWB technology
and, in this paper, we present empirical evidence that ordinary WiFi networks,
which are considered ubiquitous today, can be used to support accurate and
robust indoor localization. In detail, this paper discusses recent developments
of the localization capabilities offered by JADE (Java Agent and DEvelopment
framework) [2], one the most widely adopted agent platform, which has been
successfully used for more than fifteen years in relevant academic and industrial
projects. Among the various features of JADE, this paper analyses those of one
of the localization algorithms implemented in the localization add-on module for
JADE [4, 12, 14]. This module, which is not yet part of the core distribution of
JADE, can be loaded into a JADE agent container running on an Android smart
device [3] to offer self-localization capabilities in known indoor environments to
agents running in the container. Interested agents are fed with estimates of their



positions in the known environment at a constant frequency, which ultimately
depends on the technical characteristics of the smart device and on its power
management policies. Experimental results discussed in the last part of this
paper show that the accuracy of position estimates is coherent with the require-
ments of AAL systems, and they also show that the discussed algorithm is more
robust than classic alternatives based on geometric reasoning.

The localization add-on module for JADE assumes that known WiFi APs
(Access Points) are available in the considered indoor environment at known
positions. Under this assumption, an agent running on a smart device where the
module is active can request to be informed of its position in the environment.
In order to serve such a request, the module estimates the distances between the
smart device and single APs using received signal strength from responding APs
during ordinary network discovery, even if the smart device is not connected to a
WiFi network. Such distance estimates are then properly processed to estimate
the position of the smart device, which is immediately made available to the
agent. If the agent requested constant updates, the module repeats this process
at the highest frequency compatible with the characteristics of the smart device,
which is often more than one update per second. The processing of distance
estimates is performed by a localization algorithm among the ones available in
the module, but the module is open to accommodate other algorithms (see,
e.g., [8, 24]) provided that they implement the requested interface.

In this paper we concentrate on an algorithm that has been recently pro-
posed [23] to improve the robustness of classic geometric algorithms, and that
is currently the best option available to the users of the module. The discussed
algorithm was originally designed to use UWB signaling, but it has been recently
retargeted to use WiFi signaling [4, 12, 14] for the reasons discussed above. First,
the algorithm turns the localization problem at hand into a specific optimization
problem. Then, it solves the optimization problem using PSO (Particle Swarm
Optimization), or any other viable alternative. Solutions of the optimization
problem are solutions of the localization problem, and they represent estimates
of the position of the smart device. Even if this approach has already been dis-
cussed in other works (see, e.g., [5, 21, 22]), the major contribution of this paper
is to study the robustness of the proposed optimization-based localization al-
gorithm by comparing its performance against that of a classic algorithm. The
chosen classic algorithm is the TSML (Two-Stage Maximum-Likelihood) algo-
rithm [10], which is based on geometric reasoning. Empirical results presented
in the last part of the paper show that the optimization-based algorithm has
localization accuracy comparable to that of the TSML algorithm in ordinary
situations, while it is much better in situations that are critical for localization
algorithms based on geometric reasoning.

This paper is organized as follows. Section 2 explains the details of the range
acquisition phase. Section 3 shows experimental results obtained in a representa-
tive indoor scenario, and it compares the performance of the optimization-based
algorithm with that of the TSML algorithm. Finally, Section 4 concludes the
paper and outlines possible future developments.



2 Agent-Based Localization

We have recently implemented an add-on module for JADE to provide agents
with localization capabilities [4, 12, 14]. A discussion of the architecture of this
module, which is briefly summarized in [12], is not needed to detail the ex-
pected localization performance, which is the major topic of this paper. There-
fore, rather than focusing on the description of the internals of the module, in
this paper we concentrate on the description of one of the available localization
algorithms together with an experimental evaluation of its robustness.

2.1 Notation and Reference Scenarios

We consider scenarios where M WiFi APs are available and, in the following,
their coordinates are denoted as

si = (xi, yi, zi)
T i ∈ {1, . . . ,M}. (1)

We assume that the indoor environment is static and known to the agent, and,
in particular, we assume that the coordinates si of APs are known to the agent.
Note that at least M = 4 APs are necessary to perform localization in a three-
dimensional environment, unless the considered environment has special geomet-
ric characteristics.

The ranging capabilities that the smart device is requested to offer in order to
support the discussed algorithm concern the possibility of measuring estimates
of the distances between the smart device where the agent is running, which is
denoted as TN (Target Node) in the rest of the paper, and the M APs used
for localization. Such distance estimates are obtained by analyzing the average
received power of WiFi signals traveling between the TN and responding APs
during routinary network discovery. According to the Friis transmission equa-
tion [9], the average received power P̄ (r) can be expressed as a function of the
distance r between the transmitter and the receiver. The explicit formulation of
the Friis transmission equation is given by

P̄ (r) = P0 − 10β log10

r

r0
(2)

where P0 is the known power at reference distance r0, and β accounts for the
characteristics of the transmission. By inverting (2), the value of r as a function
of P̄ (r) can be expressed as

r = r0 · 10−
P̄ (r)−P0

10β . (3)

Hence, in order to derive an estimate of the distance r between the TN and a
generic AP, it is sufficient to measure the average received power of the signal
traveling between them and to apply (3). Note that each range estimate can
be associated with the corresponding AP and, therefore, with its coordinates.
Actually, communications between the TN and an AP during network discovery



includes the BSSID (Basic Service Set IDentification) of the latter, which can
be used to identify the responding AP.

We denote the true position of the TN as u = (x, y, z)T , which is supposed
to be unknown and it is the quantity to be estimated. Using this notation, the
true distance between the TN and the i−th AP can be computed as

ri = ||u− si|| i ∈ {1, . . . ,M}. (4)

The knowledge of true distances {ri}Mi=1, together with the knowledge of the
coordinates {si}Mi=1 of the APs, would easily determine the position of the TN
because the coordinates of the TN could be found by simply intersecting the
spheres centered in {si}Mi=1 with radii {ri}Mi=1. Mathematically, this translates
into the solution of the following system of M quadratic equations

(x− x1)2 + (y − y1)2 + (z − z1)2 = r21

. . .

(x− xM )2 + (y − yM )2 + (z − zM )2 = r2M .

(5)

Unfortunately, since true distances {ri}Mi=1 between the TN and each AP
are unknown, localization can only be performed using the following system of
quadratic equations

(x̂− x1)2 + (ŷ − y1)2 + (ẑ − z1)2 = r̂21

. . .

(x̂− xM )2 + (ŷ − yM )2 + (ẑ − zM )2 = r̂2M

(6)

which has been obtained from (5) by replacing the values of true distances {ri}Mi=1

with their estimates, denoted as {r̂i}Mi=1. Due to errors on range estimates, the
M spheres corresponding to the equations in (6) often do not intersect in a single
point and, for this reason, a proper localization algorithm needs to be considered
to find the position estimate of the TN, denoted as

û = (x̂, ŷ, ẑ)T . (7)

In order to derive a proper localization algorithm, let us first observe that
system (6) can be re-written in matrix notation as

1 ûT û+A û = k̂ (8)

where 1 is vector with M elements equal to 1, k̂ is a vector whose i−th element
is r̂2i − (x2i + y2i + z2i ), and A is the following M × 3 matrix

A = −2


x1 y1 z1
x2 y2 z2
...

...
xM yM zM

 . (9)

Algorithms to solve (8), based on least square techniques, on Taylor series expan-
sion, or on Maximum-Likelihood methods, can be found in the relevant literature
on localization (see, e.g.,[27]).



2.2 The Optimization-Based Localization Algorithm

The literature proposes various algorithms to solve (8) (see, e.g.,[27]), and all
such algorithms suffer from numerical instability in correspondence of peculiar
configurations of APs in space, e.g., if APs are aligned [23]. In order to derive a
more robust algorithm, we proposed in [23] to reformulate (8) as an optimiza-
tion problem, and we described an approach based on PSO (Particle Swarm
Optimization) to solve it, as outlined in the rest of this section.

Observe that (8) can be written as a minimization problem, according to

û = arg min
u

F (u) (10)

where F (u) represents the fitness function defined as

F (u) = ||k̂ − (1uTu+Au)||. (11)

In order to solve the minimization problem (10), we proposed to use the PSO
algorithm, which was introduced in [11]. According to such an algorithm, the set
of potential solutions of a minimization problem can be considered as a swarm
of particles whose positions and velocities are iteratively updated according to
proper rules. Such rules are inspired by biological phenomena like the move-
ments of birds in swarms. In the context of optimization problems, such rules
are meant to move all the particles toward the position corresponding to the
optimal solution of the considered minimization problem.

In detail, the algorithm that we adopted to solve the minimization problem
(10) works as follows. First, the positions of particles are randomly initialized in
the search space, which, in our context, corresponds to the physical environment
where the TN and the APs are situated. The initial positions are denoted as
x(i)(0), where i ∈ {1, . . . , S} is the index of the generic particle and S is the
number of particles. Analogously, the velocity of the i−th particle is initialized
with the value v(i)(0). After the initialization phase, positions and velocities of
all the particles are updated at each iteration t ∈ N to simulate interactions
among individuals [25]. More precisely, at the t−th iteration, the velocity of the
i−th particle whose position is x(i)(t) is updated as follows [7, 28]

v(i)(t+ 1) =ω(t)v(i)(t) + c1R1(t)(y(i)(t)− x(i)(t))

+ c2R2(t)(y(t)− x(i)(t)) i ∈ {1, . . . , S}
(12)

where

– y(t) is the best position globally reached so far;

– y(i)(t) is the best position reached so far;
– ω(t) is the so called inertial factor ;
– c1 is a positive real parameter called cognition parameter;
– c2 is a positive real parameter called social parameter; and
– R1(t) and R2(t) are independent uniform random variables in (0, 1).



From (12) it can be easily observed that the velocity of a particle at iteration
t+ 1 is obtained as the sum of three addends. The first addend is related to the
velocity of the particle at the previous iteration t, which is weighed according
to the inertial factor ω(t). The second addend is meant to move each particle
toward the best position it reached so far. Note that such a best position is the
one which corresponds to the lowest value of the fitness function and, therefore,
y(i)(t) can be expressed as

y(i)(t) = arg min
z∈X(i)

F (z) X(i) = {x(i)(0), . . . , x(i)(t)}. (13)

Finally, the third addend aims at moving each particle towards the global best
position, namely the position which corresponds to the smallest value of the
fitness function among all those reached by any particle in the swarm [25]. Hence,
y(t) is expressed as

y(t) = arg min
z∈Y

F (z) Y = {y(1)(t), . . . , y(S)(t)}. (14)

Typically, the inertial factor ω(t) is chosen as a decreasing function of t, in order
to guarantee low dependence of the solution on the initial population, and to
reduce the exploration ability of the swarm as the number of iterations increases,
making the method more similar to a local search in the last iterations [28].

The velocities computed with (12) are used to update the positions of parti-
cles at each iteration according to the following rule

x(i)(t+ 1) = x(i)(t) + v(i)(t) i ∈ {1, . . . , S}. (15)

From (15) it can be observed that the position of the i−th particle at iteration
t+ 1 is simply obtained by adding v(i)(t) to its previous position.

The execution of the PSO algorithm is terminated once a stopping criterion is
met. Possible stopping criteria for the PSO algorithm are the reach of a maximum
number of iterations or the reach of a satisfying value of the fitness function.
Once the execution of the algorithm terminates, the solution is identified as the
position of the particle in the global best position, which is the particle with the
lowest value of the fitness function.

The PSO algorithm is used to solve the localization problem formulated in
(10). In order to obtain experimental results shown in the rest of this paper, we
set the value of the inertial factor to 0.5; the values of c1 and c2 are equal and they
are set to 2 (so that the average values of c1R1(t) and of c2R2(t) is 1); the size of
the population S is set to 40, and the stopping condition corresponds to the reach
of 50 iterations. These values proved to be efficient for localization purposes when
WiFi signaling is used instead of UWB signaling, for which different parameters
are used [19]. Note that the use of WiFi signaling typically requires a pre-filtering
of distance estimates to compensate signal fluctuations, which is not adopted in
this paper to assess robustness independently of pre-filtering.



3 Experimental Results

Relevant experimental results obtained using the described optimization-based
algorithm are shown in this section. Presented results are used to assess the
robustness of the algorithm by comparing its performance against that of the
TSML (Two-Stage Maximum-Likelihood) algorithm [10]. The TSML algorithm
is chosen because it is widely used and it is considered as reference in the field
of localization. The performance of the two algorithms is compared in four rep-
resentative scenarios, in all of which the position of the TN can be expressed in
meters as

u = (0, 1, 1)T . (16)

For each of the considered scenarios, 100 estimates of the position of the TN are
derived using the described optimization-based algorithm. Such estimates are
denoted as

û
(j)
P = (x̂

(j)
P , ŷ

(j)
P , ẑ

(j)
P ) j ∈ {1, . . . , 100}. (17)

Similarly, 100 estimates of the position of the TN using the TSML algorithm are
also derived, and they are denoted as

û
(j)
T = (x̂

(j)
T , ŷ

(j)
T , ẑ

(j)
T ) j ∈ {1, . . . , 100}. (18)

In order to compare the performance of the two localization algorithms, we use
as performance metrics the distances between the true position u of the TN and
its estimates. Using the notation introduced in (18), the distance between the
true position of the TN and its j−th estimate obtained by applying the TSML
algorithm can be denoted as

d
(j)
T = ||û(j)T − u|| j ∈ {1, . . . , 100}. (19)

The definition in (19) allows computing the average distance error relative to
the TSML algorithm as

dTSML
avg =

1

100

100∑
j=1

d
(j)
T . (20)

Analogous definitions relative to the optimization-based localization algorithm
can be adopted. Actually, the accuracy of the optimization-based algorithm is
evaluated in terms of

d
(j)
P = ||û(j)P − u|| j ∈ {1, . . . , 100} (21)

which represent the distance between the true position of the TN and its esti-

mates û
(j)
P . From (21), the average distance error obtained from the optimization-

based algorithm can be computed as

dPSO
avg =

1

100

100∑
j=1

d
(j)
P . (22)



In all the considered scenarios we perform localization relying on the distance
measurements from M = 4 APs, but we remark that the considered localization
algorithms can be applied also with a larger number of APs. In the remaining of
this section, we consider different scenarios and we compare the performance of
the TSML algorithm with that of the optimization-based algorithm. To do so,
range estimates from each one of the 4 APs are acquired and used to estimate
the position of the TN according the TSML algorithm, whenever possible. Then,
the same procedure is applied to derive 100 position estimates according to the
optimization-based algorithm. The performance of both algorithms is evaluated
in terms of the values of the distance errors (19) and (21) and in terms of their
averages (20) and (22).

3.1 First Scenario

We start by considering a configuration of APs whose coordinates, expressed in
meters, can be written as follows

s1 = (0, 0, 2)T s2 = (1, 1, 2)T

s3 = (0, 2, 2)T s4 = (−1, 1, 2)T .
(23)

In such a configuration, all APs are located on the same plane since they are
placed at the same height. Such a configuration is not strange, since in many
indoor scenarios the APs are positioned at the same height, typically close to the
ceiling. Notably, the proposed arrangement of APs makes the TSML localiza-
tion algorithm inapplicable. Actually, the TSML algorithm adopts a geometric
approach and the matrices involved in the evaluation of the position of the TN
become singular if all the APs used for localization are situated on the same
plane. Hence, it is not possible to use the TSML to obtain position estimates
of the TN with the configuration of AP in (23). At the opposite, the applica-
bility of the optimization-based algorithm is not influenced by the geometric
arrangement of APs. Hence, the optimization-based algorithm can be success-
fully applied with the configuration of APs in (23), leading to accurate position
estimates, as shown in Fig. 1. Actually, Fig. 1 shows the values of distance errors

d
(j)
P (red dots) and the value of the average distance error dPSO

avg (yellow line),
which is approximately equal to 22 cm. From Fig. 1 it can be concluded that
the optimization-based algorithm guarantees accurate position estimates, even
in this scenario where algorithms based on geometric reasoning, e.g., the classic
and widely adopted TSML algorithm, cannot be applied.

We remark that, especially when an existing WiFi infrastructure is used to
support localization, the configuration in which all APs are located at the same
height is typical, and often it is preferred over other configurations. In the rest
of this section, in order to make the TSML algorithm applicable, we change the
height of one of the APs, namely the fourth, and we compare the performance
of the two localization algorithms in various scenarios.
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Fig. 1. The values of distance errors obtained with the configuration of APs in (23)
are shown when applying the optimization-based algorithm. The value of the average
distance error (yellow line) is also shown with a line across the diagram.

3.2 Second Scenario

In this second scenario, we maintain the positions of the APs whose coordinates
are denoted as s1, s2, and s3 in (23) and we only move the fourth AP. The height
of the fourth AP is reduced by 1 cm, so that the coordinates of APs, expressed
in meters, can be written as

s1 = (0, 0, 2)T s2 = (1, 1, 2)T

s3 = (0, 2, 2)T s4 = (−1, 1, 1.99)T .
(24)

Observe that the configuration of the APs is very similar to that considered in
the first scenario, the only difference being the height of the fourth AP. The
small decrease of one of the APs may seem insignificant, but it has a strong
impact on the applicability of the TSML algorithm. Obviously, a decrease of
1 cm may fall into the tolerance of the measurement of the height of APs, and
it should be considered frequent even when APs are supposed to be at the same
height. As a matter of fact, a change of only 1 cm in the height of an AP is
sufficient to guarantee that the matrices involved in the TSML algorithm are no
longer singular. Hence, in this case, the TSML algorithm can be used to derive
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Fig. 2. The values of distance errors obtained with the configuration of APs in (24) are
shown when applying: the TSML algorithm (upper diagram); the optimization-based
algorithm (lower diagram). The values of average distance errors dTSML

avg (cyan line) and
dPSO
avg (yellow line) are also shown.

estimates of the position of the TN. The upper diagram in Fig. 2 shows the values

of distance errors d
(j)
T (blue crosses) relative to the estimates of the position of

the TN obtained according to the TSML algorithm. The same figure also shows
the value of the average distance error dTSML

avg (cyan line), which is approximately
equal to 20 m. It can be concluded that the position estimates obtained from the
application of the TSML algorithm when APs are nearly coplanar are often far
inaccurate and, hence, such estimates cannot be used in practice. This is caused
by the fact that the matrices used in the TSML algorithm, despite being not
singular, are ill-conditioned because APs are nearly placed on the same plane.
Hence, it can be concluded that the position estimates obtained according to the
widely known TSML algorithm are not reliable in the considered scenario, due
to the topology of the APs.

On the contrary, the position estimates obtained from the optimization-based
algorithm in the same scenario are sufficiently accurate, as shown in the lower

diagram of Fig. 2, where the values of distance errors d
(j)
P (red dots) are shown.

The same figure also shows the value of the average distance error dPSO
avg (yellow

line), which is approximately 22 cm, as in the first scenario. The values of d
(j)
P
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Fig. 3. The values of distance errors obtained with the configuration of APs in (24) are
shown when applying: the TSML algorithm (upper diagram); the optimization-based
algorithm (lower diagram). The values of average distance errors dTSML

avg (cyan line) and
dPSO
avg (yellow line) are also shown.

make the optimization-based position estimates sufficiently accurate for many
applications. From the results shown in Fig. 2, it can be observed that the values

d
(j)
P are far smaller that the corresponding values of d

(j)
T and, hence, results shown

in Fig. 2 confirm that the optimization-based algorithm is more robust than the
TSML algorithm.

3.3 Third Scenario

Let us now change again the position of the fourth AP, keeping the remaining
APs in the same positions as in previous scenarios. We consider the following
coordinates for the fourth AP

s4 = (−1, 1, 1.9)T . (25)

According to (25), the height of the fourth AP is reduced by 10 cm with respect
to the configuration in the first scenario and by 9 cm with respect to the config-
uration in the second scenario. Results obtained with this configuration of APs
are shown in Fig. 3, where the upper diagram refers to the TSML algorithm



and the lower diagram refers to the optimization-based algorithm. The upper

diagram shows the values of d
(j)
T (blue crosses) and the value of the average

distance error dTSML
avg (cyan line). A comparison between Fig. 2 and Fig. 3 shows

that the values of d
(j)
T obtained in the third scenario are smaller by one order

of magnitude than those obtained in the second scenario. However, the position
estimates obtained from the TSML algorithm still have to be considered as in-
adequate, since the average distance error is dTSML

avg = 2.23 m and in some cases

the values of d
(j)
T are larger than 6 m. Once again, this is due to the topology

of the APs, according to which the localization problem formulated by TSML
algorithm remains ill-conditioned.

The optimization-based algorithm, instead, confirms its reliability, as shown
from results in the lower diagram of Fig. 3, where the values of distance errors

d
(j)
P are shown (red dots). The same figure also shows the value of dPSO

avg (yellow
line) which is approximately equal to that obtained in first and second scenarios,
namely 22 cm.

3.4 Fourth Scenario

In this scenario, the fourth AP is positioned on the floor and its coordinates can
be expressed as

s4 = (−1, 1, 0)T . (26)

Observe that the configuration of APs considered in this scenario makes the
matrices involved in the TSML algorithm well-conditioned, as the APs are not
on the same plane nor they are nearly coplanar. As a consequence, the obtained
position estimates are accurate, as shown in the upper diagram of Fig. 4, where

the values of distance errors d
(j)
T are shown (blue crosses), and the average value

of distance errors (cyan line) is shown to be dTSML
avg ' 21 cm. Note that, according

to the choice of s4 in (26), the distance between the TN and the fourth AP in this
scenario is the same as in the first scenario, where the TSML algorithm could not
be applied, which emphasizes that the applicability of the TSML algorithm only
depends on the relative positions of the APs and not on the distances between
the TN and the APs.

The lower diagram of Fig. 4 shows the values of distance errors d
(j)
P obtained

according to the optimization-based algorithm (red dots) and the value of dPSO
avg

(yellow line), which is approximately equal to 19 cm. Such a value emphasizes
that the accuracy of localization that the optimization-based algorithm ensures
does not depend significantly on the position of APs. In the first scenario, where
all APs were coplanar, the value of dPSO

avg was approximately equal to 22 cm,
and it remained almost unchanged across all scenarios. Finally, note that from
results in Fig. 4, it can be concluded that in this case the TSML algorithm and
the optimization-based algorithm perform similarly in terms of the distances
between the true position of the TN and its estimates.
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Fig. 4. The values of distance errors obtained with the configuration of APs in (24) are
shown when applying: the TSML algorithm (upper diagram); the optimization-based
algorithm (lower diagram). The values of average distance errors dTSML

avg (cyan line) and
dPSO
avg (yellow line) are also shown.

4 Conclusions

This paper discussed an approach to self-localization of agents in known indoor
environments that exhibits improved robustness over classic alternatives based
on geometric reasoning. First, the agent acquires estimates of the distances from
a set of known WiFi APs located in known positions by using the received signal
strength during ordinary network discovery. Estimated distances are used to
construct an optimization problem whose solution is an estimate of the position
of the smart device in the indoor environment. Estimated position is immediately
fed to interested agents running in the JADE container on the smart device. Note
that the proposed technique is immediately applicable to off-the-shelf Android
devices, and that no localization-specific infrastructure is needed.

The major contribution of this paper is to assess the robustness of the dis-
cussed algorithm by comparing its accuracy against that of the TSML algorithm,
which is a classic alternative. From the results shown in Section 3, it can be con-
cluded that the performance of the TSML algorithm strongly depends on the
topology of APs. Actually, if the APs are coplanar or almost coplanar, then



the TSML algorithm is inapplicable or it leads to severely inaccurate position
estimates, while the optimization-based algorithm is reliable also in these cases.
Moreover, in cases where also the TSML algorithm performs well, the perfor-
mance of the two algorithms is similar. Note that while other types of wireless
technologies, such as UWB, ensure more accurate localization, WiFi has the ad-
vantage of being ubiquitously available in all realistic indoor scenarios, and that
all smart devices are equipped with a dedicated transciever.

Experimental results presented in Section 3 also show that the discussed
algorithm can support effective implementation of AAL systems because it offers
sufficient accuracy and speed, which are set to 30 cm and 0.5 s for scenarios like
the personal activity management. Future work on this topic involves further
investigation on the performance of the discussed algorithm in different indoor
environments and with different configurations of APs.
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