
Variety-Aware OLAP of Document-Oriented Databases

Enrico Gallinucci
DISI—Univ. of Bologna, Italy

Cesena, Italy
enrico.gallinucci2@unibo.it

Matteo Golfarelli
DISI—Univ. of Bologna, Italy

Cesena, Italy
matteo.golfarelli@unibo.it

Stefano Rizzi
DISI—Univ. of Bologna, Italy

Bologna, Italy
stefano.rizzi@unibo.it

ABSTRACT

Schemaless databases, and document-oriented databases
in particular, are preferred to relational ones for storing
heterogeneous data with variable schemas and structural
forms. However, the absence of a unique schema adds com-
plexity to analytical applications, in which a single analysis
often involves large sets of data with different schemas.
In this paper we propose an original approach to OLAP
on collections stored in document-oriented databases. The
basic idea is to stop fighting against schema variety and
welcome it as an inherent source of information wealth in
schemaless sources. Our approach builds on four stages:
schema extraction, schema integration, FD enrichment, and
querying; these stages are discussed in detail in the paper.
To make users aware of the impact of schema variety, we
propose a set of indicators related for instance to query
completeness and precision.

1 INTRODUCTION

Recent years have witnessed an erosion of the relational
DBMS predominance to the benefit of DBMSs based on
alternative representation models (e.g., document-oriented
and graph-based) which adopt a schemaless representation
for data. Schemaless databases are preferred to relational
ones for storing heterogeneous data with variable schemas
and structural forms; typical schema variants within a
collection consist in missing or additional attributes, in
different names or types for an attribute, and in differ-
ent structures for instances [9]. The absence of a unique
schema grants flexibility to operational applications but
adds complexity to analytical applications, in which a sin-
gle analysis often involves large sets of data with different
schemas. Dealing with this complexity while adopting a
classical data warehouse design approach would require
a notable effort to understand the rules that drove the
use of alternative schemas, plus an integration activity to
identify a common schema to be adopted for analysis —
which is quite hard when no documentation is available.
Furthermore, since new schema variations are often made,
a continuous evolution of both ETL process and cube
schemas would be needed.

In this paper we propose an original approach to mul-
tidimensional querying and OLAP on schemaless sources,
in particular on collections stored in document-oriented
databases (DODs) such as MongoDB. The basic idea is to
stop fighting against data heterogeneity and schema variety,
and welcome it as an inherent source of information wealth
in schemaless sources. So, instead of trying to hide this
variety, we show it to users (basically, data scientist and

© 2018 Copyright held by the owner/author(s). Published in the
Workshop Proceedings of the EDBT/ICDT 2018 Joint Conference
(March 26, 2018, Vienna, Austria) on CEUR-WS.org (ISSN 1613-
0073). Distribution of this paper is permitted under the terms of
the Creative Commons license CC-by-nc-nd 4.0.

data enthusiasts) making them aware of its impact, e.g.,
in terms of completeness and precision. Specifically, the
distinguishing features of our approach are as follows.

∙ To the best of our knowledge, this is the first ap-
proach to propose a form of approximated OLAP
analyses on document-oriented databases that em-
braces and exploits the inherent variety of docu-
ments.

∙ Multidimensional querying and OLAP are carried
out directly on the data source, without materializing
any cube or data warehouse.

∙ We adopt an inclusive solution to integration, i.e.,
the user can include a concept in a query even if it is
present in a subset of documents only. We cover both
inter-schema and intra-schema variety, specifically
we cope with missing attributes, different levels of
detail in instances, different attribute naming.

∙ Our approach to reformulation of multidimensional
queries on heterogeneous documents grounds on a
formal approach [11], which ensures its correctness
and completeness.

∙ We propose a set of indicators to make the user
aware of the level of completeness and precision of
the query result.

Remarkably, this is not yet another paper on multidimen-
sional modeling from non-traditional data sources. Indeed,
our goal is not to design a single “sharp” schema where
source attributes are either included or absent, but rather
to enable OLAP querying on some sort of “soft” schema
where each source attribute is present to some extent.

The paper outline is as follows. After giving an overview
of our approach in Section 2, in Sections 3, 4, 5, and 6 we
describe its four stages, namely, schema extraction, schema
integration, FD enrichment, and querying. Then, in Section
7 we discuss the related literature, and finally in Section
8 we draw the conclusions. An appendix completes the
paper discussing the correctness of our query reformulation
framework.

2 APPROACH OVERVIEW

Figure 1 gives an overview of the approach: in blue the
different stages of the approach, on the right the meta-
data produced/consumed by each stage. Remarkably, all
schema-related concepts are stored as metadata, so no
transformation has to be done on source data. User inter-
action is required at most stages. Although the picture
suggests a sequential execution of the stages, it simply out-
lines the ordering for the first iteration. In the scenario that
we envision, the user starts by analyzing the first results
provided by the system, then iteratively injects additional
knowledge into the different stages to refine the metadata
and improve the querying effectiveness. We now provide a

Collection

Schema extraction

Schema integration

FD enrichment

Querying

Local schemas

Global schema, Mappings

Dependency graph

data

metadata

control

LEGEND

Figure 1: Approach overview

short description of each stage; a deeper discussion will be
provided in the following sections.

Schema extraction (Section 3). The goal of this stage
is to identify the set of distinct local schemas that occur
inside a collection of documents. To this end we provide
a tree-like definition for schemas which models arrays by
considering the union of the schemas of their elements.
This is a completely automatic stage which requires no
interaction with the user.

Schema integration (Section 4). At this stage we rely
on inter-schema mappings and schema integration tech-
niques to determine a (tree-like) global schema that gives
the user a single and comprehensive description of the
contents of the collection. In principle, this stage could be
completely automated. In practice, the best results can be
obtained through a semi-automatic approach, that allows
users to manually validate/refine the mappings proposed
by the system. As of now, we rely on the user to manu-
ally provide inter-schema mappings, from which the global
schema is derived.

FD enrichment (Section 5). Traditional OLAP analy-
ses are carried out on multidimensional cubes. To enable
the OLAP experience in our setting, a multidimensional
representation of the collection must be derived from the
global schema. In particular, we introduce the notion of
dependency graph, i.e., a graph that provides a multidimen-
sional view of the global schema in terms of the functional
dependencies (FDs) between its attributes. Some FDs can
be inferred from the structure of the schema, others by
analyzing data; given the expected schema variety, we
specifically look for approximate FDs.

Querying (Section 6). The last stage consists in deliv-
ering the OLAP experience to the user by enabling the
formulation of multidimensional queries on the dependency
graph and their execution on the collection. First of all,
each formulated query is validated against the requirements
of well-formedness proposed in the literature [19]. Then,
the query is translated to the query language of the DOD
and reformulated into multiple queries, one for each lo-
cal schema in the collection; the results presented to the
user are obtained by merging the results of the single local
queries. To make the user aware of the impact of schema
variety in terms of quality and reliability of the results, we
show her a set of indicators related to query completeness
and precision.

The motivation example that we use across the paper
is based on a real-world collection of workout sessions,

[{ "_id" : ObjectId("54a4332f44cfc02424f961d4"),
"User" :
{ "FullName" : ”John Smith",

"Age" : 42 },
"StartedOn" : ISODate("2017-06-15T10:20:44.000Z"),
"Facility" :
{ "Name" : "PureGym Piccadilly",

"Chain" : "PureGym" },
"SessionType" : "RunningProgram",
"DurationMins": 90,
"Exercises" :
[{ "Type" : "Leg press",

"ExCalories" : 28,
"Sets" :
[{ "Reps" : 14,

"Weight" : 60 },
. . .

] },
{ "Type" : "Tapis roulant" },
. . .

]
} ,
. . .

]

Figure 2: An excerpt of the WorkoutSession collec-
tion

obtained from a worldwide company selling fitness equip-
ment. Figure 2 shows a sample document in the collection,
organized according to three nesting levels:

(1) The first level contains information about the user,
including the facility in which the session took place,
the date, and the total duration in minutes.

(2) The Exercises array contains an object for every exer-
cise carried out during the session, with information
on the type of exercise, and the total calories.

(3) The Sets array contains an object for every set that
the exercise was split into. For example, the “leg
press” exercise has been done in multiple sets, the
first of which comprises 14 repetitions with a weight
of 60 kilograms, for a total of 28 calories.

3 SCHEMA EXTRACTION

The goal of this stage is to introduce a notion of (local)
schema for a document, to be used in the integration stage
to determine a (global) schema for a collection and then,
in the FD enrichment stage, to derive an OLAP-compliant
representation of the collection itself.

The notion of a document is the central concept of a
DOD, and it encapsulates and encodes its data in some
standard format. The most widely adopted format is cur-
rently JSON, which we will use as a reference in this work.

Definition 3.1 (Document and Collection). A document
𝑑 is a JSON object. An object is formed by a set of key/value
pairs (aka fields); a key is string, while a value can be either
a primitive value (i.e, a number, a string, or a Boolean),
an array of values, an object, or null. A collection 𝐷 is an
array of documents.

Example 3.2. Figure 2 shows a document excerpted from
the WorkoutSession collection; it contains numbers (e.g.,
Age), strings (e.g., Chain), objects (e.g., User), and arrays
(e.g., Exercises). Conceptually, a session is done by a user
at a facility; it includes a list of exercises, each possibly
comprising several sets. □

Since there is no explicit representation of schemas in
documents, multiple definitions of schema are possible for
the schemas of collections and documents —with different
levels of conciseness and precision. The main difference in
these definitions lies in how they cope with inter-document
variety and intra-document variety.

∙ Inter-document variety impacts on the definition
of the schema for a collection, as it concerns the
presence of documents with different fields. This
issue is usually dealt with in one of two ways: ei-
ther by defining the schema of the collection as the
union/intersection [1, 24] of the most frequent fields,
or by keeping track of every different schema [20].
Our work mixes the above mentioned approaches in
that it builds a global schema starting from local
schemas.

∙ Intra-document variety impacts on the definition of
the schema for a document, and is mainly related to
the presence in a document of a heterogeneous array.
For instance, an array of objects can mix objects
with different fields (e.g., the first objects of the
Exercises array in Figure 2 contains fields that are
missing from the second one). In this work we adopt
a simple representation that, like in [1, 15], considers
the union of the values contained in the array.

We start by giving a “structural” definition of a schema as
a tree, then we reuse it to define the schema of a document
and, in Section 4, the schema of a collection.

Definition 3.3 (Schema). A schema is a directed tree
𝑠 = (𝐹,𝐴) where 𝐹 is a set of fields and 𝐴 is a set of
arcs representing the relationships between arrays and the
contained fields. In particular,

(1) 𝐹 = 𝐹 𝑎𝑟𝑟∪𝐹 𝑝𝑟𝑖𝑚, 𝐹 𝑎𝑟𝑟 is a set of array fields (includ-
ing the root 𝑟 of 𝑠), and 𝐹 𝑝𝑟𝑖𝑚 is a set of primitive
fields;

(2) 𝐴 includes arcs from fields in 𝐹 𝑎𝑟𝑟 to fields in 𝐹 𝑎𝑟𝑟 ∪
𝐹 𝑝𝑟𝑖𝑚.

Each field 𝑓 ∈ 𝐹 has a name, 𝑘𝑒𝑦(𝑓), a unique pathname
(obtained by concatenating the names of the fields along
the path from 𝑟 to 𝑓 , with the exclusion of 𝑟), and a
type, 𝑡𝑦𝑝𝑒(𝑓) (𝑡𝑦𝑝𝑒(𝑓) ∈ {number, string,Boolean} for all
𝑓 ∈ 𝐹 𝑝𝑟𝑖𝑚, 𝑡𝑦𝑝𝑒(𝑓) = array for all 𝑓 ∈ 𝐹 𝑎𝑟𝑟). Given field
𝑓 ̸= 𝑟, we denote with 𝑎𝑟𝑟(𝑓) the array 𝑎 ∈ 𝐹 𝑎𝑟𝑟 such that
(𝑎, 𝑓) ∈ 𝐴.

To define the schema of a specific document we need
to add identifiers to arrays. We denote with 𝑖𝑑(𝑎) the
primitive field that identifies an object within array 𝑎.
Documents always contain an identifier, 𝑖𝑑(𝑟) = id. Con-
versely, array objects may not contain such a field, but still
they can be univocally identified by their positional index
within the array. Therefore, given array 𝑎, 𝑖𝑑(𝑎) can be
recursively defined as the concatenation of 𝑖𝑑(𝑎𝑟𝑟(𝑎)) and
the positional index within 𝑎; it is 𝑘𝑒𝑦(𝑖𝑑(𝑎)) = id and
𝑡𝑦𝑝𝑒(𝑖𝑑(𝑎)) = string.

Definition 3.4 (Schema of a Document). Given doc-
ument 𝑑 ∈ 𝐷, the schema of 𝑑 is the schema 𝑠(𝑑) =
(𝐹 𝑎𝑟𝑟 ∪ 𝐹 𝑝𝑟𝑖𝑚, 𝐴) such that

(1) 𝐹 𝑎𝑟𝑟 includes a field for each array in 𝑑, labelled
with the corresponding key and type, plus a root 𝑟
labelled with the name of 𝐷 and with type array.

Exercises_id
Type
ExCalories

_id
User.FullName

User.Age
StartedOn
Facility.Name
Facility.Chain

SessionType
DurationMins

Sets_id

Reps
Weight

Exercises_id
Type
ExCalories

_id

FirstName
LastName

Date
Gym.Name

Gym.City
SessionType
DurationSecs

Series_id
ExType
Reps
Weight
SeriesCalories

_id
User.FullName
User.FirstName
User.LastName
User.Age
StartedOn
Facility.Name
Facility.Chain
Facility.City
SessionType
DurationMins

Sets_id

Reps
Weight
SetCalories

WS

Sets

Exercises

WS

Series

WS

Sets

Exercises

(a) (b) (c)

Figure 3: The schema of the JSON document in
Figure 2 (a), another schema of the same collection
(c), and the global schema (b)

(2) 𝐹 𝑝𝑟𝑖𝑚 includes (i) a field for each primitive in 𝑑,
and (ii) a field for each 𝑖𝑑(𝑎) with 𝑎 ∈ 𝐹 𝑎𝑟𝑟, 𝑓 ̸= 𝑟;
every field is labelled with its corresponding key and
type (keys of primitives within an object field are
“flattened”, i.e., prefixed with the object’s key);

(3) 𝐴 includes (i) an arc (𝑟, 𝑓) for each field 𝑓 such that
𝑘𝑒𝑦(𝑓) appears as a key in the root level of 𝑑, and
(ii) an arc (𝑎, 𝑓) iff 𝑘𝑒𝑦(𝑓) appears as a key in an
object of array 𝑎.

Example 3.5. Figure 3.a shows the schema of the docu-
ment represented in Figure 2, part of the WorkoutSession
collection (from now on, abbreviated in WS). Each array is
represented as a box, with its child primitives listed below
(numeric primitives are in italics). Object fields are pre-
fixed with the object key (e.g., Facility.Chain). The vertical
lines between boxes represent inter-array arcs, with the
root WS on top. It is 𝑎𝑟𝑟(Exercises.Type) = Exercises and
𝑖𝑑(Exercises) = Exercises. id. □

Given collection 𝐷, we denote with 𝑆(𝐷) the set of
distinct schemas of the documents in 𝐷 (where two fields
in the schemas of two documents are considered equal if
they have the same pathname and the same type).

𝑆(𝐷) =
⋃︁
𝑑∈𝐷

𝑠(𝑑)

Given 𝑠 ∈ 𝑆(𝐷), we denote with 𝐷𝑠 the set of documents
in 𝐷 such that 𝑠(𝑑) = 𝑠.

4 SCHEMA INTEGRATION

The goal of this stage is to integrate the distinct, local
schemas extracted from 𝐷 to obtain a single and compre-
hensive view of the collection, i.e., a global schema, and
its mappings with each local schema. The global schema

can be incrementally built using one of the methodologies
discussed in [2]; for instance, adopting a ladder integra-
tion strategy, by (i) taking one local schema as the global
schema; (ii) iteratively taking each other local schema, find-
ing its mappings onto the global schema, and updating
the global schema accordingly. However, notice that some
mappings may be missed by adopting a purely incremental
strategy (i.e., a second iteration on the local schemas may
be required). A survey of the techniques that can be used
for finding mappings is provided in [3, 18].

A mapping is defined as follows:

Definition 4.1 (Mapping). Given two schemas 𝑠𝑖 and 𝑠𝑗 ,
a mapping from 𝑠𝑖 to 𝑠𝑗 can be either

∙ an array mapping with form ⟨𝑎, 𝑎′⟩, where 𝑎 ∈ 𝐹 𝑎𝑟𝑟
𝑖

and 𝑎′ ∈ 𝐹 𝑎𝑟𝑟
𝑗 ;

∙ a primitive mapping with form ⟨𝑃, 𝑃 ′, 𝜑⟩, where 𝑃 ⊆
𝐹 𝑝𝑟𝑖𝑚
𝑖 , 𝑃 ′ ⊆ 𝐹 𝑝𝑟𝑖𝑚

𝑗 , and 𝜑 is a transcoding function,

𝜑 : 𝐷𝑜𝑚(𝑃) → 𝐷𝑜𝑚(𝑃 ′).

The definition of the global schema for a collection is
based on the inter-schema mappings determined.

Definition 4.2 (Global Schema). Given collection 𝐷 and
the corresponding set of schemas 𝑆(𝐷) = {𝑠1, . . . , 𝑠𝑛}, the
global schema of 𝐷 is a schema 𝑔(𝐷) = (𝐹,𝐴) where

(1) for every 𝑠𝑖 ∈ 𝑆(𝐷) there is a mapping ⟨𝑟𝑖, 𝑟⟩ between
the roots of 𝑠𝑖 and 𝑔(𝐷);

(2) every field 𝑓 in each 𝑠𝑖 is involved in at least one
mapping onto the fields of 𝑔(𝐷);

(3) every field 𝑓 in 𝑔(𝐷) is involved in at least one map-
ping with some 𝑠𝑖.

Example 4.3. Figure 3 shows two sample schemas from
the WS collection (a and c) and the corresponding global
schema 𝑔(𝐷) (b); mappings are represented with dotted
lines. An example of array mapping from local schema (c)
to global schema (b) is

⟨Series,Exercises.Sets⟩
Examples of primitive mappings are

⟨{Date}, {StartedOn}, 𝜑1⟩
⟨{FirstName, LastName}, {User.FullName}, 𝜑2⟩
⟨{Series.ExType}, {Exercise.Type}, 𝜑1⟩

where 𝜑1 is the identity function while 𝜑2 is a function that
concatenates two strings. □

A transcoding function transforms values of a set of
fields into values of another set of fields; it is needed for
each primitive mapping to enable query reformulation in
presence of selection predicates as well as to enable the
results obtained from all documents to be integrated (see
Appendix). On the other hand, array mappings are not
associated to a transcoding function because arrays are
just containers and do not have values themselves.

Due to the already mentioned inter-document variety, a
field 𝑓 of the global schema may not be available in every
local schema (e.g., Facility.Chain is absent in the second
schema in Figure 3); therefore we need a measure of the sup-
port of 𝑓 with respect to the different schemas in collection
𝐷. Intuitively, given the nested structure of documents,
the support of 𝑓 could be defined as the percentage of
times that 𝑓 occurs among the objects of 𝑎𝑟𝑟(𝑓). However,

due to the fact that 𝑓 may occur at different depths in
different documents (e.g., if 𝑓 = Exercises.ExCalories in the
global schema, 𝑎𝑟𝑟(𝑓) is Exercises in the schema of Figure
3.a and Exercises.Sets in the schema of Figure 3.c), this
measure must be computed locally to each schema and
then aggregated to get a global measure. Thus, we define
the global support of 𝑓 as the weighted average of the local
supports calculated on the distinct schemas.

Definition 4.4 (Local Support of a Field). Given a docu-
ment schema 𝑠 = (𝐹,𝐴), the local support of a field 𝑓 ∈ 𝐹
is recursively defined as:

𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑓, 𝑠) =

{︃
1, if 𝑓 ≡ 𝑟∑︀

𝑠∈𝐷𝑠 𝑝𝑒𝑟𝑐(𝑓) · 𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑎𝑟𝑟(𝑓), 𝑠), otherw.

where 𝑝𝑒𝑟𝑐(𝑓) is the percentage of objects of 𝑎𝑟𝑟(𝑓) which
include 𝑓 .

Note that the support of 𝑓 is weighted on the support
of its array 𝑎𝑟𝑟(𝑓); this is because, for instance, 𝑓 may
occur in every object of 𝑎𝑟𝑟(𝑓) but 𝑎𝑟𝑟(𝑓) may be missing
for some object of 𝑎𝑟𝑟(𝑎𝑟𝑟(𝑓)). As a result, it is always
𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑓, 𝑠) ≤ 𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑎𝑟𝑟(𝑓), 𝑠).

Definition 4.5 (Global Support of a Field). Given collec-
tion 𝐷 and the set of distinct schemas 𝑆(𝐷), the global
support of a field 𝑓 ∈ 𝐹 is:

𝑔𝑙𝑜𝑆𝑢𝑝𝑝(𝑓) =
∑︁

𝑠∈𝑆(𝐷)

𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑓, 𝑠) · |𝐷
𝑠|

|𝐷|

where |𝐷𝑠| is the number of documents with schema 𝑠 and
|𝐷| is the overall number of documents.

Example 4.6. In our working example, let the collection
have 100 documents (i.e., |𝐷| = 100) evenly distributed
between 𝑠1 and 𝑠2 (i.e., |𝐷𝑠1 | = |𝐷𝑠2 | = 50). Let 𝑓 =
Facility.City occur 40 times in 𝑠1 and 20 times in 𝑠2; then,
𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑓, 𝑠1) =

40
50

*1 = 0.8, 𝑙𝑜𝑐𝑆𝑢𝑝𝑝(𝑓, 𝑠2) =
20
50

*1 = 0.4
and 𝑔𝑙𝑜𝑆𝑢𝑝𝑝(𝑓) = 0.8 * 0.5 + 0.4 * 0.5 = 0.6. □

5 FD ENRICHMENT

The goal of this stage is to propose a multidimensional view
of the global schema to enable OLAP analyses. The main
informative gap to be filled to this end is the identification
of hierarchies, which in turn relies on the identification of
FDs between fields in the global schema.

While in relational databases FDs are represented at the
schema level by means of primary and referential integrity
constraints, the same is not true in DODs. Yet, identifiers
are present in DODs: each collection has its (explicit) id
field and, as discussed in Section 3, every nested object
has its own (implicit) identifier (i.e., 𝑖𝑑(𝑎) with 𝑎 ∈ 𝐹 𝑎𝑟𝑟).
The presence of these identifiers implies the existence of
some FDs, that we call intensional as they can be derived
from the global schema, without looking at the data. In
particular, given global schema 𝑔(𝐷) = (𝐹 𝑎𝑟𝑟 ∪ 𝐹 𝑝𝑟𝑖𝑚, 𝐴)
and array 𝑎 ∈ 𝐹 𝑎𝑟𝑟, we can infer that:

∙ 𝑖𝑑(𝑎) → 𝑓 for every 𝑓 ∈ 𝐹 𝑝𝑟𝑖𝑚 such that 𝑎𝑟𝑟(𝑓) = 𝑎,
i.e., the identifier of 𝑎 determines the value of every
primitive in 𝑎 (e.g., id → SessionType);

∙ if 𝑎 ̸= 𝑟, then 𝑖𝑑(𝑎) → 𝑖𝑑(𝑎𝑟𝑟(𝑎)) —i.e., the iden-
tifier of 𝑎 determines the identifier of 𝑎𝑟𝑟(𝑎) (e.g.,
Exercises. id → id); this is trivial, since 𝑖𝑑(𝑎𝑟𝑟(𝑎)) is
part of 𝑖𝑑(𝑎).

In practice, additional FDs can exist between primitive
nodes, though they cannot be inferred from the schema;
so, they can only be found by checking the data. More
precisely, since DODs may contain incomplete and faulty
data, we have to look for approximate FDs (AFDs), i.e.,
FDs that “mostly” hold on data —like done for instance
in [6, 10, 23].

Definition 5.1 (Approximate Functional Dependency).
Given two fields 𝑓 and 𝑓 ′, let 𝑎𝑐𝑐(𝑓, 𝑓 ′) ∈ [0..1] denote the
ratio between the number of unique values of 𝑓 and the
number of unique values of (𝑓, 𝑓 ′). We will say that AFD
𝑓 ⇝ 𝑓 ′ holds if 𝑎𝑐𝑐(𝑓, 𝑓 ′) ≥ 𝜖, where 𝜖 is a user-defined
threshold [14].

To detect AFDs and create hierarchies accordingly, some
approaches that were recently devised in the literature
(e.g., [10] and [6]) can be reused, possibly coupled with
traditional approaches to multidimensional modeling based
on FDs (e.g., [23]). Interestingly, in [6] the number of checks
to be made for AFD detection is effectively reduced thanks
to the intensional FDs provided by the global schema.
Note that, differently from [6], in our approach we consider
inter-document variety, so the queries that check for AFDs
must be reformulated from the global schema on each local
schema. How this can be done is discussed in the Appendix.

Definition 5.2 (Dependency Graph). Given the global
schema 𝑔(𝐷) = (𝐹,𝐴) and an (acyclic) set of (A)FDs Γ, the
dependency graph is a couple ℳ = (𝐹 𝑝𝑟𝑖𝑚,⪰) where 𝐹 𝑝𝑟𝑖𝑚

is the set of primitive nodes in 𝐹 and ⪰ is a roll-up partial
order of 𝐹 𝑝𝑟𝑖𝑚 derived from Γ. In particular, 𝑓𝑗 ⪰ 𝑓𝑘 (i.e.,
𝑓𝑗 is a predecessor of 𝑓𝑘 in ⪰) if either 𝑓𝑗 ⇝ 𝑓𝑘 ∈ Γ or
𝑓𝑗 → 𝑓𝑘 ∈ Γ.

The differences between a dependency graph and the
global schema it is derived from are that

(1) the global schema is a tree, the dependency graph is
a DAG;

(2) arrays are not present in the dependency graph, but
their id’s are;

(3) arcs express (A)FDs in the dependency graph, syn-
tactical containment in the global schema;

(4) differently from the global schema, the dependency
graph can include arcs between primitive fields.

Example 5.3. Figure 4 shows the dependency graph
for our working example. Each primitive field is repre-
sented as a circle whose color is representative of the field
global support (the lighter the tone, the lower the sup-
port). Identifiers (e.g., id) are shown in bold. Directed
arrows are representative of the (A)FDs in Γ; for instance,
it is id → Facility.Name (FDs are shown in black) and
Facility.Name ⇝ Facility.Chain (AFDs are shown in gray).
Note that, in this case, the dependency graph is a tree, be-
cause in the global schema of Figure 3.b arrays are nested
within each other. A different situation is the one shown
in Figure 5, where the collection includes documents with
two arrays at the same level, so the dependency graph is
not a tree. □

Exercises.
Type

Exercises.
Sets.Weight

Exercises.
Sets.Reps

_id

User.
FullName

SessionType

Facility.
Name

Facility.City Facility.ChainUser.Age

User.
FirstName

User.
LastName

DurationMins

Exercises._id

Exercises.Sets. _id

Exercises.
ExCalories

Exercises.Sets.
SetCalories

Legend

level (supp=1)

level (supp<1)

FD (acc=1)

AFD (acc<1)

Figure 4: Dependency graph for the global schema
in Figure 3.b

Exercises.
Type

Exercises.
Sets.Reps

_id

DurationMins SessionType

Exercises._id

Exercises.Sets._id

Classes._id

Classes.Name

[{ "_id" : ObjectId("..."),
"SessionType" : "ClassProgram",
"DurationMins": 150,
"Exercises" : [. . .] ,
"Classes" :
[{ "Name" : "Combat",

. . . },
{ "Name" : "KettleBell",
. . . }

] ,
. . .
} ,

. . .
]

Figure 5: Excerpt of the dependency graph (left)
in presence of alternative documents (right)

6 QUERYING

In this section we describe the final querying stage. We
start by providing the definition of an OLAP query and dis-
cussing its correctness from a multidimensional standpoint
(Section 6.1). Then, we discuss the execution of a query,
which mainly involves its translation into the MongoDB
language and the reformulation from the global schema
to the local schemas (Section 6.2). Finally, we introduce a
set of indicators to evaluate a query in the context of an
OLAP session (Section 6.3).

6.1 Query Formulation

First of all, we define an OLAP query as follows.

Definition 6.1 (OLAP query). Given dependency graph
ℳ = (𝐹 𝑝𝑟𝑖𝑚,⪰), an OLAP query on ℳ is a triple 𝑞 =
⟨𝐺, 𝑝,𝑚,𝜙⟩ where:

∙ 𝐺 is the query group-by set, i.e., a non-empty set of
fields in 𝐹 𝑝𝑟𝑖𝑚 such that for all couples 𝑓𝑗 , 𝑓𝑘 in 𝐺
it is 𝑓𝑗 ̸⪰ 𝑓𝑘;

∙ 𝑝 is an (optional) selection predicate; it is a conjunc-
tion of Boolean predicates, each involving a field in
𝐹 𝑝𝑟𝑖𝑚;

∙ 𝑚 ∈ 𝐹 𝑝𝑟𝑖𝑚 is the query measure, i.e., the numerical
field to be aggregated;

∙ 𝜙 is the operator to be used for aggregation (e.g.,
avg, sum);

Algorithm 1 Validity check of an OLAP query

Input a dependency graph ℳ = (𝐹𝑝𝑟𝑖𝑚,⪰), an OLAP query 𝑞 =
⟨𝐺, 𝑝,𝑚, 𝜙⟩

Output a validity status
1: 𝑤𝑎𝑟𝑛← false
2: for each 𝑓 ∈ 𝐺 do
3: if 𝑖𝑑(𝑎𝑟𝑟(𝑚)) ̸⪰ 𝑖𝑑(𝑎𝑟𝑟(𝑓)) then
4: 𝑤𝑎𝑟𝑛← true ◁ Disjointness failed

5: if 𝑔𝑙𝑜𝑆𝑢𝑝𝑝(𝑓) < 1 then
6: 𝑤𝑎𝑟𝑛← true ◁ Completeness failed

7: if 𝑤𝑎𝑟𝑛 then
8: return “warning”
9: else
10: return “valid”

∙ there exists in ℳ one single field 𝑓 such that 𝑓 ⪰ 𝑓
for all other fields mentioned in 𝑞 (either in 𝐺, 𝑝, or
𝑚).

We will refer to all the fields in 𝐺 and 𝑝 as the query
levels. Field 𝑓 is called the fact of 𝑞 (denoted 𝑓𝑎𝑐𝑡(𝑞)) and
corresponds to the coarsest granularity of ℳ on which
𝑞 can be formulated. An example of a case in which a
fact cannot be determined is the one in Figure 5, with
𝐺 = {Classes.Name,Exercises.Type}.

Example 6.2. The following query, 𝑞1, measures the av-
erage amount of weight lifted by elderly athletes per city
and type of exercise:

𝑞1 = ⟨ {Facility.City,Exercises.Type},
User.Age ≥ 60,Exercises.Sets.Weight, avg ⟩

It is 𝑓𝑎𝑐𝑡(𝑞1) = Exercises.Sets. id. □

In [19] the authors outline the constraints that must hold
for an OLAP query to be considered well-formed, namely,
the base integrity constraint (stating that the levels in the
group-by set must be functionally independent on each
other) and the summarization integrity constraint [16],
which in turn requires disjointness (the measure instances
to be aggregated are partitioned by the group-by instances),
completeness (the union of these partitions constitutes the
entire set), and compatibility (the aggregation operator
chosen for each measure is compatible with the type of
that measure). Remarkably, Definition 6.1 already ensures
that queries meet the base integrity constraint (because the
query group-by set cannot include fields related by (A)FDs).
As to the summarization integrity constraint, since the goal
of our approach is to enable an immediate querying of data
with no cleaning beforehand, we adopt a “soft” approach
to avoid being too restrictive. So, after each query has been
formulated by the user, it undergoes a check (sketched in
Algorithm 1) that can possibly return some warnings to
inform the user of potentially incorrect results. Specifically,
the disjointness constraint ensures that the granularity of
the measure is not coarser than the one of the group-by set
levels (line 3); if this is false, the same instance of 𝑚 will
be double counted for multiple instances of the group-by
set [19]). The completeness constraint ensures that the
levels in the group-by set have full global support (line 5);
this constraint is easily contradicted as it clashes with the
schemaless property of DODs. Finally, the compatibility
constraint is not considered at all since its verification
would require to properly categorize measures (i.e., flow,
stock and value-per-unit) and levels (i.e, temporal and non-
temporal), but these information can hardly be inferred
from the schema or even provided by the user [6].

Example 6.3. Query 𝑞1 passes the validity check of
Algorithm 1 with a completeness warning, because
𝑔𝑙𝑜𝑆𝑢𝑝𝑝(Facility.City) < 1. On the other hand, 𝑞1 meets
the disjointness constraint because

𝑖𝑑(𝑎𝑟𝑟(Facility.City)) = id

𝑖𝑑(𝑎𝑟𝑟(Exercises.Type)) = Exercises. id

𝑖𝑑(𝑎𝑟𝑟(Exercises.Sets.Weight)) = Exercises.Sets. id

Exercises.Sets. id ⪰ id

Exercises.Sets. id ⪰ Exercises. id

□

As previously mentioned, a query fails the completeness
constraint if one or more levels in the group-by set do
not have full support. This issue is strictly related to the
one of incomplete hierarchies in data warehouse design.
The related work proposes three alternative strategies to
replace missing values in a hierarchy level 𝑙𝑗 : balancing
by exclusion (i.e., replacing all missing values with a sin-
gle value “Other”), downward balancing (replacing with
values from the closest level 𝑙𝑘 such that 𝑙𝑘 ⪰ 𝑙𝑗), and
upward balancing (replacing with values from the closest
level 𝑙𝑘 such that 𝑙𝑗 ⪰ 𝑙𝑘) [12]. Whereas they are originally
meant to be applied when populating a data warehouse
from an operational source, these strategies can be directly
applied at query time, e.g., by using the $ifNull operator
in MongoDB, which allows to replace a missing value in
a field with a custom value or with the value of another
field. Thus, when a query fails the completeness constraint,
we ask the user to indicate the desired strategy to replace
missing values in the levels without full support.

6.2 Query Execution

Once a query has been formulated by the user on the
dependency graph corresponding to the global schema, it
has to be reformulated on each local schema to effectively
cope with inter-document variety. How this can be done
is discussed in the Appendix. In the remainder to this
subsection we explain how, after reformulation, each single
query obtained can be translated to MongoDB.

OLAP queries are translated to MongoDB according
to its aggregation framework, which allows to declare a
multi-stage pipeline of transformations to be carried out on
the documents of a collection. The most important stages
are: $match (to apply predicate selections), $project (to
apply transformations to the single fields), $unwind (to
unfold an array by creating a different document for every
object inside the array), $group (to group the documents
and calculate aggregated values).

Given query 𝑞 = ⟨𝐺, 𝑝,𝑚, 𝜙⟩ on ℳ and global schema
𝑔(𝐷) = (𝐹,𝐴), the translation of 𝑞 into the MongoDB
language is done as follows:

(1) For every array 𝑎 in 𝑔(𝐷), 𝑎 ̸= 𝑟, for which there is a
field 𝑓 mentioned in 𝑞 such that 𝑓𝑎𝑐𝑡(𝑞) ⪰ 𝑖𝑑(𝑎) ⪰ 𝑓 ,
an $unwind stage is defined; the order of this stages
reflects the order of the arrays in 𝑔(𝐷), beginning
from the one closest to 𝑟.

(2) If 𝑝 ̸= ∅, a $match stage is defined listing every
selection predicate.

(3) A $project stage is defined to keep only the fields
that are required for the following stages, i.e., 𝑚
and every group-by level. If there is one (or more)
incomplete level 𝑓 ∈ 𝐺 (i.e., such that 𝑔𝑙𝑜𝑆𝑢𝑝𝑝(𝑓) <
1), the replacement of the missing values of 𝑓 is
done at this stage, in accordance with the balancing
strategy chosen by the user. Additionally, a new
field named balanced is added and valued true if
any of the projected fields has been affected by the
balancing strategy, false otherwise.

(4) A $group stage is defined including the fields that
identify a group (i.e., every level 𝑓 ∈ 𝐺 plus the
balanced field), the measure 𝑚 to be aggregated,
and its aggregation functions 𝜙. Additionally, two
new measures named count and count-m are added to
count, respectively, the number of aggregated objects
and the number of aggregated objects that actually
contain a value for 𝑚.

The query-independent fields balanced, count, and count-m
are needed to calculate the indicators of the query, which
will be discussed in Section 6.3.

Example 6.4. The MongoDB query obtained from 𝑞1
considering a downward balancing strategy is the following.

db.WS.aggregate({
{ $unwind: "$Exercises" },
{ $unwind: "$Exercises.Sets" },
{ $match: { "User.Age": { $gte: 60 } } },
{ $project: {
"Facility.City": { $ifNull:

["$FacilityCity","$FacilityName"] }
},
"Exercises.Type": 1,

"Exercises.Sets.Weight": 1,

"balanced": {
$cond: ["$FacilityCity",false,true]

}
} },
{ $group: {
" id": {

"FacilityCity","$FacilityCity",
"ExercisesType","$Exercises.Type",
"balanced","$balanced"

},
"Exercises.Sets.Weight": {

$avg: "$Exercises.Sets.Weight"
},
"count": { $sum: 1 },
"count-m": { $sum: {

$cond: ["$Exercises.Sets.Weight",1,0]
} }

} }
}

□

6.3 Query Evaluation and Evolution

In our schemaless scenario, the evaluation of the query
results cannot transcend from the evaluation of the query
itself. In particular, it is important to understand the
coverage of the query with respect to the collection (which
may be influenced by the support of the fields, the quality of

the mappings, and the selectivity of the selection predicate),
as well as the reliability of the results. For these reason,
we introduce some indicators to evaluate the quality of
an OLAP query after it has been executed. Let 𝐸 be the
set of distinct groups returned by query 𝑞; each group
𝑒 ∈ 𝐸 includes |𝑒| objects (measured by the count field as
of Section 6.2), of which |𝑒|𝑚 (measured by the count-m
field) have a value for 𝑚.

Selectivity. This indicator measures the selectivity of
the selection predicates in 𝑞:

𝑠𝑒𝑙(𝑞) =

∑︀
𝑒∈𝐸 |𝑒|

|𝑓𝑎𝑐𝑡(𝑞)|
Completeness. This indicator is built on the concept

of completeness previously introduced. The idea is to show
the percentage of the queried objects that have not been
affected by the balancing strategies (which steps in when
the value of a level is null or does not exists):

𝑐𝑜𝑚𝑝𝑙(𝑞) =

∑︀
𝑒∈𝐸,!𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑒) |𝑒|∑︀

𝑒∈𝐸 |𝑒|

where 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑒) is true if 𝑒 has been balanced, false
otherwise (as stated by the balanced field introduced in
Section 6.2).

Group precision. While the absence of full support on
levels can be overcome by the balancing strategies, nothing
can be done when it involves the query measure. In this
case, the precision of the aggregated value returned for
each group is determined by the percentage of aggregated
objects that actually contain a value for the measure. Thus,
the precision of a group 𝑒 is

𝑝𝑟𝑒𝑐(𝑒) =
|𝑒|𝑚
|𝑒|

Consistently with an OLAP scenario, a query can evolve
into another with the application of an OLAP operation;
the resulting sequence of queries is called an OLAP session.
In particular, the permitted operations are the following
ones.

∙ The replacement of the query measure with a differ-
ent one, or the selection of a different aggregation
operator. If a new measure is chosen, a new validity
check is required to verify whether the disjointness
requirement still holds.

∙ The addition/removal/modification of a selection
predicate. This operation has no impact on the va-
lidity of the query.

∙ The roll-up (or drill-down) of one of the group-by
levels, which leads to replacing a level 𝑓 with a level
𝑓 ′ such that 𝑓 ⪰ 𝑓 ′ (or 𝑓 ′ ⪰ 𝑓).

Roll-ups and drill-downs imply a navigation of the depen-
dency graph on the relationships between 𝑓 and 𝑓 ′, which
represent (A)FDs. From a multidimensional standpoint,
the navigation of an AFD with accuracy lower than 1 leads
to a violation of the roll-up semantics, i.e., the results of
the second query will not be a correct composition (or de-
composition) of the results of the first query. This happens
because the FD is not strictly true in some cases, which
compromises the correctness of the aggregation. Thus, we
evaluate the impact of these operations by means of another
indicator:

Accuracy. This indicator quantifies the accuracy of the
aggregated results of a query during an OLAP session with
respect to the results obtained from the previous query.
Given query 𝑞, let 𝑞′ be the query resulting from a roll-up
(or drill-down) of 𝑞 from level 𝑓 to 𝑓 ′, and let Γ′ ⊆ Γ be
the set of AFDs in the path between 𝑓 and 𝑓 ′. Then, the
accuracy of 𝑞′ with respect to 𝑞 is

𝑎𝑐𝑐(𝑞′, 𝑞) = 1−
∏︁
𝛾∈Γ′

𝑎𝑐𝑐(𝛾)

7 RELATED LITERATURE

The rise of NoSQL stores has captured a lot of interest
from the research community, which has proposed a vari-
ety of approaches to deal with the schemaless feature. In
particular, most of the recent works focus on the widely
adopted JSON format and on key/value repositories in
general.

A first distinction lies in how each work approaches the
problem of schema discovery. Some works aim at provid-
ing a comprehensive view of the schema variety in JSON
documents; e.g., [20] proposes a reverse engineering pro-
cess to derive a versioned schema model, where multiple
versions of the same field are created for every intensional
variation detected in the collection. Other works provide
a more concise representation that tends to hide schema
variety. For instance, [24] couples a clustering technique
with schema matching techniques to identify a skeleton
containing the smallest set of core fields, while [1] adopts
regular expressions to model the variability of a field type.
Our work is closer to the latter group, although our global
schema captures the entire variety of fields and enables
the user to choose the fields to focus on, while assisting
her with quality indicators of the final queries. Several free
tools have also been released to perform schema detection
on different platforms (MongoDB, ElasticSearch, Couch-
base, Apache Drill), although they are mostly limited to
collecting the union of the fields. In a previous work [9] we
followed a different approach and devised a schema profiling
algorithm that explains the schema variety in a collection
in terms of the extensional values found in the documents
(e.g., it could find that different schemas depend on the
different values for SessionType).

The most distinguishing feature of our approach is the
definition of a multidimensional representation of the schema
in order to enable OLAP analyses directly on the DOD.
From this point of view, a work closely related to ours is
[6], which proposes a schema-on-read approach for OLAP
queries over DODs. This is done by building a multidi-
mensional schema from the union of fields found in the
collection; then, the OLAP experience is proposed at query
time, where suggestions for roll-up and drill-down opera-
tions are provided given the query formulated by the user.
Differently from our approach, [6] exclusively focuses on
the multidimensional representation of JSON data and
overlooks the schemaless property of DODs: in particular,
inter-document variety is considered only in terms of fields
with varying support (thus no schema integration is per-
formed), and no support is given to the user to evaluate
the coverage and accuracy of queries. Also, AFD detection
is carried out on demand only after the user has written a
query, thus it only impacts the OLAP experience. Another

similar work is [7], which proposes a MapReduce-based
algorithm to compute OLAP cubes on columnar stores.
The approach is meant to work on a data warehouse (i.e.,
a database already comprising facts and dimensions); be-
sides, it is limited to the computation of the cubes, while
the OLAP querying aspect is mentioned as future work.
Also [4] aims at delivering the OLAP experience, but its
operational data source is a graph-based database, whose
data model is entirely different from the one of DODs.
Finally, [13] builds on [24] to propose a complete architec-
ture that ingests NoSQL data and provides schema-on-read
functionalities, but without mentioning multidimensional
enrichment and OLAP analyses.

Since schema variety in a collection often consists of dif-
ferent representation of the same data (e.g., due to schema
evolution or to the ingestion of data from different sources),
the problem of schema discovery is often coupled with
schema matching algorithms. [18] provides a comprehen-
sive summary of the different techniques envisioned for
generic schema matching (which ranges from the relational
world to ontologies and XML documents); it is mentioned
as a baseline reference in [24], while [8] starts from there to
define its own algorithm for schema matching on NoSQL
stores based on subtree matching. In [21] a tool is pre-
sented to automatically identify evolution in the schema
of instances in NoSQL databases: once a schema change is
detected, the tool either updates the database instances to
enforce schema consistency or provides a code to deal with
this issue on the application side. This structured approach
differs from our schema-on-read scenario, which transpar-
ently handles schema differences and avoids to update the
original data.

Several works have focused on bringing NoSQL back to
the relational world. [17] discusses an approach to provide
schema-on-read capabilities for flexible schema data stored
on RDBMSs; this is done by mapping the document struc-
ture on different tables and by providing a data guide as
the union of every possible field at any level. Differently
from our approach, no advanced schema matching mecha-
nism is provided. [5] proposes an algorithm to provide a
generic relational encoding of arbitrary JSON documents;
in particular, documents are stored in ternary relations
that contain rows for every key in every document (i.e.,
each row stores the document id, the key name, and the
key value). A more sophisticated algorithm is proposed in
[8], where normalized relational schemas are automatically
generated from NoSQL stores. It relies on AFD detection
to build relationships between entities and it provides its
own schema matching algorithm. Based on this approach, a
vision for a new paradigm called adaptive schema databases
has been proposed in [22]; it is a conceptual framework that
devises global schemas as time-evolving and user-dependent
relational views that are mapped to local schemas via prob-
abilistic mappings —whereas mappings are deterministic
in our approach.

8 CONCLUSIONS

In this paper we have presented an original approach to
OLAP on DODs. Our current implementation relies on a
prototype that separately handles the different stages. In

Table 1: Execution times for schema extraction

records DB size Time

5 K 2 MB 4 sec
50 K 20 MB 33 sec
500 K 197 MB 6 min
5 M 1.7 GB 60 min

particular, we use a customized version of the free tool va-
riety.js for schema extraction on MongoDB collections; we
rely on the BIN framework [11] to handle schema mappings
and query reformulation (see Appendix); AFD detection
is carried out by a simple Javascript algorithm, which de-
termines the presence of AFDs between couples of fields
by means of count distinct queries, adopting a smart ex-
ploration strategy that reduces the search space like in [6];
finally, OLAP queries are manually formulated. Our refer-
ence real-world collection is stored on a single machine (i7
CPU, 32GB RAM) and contains 5M workout sessions with
6 different local schemas (mostly due to missing attributes),
35M exercises and 85M sets. Table 1 shows the execution
times for the schema extraction phase. Times are consis-
tent with those of related approaches that perform schema
extraction on JSON datasets, such as [1]; also, we note that
time increases linearly with the size of the database. Given
the low number of schemas, mappings have been manually
defined. A sample OLAP query 𝑞 that groups documents
by Facility.Chain (global support 0.38) to obtain the aver-
age amount of Exercises.ExCalories (global support 0.69)
returns the following indicator values: 𝑠𝑒𝑙(𝑞) = 1 (as there
is no filtering), 𝑐𝑜𝑚𝑝𝑙(𝑞) = 0.33 (lower than the group-by
set support), and an average 𝑝𝑟𝑒𝑐(𝑒) of 0.99. The time for
executing 𝑞 on MongoDB is about 3 minutes. Drilling down
to Facility.Name (global support 1) increases 𝑐𝑜𝑚𝑝𝑙(𝑞) to 1,
while the accuracy of the new query with respect to 𝑞 is
0.98.

As future work, we plan to build a fully-functioning
implementation, as well as to thoroughly evaluate the per-
formance and scalability of the approach. Also, we plan to
switch from a single machine to a multi-node cluster and
to consider schema profiling techniques [9] to enhance the
support given to the user at query time.

APPENDIX

Not only inter-schema mappings enable the definition of
a global schema, they also allow a MongoDB query for-
mulated on the global schema to be reformulated on each
local schema, which is necessary in two situations: (i) when
the collection is queried to detect AFDs (Section 5) and
(ii) when the user issues an OLAP query on the collection
(Section 6). The query reformulation algorithm we adopt
here is the one proposed by [11] in the context of business
intelligence networks (BINs); it enables the rewriting of
a query from a source multidimensional schema to a tar-
get multidimensional schema and has been proved to be
complete and provide all certain answers to the query. In
this section we discuss why that algorithm can be reused
to safely rewrite queries in both situations (i) and (ii). To
this end we need to prove that the data schemas, the inter-
schema mappings, and the queries which we consider in

our work are a particular case of those used as a reference
in the BIN context.
Data schema. The reference schema in the BIN context is
a classical multidimensional schema featuring a fact, a set
of hierarchies (each made of levels), and a set of measures
(each coupled with an aggregation operator). The depen-
dency graph of Definition 5.2 can be thought of as a sort
of “multi-fact” multidimensional schema with no explicit
distinction between levels and measures. However, when an
OLAP query is formulated as in Definition 6.1, exactly one
fact is implicitly determined, group-by levels are explicitly
distinguished from measures, and an aggregation operator
is coupled to each measure. So, from the data schema point
of view, there is no difference between the context of BINs
and the one of this paper.
Mappings. The primitive mappings of Definition 4 can be
expressed, according to the BIN terminology, using either
same or equi-level predicates. same predicates are used for
measures, and can be annotated with an expression; since
in Definition 6.1 measures are required to be numerical,
the associated transcodings must be translatable into an
expression. equi-level predicates are used for levels, and can
be directly annotated with a transcoding. Remarkably, in
[11] these two types of mappings are called exact since they
enable non-approximate query reformulations. Note that
array mappings are not used for query reformulation but
only for determining the global schema, so they are not
considered here.
Queries. An OLAP query (Definition 6.1) has a group-by
set, a (conjunctive) selection predicate, and a measure. A
BIN query has a group-by set, a (conjunctive) selection
predicate, and an expression involving one or more mea-
sures. By simply picking a single measure and the identity
expression, situation (ii) is addressed. As to situation (i),
i.e., querying aimed at checking AFDs, we remark that the
query for checking AFD 𝑙 ⇝ 𝑙′ can be expressed as a BIN
query with group-by set {𝑙, 𝑙′} and a dummy measure, on
whose result a simple COUNT DISTINCT is then executed.

Based on the considerations above, we can state that
an OLAP query of the global schema can be correctly
reformulated into a set of local queries, one on each local
schema. Then, each local query is separately executed
on the DOD; specifically, each query must target only
the documents that belong to a specific local schema 𝑠.
This is done in two steps. First, the information about
which document has which schema (obtained in the schema
extraction stage) is stored in a different collection (called
WorkoutSession-schemas in our example) in the following
form: a document is created for every schema 𝑠 ∈ 𝑆(𝐷),
containing an array ids with the id of every document
𝑑 ∈ 𝐷𝑠. Then, the query on schema 𝑠 is executed by joining
it with the list of identifiers in WorkoutSession-schemas).
Finally, a post-processing activity is required to integrate
the results coming from the different local queries.

REFERENCES
[1] Mohamed Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo,

Giorgio Ghelli, and Carlo Sartiani. 2017. Schema Inference for
Massive JSON Datasets. In Proc. EDBT. Venice, Italy, 222–
233.

[2] Carlo Batini, Maurizio Lenzerini, and Shamkant Navathe. 1986.
A Comparative Analysis of Methodologies for Database Schema

Integration. Comput. Surveys 18, 4 (1986), 323–364.
[3] Philip A Bernstein, Jayant Madhavan, and Erhard Rahm. 2011.

Generic schema matching, ten years later. Proc. VLDB En-
dowment 4, 11 (2011), 695–701.

[4] Arnaud Castelltort and Anne Laurent. 2014. NoSQL Graph-
based OLAP Analysis. In Proc. KDIR. Rome, Italy, 217–224.

[5] Craig Chasseur, Yinan Li, and Jignesh M. Patel. 2013. Enabling
JSON Document Stores in Relational Systems. In Proc. WebDB.
New York, USA, 1–6.

[6] Mohamed Lamine Chouder, Stefano Rizzi, and Rachid Chalal.
In press. EXODuS: Exploratory OLAP over Document Stores.
Inf. Syst. (In press).

[7] Khaled Dehdouh. 2016. Building OLAP Cubes from Columnar
NoSQL Data Warehouses. In Proc. MEDI. Almeŕıa, Spain.

[8] Michael DiScala and Daniel J. Abadi. 2016. Automatic Genera-
tion of Normalized Relational Schemas from Nested Key-Value
Data. In Proc. SIGMOD. San Francisco, USA, 295–310.

[9] Enrico Gallinucci, Matteo Golfarelli, and Stefano Rizzi. 2017.
Schema Profiling of Document Stores. In Proc. SEBD. Squillace
Lido, Italy, 1–8.

[10] Matteo Golfarelli, Simone Graziani, and Stefano Rizzi. 2016.
Starry Vault: Automating Multidimensional Modeling from
Data Vaults. In Proc. ADBIS. 137–151.

[11] Matteo Golfarelli, Federica Mandreoli, Wilma Penzo, Stefano
Rizzi, and Elisa Turricchia. 2012. OLAP query reformulation in
peer-to-peer data warehousing. Inf. Syst. 37, 5 (2012), 393–411.

[12] Matteo Golfarelli and Stefano Rizzi. 2009. Data warehouse
design: Modern principles and methodologies. McGraw-Hill,
Inc.

[13] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Con-
stance: An Intelligent Data Lake System. In Proc. SIGMOD.
San Francisco, USA, 2097–2100.

[14] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf
Aboulnaga. 2004. CORDS: Automatic Discovery of Correlations
and Soft Functional Dependencies. In Proc. SIGMOD. 647–
658.

[15] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2013. Discov-
ering implicit schemas in JSON data. In Proc. ICWE. 68–83.

[16] Hans-Joachim Lenz and Arie Shoshani. 1997. Summarizability
in OLAP and Statistical Data Bases. In Proc. Ninth Inter-
national Conference on Scientific and Statistical Database
Management.

[17] Zhen Hua Liu and Dieter Gawlick. 2015. Management of Flexi-
ble Schema Data in RDBMSs - Opportunities and Limitations
for NoSQL. In Proc. CIDR. Asilomar, USA.

[18] Erhard Rahm and Philip A. Bernstein. 2001. A survey of
approaches to automatic schema matching. VLDB J. 10, 4
(2001).

[19] Oscar Romero and Alberto Abelló. 2006. Multidimensional
Design by Examples. In Proc. DaWaK. Krakow, Poland, 85–
94.

[20] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús Garćıa
Molina. 2015. Inferring Versioned Schemas from NoSQL
Databases and Its Applications. In Proc. ER. 467–480.

[21] Stefanie Scherzinger, Eduardo Cunha de Almeida, Thomas
Cerqueus, Leandro Batista de Almeida, and Pedro Holanda.
2016. Finding and Fixing Type Mismatches in the Evolution of
Object-NoSQL Mappings. In Proc. Workshops EDBT/ICDT.

[22] William Spoth, Bahareh Sadat Arab, Eric S. Chan, Dieter
Gawlick, Adel Ghoneimy, Boris Glavic, Beda Christoph Ham-
merschmidt, Oliver Kennedy, Seokki Lee, Zhen Hua Liu, Xing
Niu, and Ying Yang. 2017. Adaptive Schema Databases. In
Proc. CIDR. Chaminade, USA.

[23] Boris Vrdoljak, Marko Banek, and Stefano Rizzi. 2003. Design-
ing Web Warehouses from XML Schemas. In Proc. DaWaK.
89–98.

[24] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao, Oktie Hassan-
zadeh, Jia Zou, and Chen Wangz. 2015. Schema management
for document stores. Proc. VLDB Endowment 8, 9 (2015),
922–933.

