Using Training with Older People for Active
Ageing in Time and Space *

Amedeo Cesta, Gabriella Cortellessa, and Riccardo De Benedictis

CNR - Italian National Research Council, ISTC, Rome, Italy,
{name.surname}@istc.cnr.it

Abstract. This paper introduces aspects of the authors’ work within
the “Citta Educante” project that aims at exploiting advanced ICT tech-
nology to rethink the concept of learning environment and reshape it
within a smart city perspective. In particular, the paper introduces the
LECTurE module that, by relying on the timeline-based approach to
automated planning, proposes contextualized lessons, as well as inter-
action requests, to its users. The lesson’s content, specifically tailored
for the older adults, is personalized taking into account users’ psycho-
physiological aspects as well as geo-localization information and temporal
constraints. After a generic introduction to the “Citta Educante” project,
the LECTurE module is presented and instantiated in two relevant use
cases: the on-site training, in which the system is used as a support to the
classical teaching methodologies within a classroom, and the distributed
training, in which the technology aims to move and animate the teach-
ing experience also “outside the classroom” with additional stimuli for
the users during a practical experience (e.g., a real visit in a museum to
complement a theoretical art history lesson). The paper, then, describes
the implementation choices made for the realization of a first prototype,
the reasons for choosing the timeline-based approach to planning as the
underlying reasoning technology and the overall module architecture.

Keywords: active aging, learning environments, timeline-based plan-
ning, personalized interaction

1 Introduction

The “Citta Educante” project! (the name means “city that educates” in Italian)
aims at radically rethinking the learning environment through the application of
the most advanced computer technology. The project proposes new educational
approaches, enriching and innovating methods and tools, overcoming classical
systems and the traditional “lessons” by providing learning in time (e.g., lifelong)
and space (e.g., at school, in an outdoor environment, during leisure, etc.).

* Authors work is partially funded by MIUR, under Cluster Program 2012. Send cor-
respondence to amedeo.cesta@istc.cnr.it.
! http:/ /www.cittaeducante.it

In this context, the theme of learning is framed in relation to the response to
social challenges linked to the renewal of the educational system, to be achieved
through the implementation of new learning/teaching models and/or the opti-
mization of the existing ones on the various areas of life and knowledge, as well
as new systems/evaluation processes, where technologies (platforms and web)
become an enabling factor.

The authors’ goal in the project has been the one of thinking an incarnation of
the “Citta Educante” for the continuous education of older people. In particular,
considering the more recent experiences in the interaction of elderlies with com-
plex machines [5], keeping in mind previous experience in training, specifically
tailored for crisis managers [2], we are currently pursuing the goal of building
a learning environment, called LECTurE (for Active Learning Environment for
“Citta Educante”), aimed at increasing the active aging and participation in
social life of elderlies at home, in the community, and at work.

This paper represents an introduction to authors’ effort in designing and
building the LECTurE learning subsystem. After introducing the main ideas
underlying the learning subsystem in Section 2, Section 3 introduces some tech-
nical background to illustrate the timeline-based technology upon which the
system is based. Sections 4 and 5 describe a proposal for the modeling of stu-
dents and lessons. A preliminary system architecture is proposed in Section 6.
Finally, some conclusions and a discussion about future works close the paper.

2 Using Al to personalize lessons for older users

Inspired by the objective of reformulating the learning environment through the
creation of platforms, services and ICT applications, we got in touch with sev-
eral volunteering organizations addressing, specifically, elderlies’ needs. Among
the different organizations, in particular, Televita? is a volunteering association
whose main objective is to maintain the elderlies active and motivated, leverag-
ing upon individual aptitudes and/or competencies [4]. Televita’s volunteers, in
fact, are, themselves, elderlies who want to keep active by offering their abilities
and competences to the organization. Although Televita’s main activity consists
in providing tele-assistance services (tele-friendship) and a 24h active helpline
devoted to lonely elderlies who need support, it also manages several laboratories
that involve elderlies both as attendees and “teachers”. Examples include a com-
puter lab, a tailoring lab, a cooking lab, an Italian language teaching for foreign
people, etc. Furthermore, the association organizes cultural events as concerts,
museum visiting, theatre, etc.

Among the offered services, we focused on two specific activities that were
both in line with the “Citta Educante” concept and suitable to be enhanced by
Artificial Intelligence techniques:

— The AttivaMente laboratory: aims at keeping elderlies mentally active, so as
to limit the cognitive decline associated with the advancement of age, by

2 http://www.televita.org

proposing them cognitive stimuli. Such stimuli, mostly consisting in general
culture quiz and/or crosswords, are proposed to the elderlies in a context
similar to a school lesson. Specifically, by relying on some previous knowl-
edge of the involved persons, as well as on their interactions during the
lesson, a teacher, a volunteer himself, yet with more experience than others,
controls the course’s progress and slightly adapt it to the specific context’s
needs. Since the stimuli are predetermined, however, such adaptations tend
to be limited to the possibilities of the case. The use of artificial intelligence
techniques, in this case, could support the personalised delivery of stimuli by
taking into account previous knowledge of the participants as well as their
interactions with the AI system yet increasing, compared to the classical
case, the personalisation capabilities.

— The Art History lessons and cultural events: analogously to the AttivaMente
case, before attending to cultural events, some of the participants, accord-
ing to their abilities and competencies, are asked to find information about
some specific aspects of the event (e.g., a particular work of art within a
museum, relevant historical happenings related to a visited site, etc.). Such
information are then shared, in a “sort of lesson” with other participants in
a classroom context and also outside during the event, enriching the overall
knowledge of the group while encouraging the interaction among the mem-
bers. Similarly to the AttivaMente case, such information may result to be
limited and/or not customised to the specific members of the event. AI tech-
niques, in this case, might offer the opportunity to enrich the cultural events
experience by providing further personalised stimuli to the event partici-
pants, as well as interaction requests to test the level of engagement and
actively stimulate them.

Combining both activities represents an opportunity for the elderly to keep them-
selves active while learning in time and space, and the use of Al can support the
development of more effective and engaging learning experience.

2.1 The LECTurE learning subsystem

The idea of developing the LECTurE system was then born as a consequence
of this field experience. Specifically, taking inspiration from a previous work [3],
in which students were trained for managing crisis, the approach used within
LECTurFE is based on the idea of dynamically composing lessons through the
use of a technology related to automated planning. In particular, starting from
a static representation containing an high-level lesson track, initially stored in the
database, a lesson is planned and dynamically adapted and personalized for the
involved users. The idea of using the technology related to automated planning
comes from the need to create a sufficiently extensive didactic experience to
reproduce a large number of different situations which are, at the same time,
characterized by a high variability of stimuli, aimed at increasing the involvement
level of users. Automated planning, indeed, favors the generation of different
lessons that would be too complicated to obtain with a simple pre-compilation of

stories. The timeline-based approach to planning [9], in particular, represents the
unifying element of the various modules by ensuring the dynamic adaptability
of plans by promoting experiential learning.

User Lesson

@ Modeling Moceline

Lesson presentation

Citta Educante

Al-based personalization of lessons

Fig. 1. The LECTurE general idea.

From a high-level point of view, the main modules of the system are de-
scribed in Figure 1. In particular, it is possible to distinguish between two kinds
of involved users: the students, i.e. a group of people, potentially, of any age, in-
terested in using the learning services offered by the LECTurE, and the teachers,
i.e. users with special privileges who have the opportunity to observe students,
monitoring the progress of the lessons and of the overall learning environment.
The above users interact with the LECTurFE system which is composed of three
functional blocks, intended as architectural subsystems, implementing the corre-
sponding high-level functionalities: (i) the user modeling, whose goal is to create
and maintain a user model and provide guidance for improving the learning pro-
cess; (ii) the lesson modeling, whose role is to combine the information from the
previous subsystem and to create the customized lesson as well as to control its
evolution; (iii) the lesson presentation, whose purpose is to effectively represent
the lesson.

It is worth highlighting that the proposed system provides users, whether
students or teachers, the opportunity to change the learning environment’s evo-
lution in real time by interpreting their decisions. In fact, the architecture is
based on a sense-plan-act paradigm implementing, in a continuous loop, the
three primitives (a) sense, in which information is collected from sensors, (b)

plan where a world model is created using the information available to plan
the next move to do, and (c¢) act, in which the move, chosen by the planning
process, is actually executed. Furthermore, by mimicking the different cases im-
plemented by the Televita organization, the LECTurE system provides training
through different modalities depending on the chosen use case. In particular, it
is possible to distinguish between two different modalities: (a) on-site learning,
closer to the classical teaching, in which technology is used as a support to the
teaching in a classroom, with the aim to create richer lessons, and (b) distributed
learning, in which technology aims to support lessons outside the classroom dur-
ing a practical experience. The following sections describe, more in detail, the
above modalities.

2.2 On-site training

In the on-site training modality, the system can be used by a group of students,
at the same time, previously contacted by the teacher. This mode represents
an extension to the classical learning method in which a teacher teaches to a
group of students. In this case, however, compared to the classical approach, the
teaching is enhanced by the introduction, within the lesson, of the LECTurE
technology.

Specifically, each lesson is instantiated by the teacher by defining the specific
learning objectives. The system processes the lesson and presents the informa-
tion to the students through the available tools. Students interact directly with
the system, providing their answers to certain circumstances proposed by the
system, and transmitting data from sensors available on the adopted devices
(e.g. physiological parameters) enriching the users’ models.

Depending on the sensors’ inputs and on the students responses, both the
teacher and the system can autonomously decide, based on the observations,
whether and how to modify the current lesson. Finally, at the end of the lesson,
the system can generate several reports, for example, one for each student, which
can be used for debriefing purposes.

2.3 Distributed training

In the distributed training case, the system exploits different types of web tech-
nologies. This means that the lesson does not happen in a single physical room
and is distributed among the students who are remotely connected to the system.
The lesson can still be instantiated by the teacher defining the specific learning
objectives but may have variable, potentially infinite, duration.

Students interact directly with the system, providing their answers to certain
circumstances proposed by the system as well as transmitting data from the
sensors available on the chosen devices (e.g., geographic location, physiological
parameters, etc.). Sensor data enriches the users’ models which, in turn, adapt
the lesson to the students resulting in a highly personalized learning experience.

Again, based on the inputs from the sensors and on the students’ feedback,
both the teacher and the system can autonomously decide, based on the observa-
tions, whether and how to modify the lesson in progress. Similarly to the on-site
case, the LECTurE system can generate, during the lesson, several reports, for
example, one for each student, which can be used both for debriefing purposes
and for a further tuning of the lesson.

3 Timeline-based planning to support dynamic lessons

Since most of the components of the LECTurFE system strongly depend on tem-
poral aspects, we have chosen to rely on a specific automated planning technique,
called timeline-based, which allows to explicitly reason on time. Timeline-based
planning, indeed, allows to reason about events in time and, hence, represents
a valid tool for meeting our pedagogical needs. Planning a lesson, in particu-
lar, requires dispatching information at proper time. Additionally, reacting to
users’ interactions requires plan adaptation capabilities which can more hardly
be achieved through other automatic planning techniques. Furthermore, the dy-
namic adaptation of the user profiles, which can take place on the different
features that represent the user’s model, can also be achieved through timelines.

As already said, timeline-based planning constitutes a technology that easily
allows us to solve our problems. In order to better contextualize the choices that
we have made and to better explain the different components of the system,
however, it is worth introducing some basic formalism about constraint networks,
on which timeline-based planning search strongly relies, and about the main
concepts related to timeline-based planning.

The main ingredients of constraint networks are variables and constraints.

Definition 1. A variable is an object that has a name and is able to take dif-
ferent values.

A variable (whose name is) z must be given a value from a set that is called
the domain of x and is denoted by dom (x). The domain of a variable x may
evolve in time but is always included in a set called initial domain. Depending on
the nature of these domains, variables can be distinguished between continuous,
having an infinite initial domain usually defined in terms of real intervals, and
discrete, whose initial domain contains a finite number of values.

Definition 2. A constraint is a restriction on combinations of values that can
be taken simultaneously by a set of variables.

A constraint c is defined over a set of variables which constitute the scope of
¢ and are denoted by scp (c).

A structure composed of variables and constraints is called a constraint net-
work.

Definition 3. A constraint network A is composed of a finite set of variables,
denoted by vars (N'), and a finite set of constraints, denoted by cons (N'), such
that Ve € cons (N), scp (c) C vars (N).

Finally, an evaluation of a constraint network is an assignment of values to
some or all the variables. An evaluation is said to be consistent if it does not
violate any constraint. An evaluation is said to be complete if it includes all the
variables. Finally, given a constraint network, the problem of finding a consistent
and complete evaluation is called Constraint Satisfaction Problem (CSP) (refer
to [7,8] for a comprehensive introduction to CSPs).

As regards timeline-based planning, the main data structure is the timeline
which, in generic terms, is a function of time over a finite domain. Values on
timelines are called tokens and are represented by temporally scoped predicates
(i.e. predicates endowed with extra arguments belonging to the Time domain
T, either real or discrete). Two additional arguments indicate the timeline on
which the token apply and the state of the token.

Definition 4. A token is an expression of the form:
n(xg,...,xx) Qls, e, 0,7, 0]

where n is a predicate name, T, . . ., Ty are constants, numeric variables or object
variables, s and e are temporal variables belonging to T such that s < e, 0 is
a numeric variable such that 6 = e — s, T is an object variable representing
the timeline on which the token apply and o € {Active,Unified} is a variable
representing the state of the token. A token n (xo,...,z;)@Q[s,e,d,7,0] asserts
that Vt such that s <t < e, the relation n (xo,...,x) holds at the time t on the
timeline 7 if and only if o = Active.

The overall idea pursued in LECTurE consists in using such tokens for rep-
resenting both the state of the users and the planned stimuli. For example, a
relation At (1), denoting the fact that a user is at a certain location [, can be
enriched with temporal arguments s,e € T and J representing, respectively,
its starting time, its ending time and its duration. The argument 7 would rep-
resent the specific timeline responsible for modeling the user’s position. The
At (1)@]s, e, d, T,0] token would now represent the user, whose position in time
is described by the timeline 7, being at location ! from time s to time e (for a
duration §). It is worth to notice that in a grounded plan each token applies to a
specific timeline, reflecting the intuition that tokens describe some aspect of the
timeline (i.e. its state or behavior) in time. However, in general, the commitment
to a specific timeline may not yet have been made and 7 can be treated as any
other variable of a constraint network. This applies, in particular, to stimuli, for
which the recipient might be decided at planning time. More details about the
state o of the tokens will be provided soon.

In order to reduce the allowed values for the tokens’ constituting parame-
ters, and thus decreasing the system’s allowed behaviors, it is possible to impose
constraints among them (and/or between the parameters and other possible
variables). Such constraints include temporal constraints, usually expressed by
means of interval relations [1], binding constraints between object variables as
well as linear constraints among numerical variables (including temporal vari-
ables). Note that each token has an implicit temporal constraint that forces the

starting time to be non-negative (i.e. s > 0), an implicit temporal constraint
that links its duration to its starting and ending variables (i.e. 6 = e —s) and an
implicit temporal constraint that forces the starting time to be lower or equal
than the ending time (i.e. s < e that is equivalent to ¢ > 0).

The set of tokens and constraints is used to describe the main data structure
that will be used to represent nodes of the timeline-based search space: the token
network.

Definition 5. A token network is a tuple m = (T, C), where:

- T ={to,...,tx} is a set of tokens.
- C' is a set of constraints, required to be consistent, on the variables of the
tokens in T'.

As regarding the o state variable associated to each tokens, its value has to be
decided by the solving procedure. Specifically, each token either (i) unifies (i.e.
the Unified value is assigned to its state variable o) with an already existing
active (i.e. whose state variable o assumes the value Active) token assuming
exactly the same value, i.e. the two tokens have the same predicate name and
their arguments are pairwise constrained to be equal or (ii) is activated (i.e. the
Active value is assigned to its state variable o) and some “rule” is applied. This
kind of rules is generalized in a concept usually called compatibility.

Definition 6. A compatibility is a tuple ¢ = (name (c), R (c)), where:

— name (c) is the master (or reference or, even, trigger) predicate and is an
expression of the formn (xg . ..xy), where n is a unique predicate symbol with
respect to a timeline (i.e. no two compatibilities in a given timeline can have
the same predicate symbol), and xq ...z are its associated variable symbols.

— R(c) is a requirement, i.e. either a slave (or target) token, a constraint
among tokens (possibly including the xg ...z variables), a conjunction of
requirements, a disjunction of requirements or a preferred requirement.

Compatibilities define causal relations that must be complied to in order for
a given token to be valid. Whenever a token, having a predicate name n, is acti-
vated, the master name (¢) of a compatibility ¢, having the same predicate name
n, is substituted by the token and the requirement R (c) is added to the token
network. The idea underlying the unification process is equivalent to saying, in
a sense, that the unifying token has already been demonstrated to be valid. Fi-
nally, it is worth to underscore that the compatibilities may often involve tokens
applied on different timelines, thus allowing to synchronize concurrent activities
on different domain components.

The last aspect to be addressed is the definition of the timeline-based plan-
ning problem which can rely on the above requirement concept.

Definition 7. A timeline-based planning problem is a triple P = (T,C, R),
where:

- T is a set of timelines.

- C is a set of compatibilities.

- R is a requirement, i.e. either a token, a constraint among token arguments,
a conjunction of requirements, a disjunction of requirements or a preferred
requirement.

4 Modeling the Students

By pursuing the overall goal of enhancing the learning experience, it is necessary
to keep a user model up-to-date in order to consider how their emotional, psy-
chological, physiological and geographical parameters can influence the learning
process. Specifically, the student modeling has three main objectives:

— Select, model and monitor relevant human factors, as well as psychological,
physiological, or other user-related variables;

— Develop a model that can represent the user’s profile;

— Provide a high level guidance for customizing learning objectives.

In particular, the user model must consider psycho-physiological aspects
(such as heart rate, personality traits, etc.), user-related aspects (e.g. geo-localization)
and pedagogical parameters such as the different learning modalities. Its role con-
sists in feeding the lesson model allowing the customization of the content of the
lesson. Specifically, user profiles are stored on timelines in order to be retrieved
later, interpreted or updated during the lesson. Depending on the particular
status of the user, by relying on compatibilities, this module establishes custom
learning paths with different difficulty levels tailored on the specific users. Each
user has associated a set of timelines for dynamically maintaining this infor-
mation in time. Figure 2, for example, shows the modeling of the user Alice
by means of two timelines representing, respectively, her location in time and
her performance. Tokens on the location timeline, as an example, have the form
At (x,y)Q[s,e,d,7,0] and represent the user 7 being at coordinates (x,y) from
time s to time e. At regular intervals, the GPS position of the user is found and,
in case of significant variations, a new token is added to the timeline so as to
keep updated the position of the user in time.

Similarly, other timelines are used to keep updated the information about
other features, not necessarily extrapolated from sensors. The set of considered
relevant factors can be related, for example, to personality traits, past experience,
the perceived effectiveness in performing complex tasks, current assessment, per-
ceived stress, or anxiety. The use of Blue-tooth bracelets or bands for heart rate
measurement may allow the extraction of physiological values such as heart rate
or heart variability. Finally, it is possible to leverage on geo-localization ser-
vices. The initial evaluation of these variables, used as a baseline to initialize
the didactic experience and as a reference point for subsequent measurements,
can be done through the use of standardized psychological questionnaires or
physiological measurements performed off-line before the lesson. It is worth to
notice, however, that the profile of a student can also be updated exploiting the

Location At(41.890251, 12.492373)@[1506356159396, 1506358094858, 1935462, Alice, Active]

}
:
Performance |\ rmal()@[1506356159396, 1506357182847, 1023451, Alice, Active] | Good()@[1506357182847, *, *, Alice, Activ

&5

Fig. 2. Modeling the students through timelines.

interactions of the user with the system asking users, for example, to answer to
sporadic questions.

Among the dynamic parameters, the student performance is monitored and
observed by recording input data such as the different actions taken by the users.
Specifically, this information is processed and interpreted in order to plan the
subsequent actions of the lesson as well as to support the debriefing phase. By
processing the users’ profiles, the system generates a user model that is con-
stantly updated to perceive and represent significant changes in the emotional
state (note that parameters can generally change over time). In addition, stu-
dents’ performance is analyzed and processed in order to gather further usable
information to further customize the lesson. The teacher can access this informa-
tion in order to supervise and control the customization. For this purpose, this
component can provide guidance on how to customize the lesson. Personaliza-
tion of a training course can therefore be done automatically, but it can also be
suggested to a teacher who independently decides whether to adapt the training
course (i.e. according to a mixed-initiative style).

Since the different users are characterized by properties that are closely re-
lated to their role, their work or, more generally, their emotional state during
the lessons, each user that interacts with the system feeds the LECTurE system
with personal data. The system, in turn, builds a user model that is used to
synthesize custom lessons responding to the specific status of each student. The
output of this process is passed to a second module that, on the basis of these
indications and on the particular didactic path chosen, synthesizes a sequence
of appropriate stimuli for the group (shared information between the different
students in a lesson) and for the individuals (tailored information for a specific
student).

5 Modeling the Lessons

Lesson modeling is the key feature of the LECTurE system since it creates and
manages the network of events (i.e. a token network as described in Section 3)
that guides the entire learning session. The purpose of this feature is twofold:

on the one hand, the module maintains static information, a.k.a. domain theory
(i.e. the set of compatibilities), needed to represent relevant system information
like, for example, the procedures for managing the different responses to stimuli.
On the other hand, this module is able to develop a model that describes the
combined effect of static information, students’ actions, teachers’ adjustments,
and information from the user model.

Within the LECTurE, planning goals are characterized by high-level events
that represent the abstract model of the lesson. Specifically, the lesson is repre-
sented as an abstract plan that plays the lead role. The different events of a lesson
are represented through tokens causally linked by means of compatibilities. In
order to represent a lesson and to manage user interactions with the system
and their associated consequences, a Lesson Timeline, containing the high-level
events that may occur during the lesson, represented through tokens, is instanti-
ated. Each user has associated an Activity Timeline representing their performed
actions and allowing the system to compute the actions’ consequences. Through
the interaction with the domain theory, the Lesson timeline generates sub-goals,
allowing to maintain a high-level vision for the teachers while providing sufficient
granularity of the information sent to the students.

Specifically, the teacher loads the chosen lesson from the database and the
planner, on its own behalf, works on the timeline representation to create a lesson
(i.e. the set of events, positioned over time, communicated to students like videos,
text messages, questions, etc.). Once the planner has reached a solution, given
the learning objectives, the plan is executed by sending messages to the lesson
presentation module according to the progressive order of the scheduled events.
Some of these messages are sent to all the participants in the lessons or to the
individual users to stimulate them or to ask for interaction through questions,
or even to evaluate their emotional state so that they can feed the user’s model.

Once the teacher has loaded a lesson and the planner has arranged the to-
kens over time, the plan is ready to be executed. Some of these tokens represent
stimuli and requests for the students. In order to foster interaction and collab-
oration with other users, the distributed information may be partial, requiring
students the need to send messages to other students so that they can build
an overview and respond appropriately to the challenges posed by the system
fostering cooperation.

The goal represented in Figure 3 through the token Colosseum () [s, e, 9, T, 0],
for example, is used for representing an education unit related to the Colosseum.
By applying its associated compatibility, the education unit is expanded, through
subgoals, into several information units arranged over time to be delivered to
the different users involved in the lesson. Such information units, instantiated
through text, videos, etc., include notions related, e.g., to the building time
of the Colosseum, to its microclimate, to its use as a source of materials for
other buildings, etc. Additionally, among the subgoals, questions are intended
to check the learning efficacy of the users so as to adapt, consequently, the lesson.
In particular, answers are considered as “actions” performed by the users. Such
actions are represented by tokens on the Activity timeline associated to each

Lesson
Colosseum()@[...]

i \

Message(..)@[..] KisclE] Question(...)@]...]

Vespasian()@|...]

/

QuestColAnsl()@]...]

Alice’s
Activity

Fig. 3. Modeling the lessons and users’ activities through timelines.

user and, as any token, require the application of a compatibility. It is through
this mechanism that it is possible to change the system behavior by means of a
plan adaptation. Timeline-based planning results to be particularly suitable for
this kind of dynamic adaptation without having to re-plan from scratch.

As an example, a question related to the Colosseum might be the following;:

Under which dynasty was the Colosseum built?

— Flavian
— Constantinian
— Julio-Claudian

Suppose, for example, that the user Alice answers (correctly) with the first
option, the compatibility associated to the QuestColAnsl () predicate, corre-
sponding to the first available answer for this question, is applied. Such a com-
patibility might be, for example:

QuestColAnsl () {v : lesson.Vespasian () A v.start >= end + 300000}

As a result, the Vespasiano () education unit is added by the reasoner to
the lesson and constrained to start at least 300000 milliseconds (i.e. 5 minutes)
after the end of the answer. As any other token, the new token requires to be
activated by means of its associated compatibility resulting in the introduction
of further stimuli into the lesson as, for example, the following information about
Vespasian:

Vespasian was Roman emperor from AD 69 to AD 79, the fourth, and
last, in the Year of the Four Emperors. He founded the Flavian dynasty that
ruled the Empire for 27 years.

These questions may have a maximum response time in terms of minutes,
or days. In case of non-response, the system can choose a response to the user’s
seat, possibly decreasing the student’s assessment. Alternatively, it is possible
to set up a "hurry-up” mode that makes a countdown appear to increase the
tension and the engagement of the students.

This form of reasoning is generalized in various contexts according to the
topic of the lesson. Furthermore, the lesson modeling takes into account the cus-
tomization aspects as suggested by the user modeling. An example, suppose a
student is in the proximity of Vatican City, his/her profile is updated through
geo-localization information and, through the application of a compatibility, syn-
thesizes the following question:

Who painted the Sistine Chapel?

— Donatello
— Michelangelo
— Ralffaello

Suppose that the student answers (correctly) with the second option, the
dynamic adaptation of the plan, depending on the current lesson, could generate
new stimuli such as, for example, the following information on the Sistine Chapel:

The Sistine Chapel, dedicated to Mary Assumed in Heaven, is one of the
most famous cultural and artistic treasures of the Vatican City, inserted in
the path of the Vatican Museums. It was built between 1475 and 1481, at
the time of Pope Sisto IV della Rovere, from which he took the name.

Additionally, a positive reinforcement can be sent to the student increasing
his/her score, resulting in new questions of increasing complexity.

Finally, as already briefly mentioned, it is worth to notice that since it is
not possible to predict all the training courses during the lesson design phase,
LECTurFE provides the teachers the opportunity to modify the lessons in an
incremental way, adapting the lesson to unpredictable behavior of the users.
Alternatively, the teacher can manipulate the execution of the lesson so as to
force specific predefined paths.

6 The System Architecture

The LECTurE system software architecture is described in Figure 4.

Rest API

<:::>
| Web |

Front-end || Mobile |
Messaging API

“ Desktop |

Users models

Lessons models

Fig. 4. The LECTurE main modules.

Specifically, the architecture contains a module for the permanent storing
of relevant information. A reasoner, constituted by a timeline-based planner [6],
works to keep in mind the different models, specified by means of compatibilities,
of the users and of the lessons. A front-end module deals with providing graphical
interfaces (web, mobile, and/or desktop) to the users. The communication among
the different modules happens by means of two different software interfaces:

— A REST interface allows the creation, updating, and viewing of permanently
stored information. The same interface is used to notify any changes to a
user’s profile (e.g. the user has moved around a site of historical interest) or
possible actions by the user (e.g. answering a multiple-choice question) or,
furthermore, messages sent to other users.

— A messaging interface, made through WebSocket and/or MQTT, allows to
send different types of messages to the users. Examples of messages may
be historical information related to, for example, the current user location,
multiple response questions, questionnaires, maps, questions to detect the
psychological state of the user, etc.

7 Conclusions and Future Works

This paper introduces the LECTurE system as an Al-based learning environment
specialized so as to support active ageing. The paper defines the LECTurE’s
initial functionalities, the architectural entities and a specification of the tech-
nological components. We have introduced the general idea of supporting older
people in maintaining themselves mentally and physically active being helped by
some intelligent technology both during a class and during excursions. The ICT

intelligent core makes use of timeline-based planning technology to represent
key ingredients, create a baseline “lesson” and dynamically adapt it to integrate
both personalised stimuli and requests to the users over time. The constant con-
tact with Televita’s volunteers is allowing the transition from a lab prototype
to an incrementally more robust version of the system to be tested in realistic
scenarios.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Commun. ACM
26(11), 832-843 (1983)

2. Bacon, L., Cesta, A., Coraci, L., Cortellessa, G., De Benedictis, R., Grilli, S., Polut-
nik, J., Strickland, K.: Training crisis managers with PANDORA. In: Proceedings of
the 20th European Conference on Artificial Intelligence. pp. 1001-1002. IOS Press
(2012)

3. Cesta, A., Cortellessa, G., De Benedictis, R.: Training for Crisis Decision Making
- An Approach Based on Plan Adaptation. Knowledge-Based Systems 58, 98-112
(2014)

4. Cesta, A., Cortellessa, G., De Benedictis, R., Fracasso, F.: A tool for managing
elderly volunteering activities in small organizations. In: Esposito, F., Basili, R.,
Ferilli, S., Lisi, F.A. (eds.) AI*IA 2017: Advances in Artificial Intelligence (2017)

5. Cortellessa, G., Fracasso, F., Sorrentino, A., Orlandini, A., Bernardi, G., Coraci,
L., De Benedictis, R., Cesta, A.: ROBIN, a Telepresence Robot to Support Older
Users Monitoring and Social Inclusion: Development and Evaluation. Telemedicine
and e-Health (2017)

6. De Benedictis, R., Cesta, A.: Integrating Logic and Constraint Reasoning in a
Timeline-based Planner. In: AT*TA 2015 - XIVth International Conference of the
Italian Association for Artificial Intelligence (2015)

7. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann (2003)

8. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley-IEEE Press
(2009)

9. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M. and
Fox, M.S. (ed.) Intelligent Scheduling. Morgan Kauffmann (1994)

