
Enabling Global Big Data Computations
Damianos Chatziantoniou

Athens University of Economics and Business
Athens, Greece

damianos@aueb.gr

Panos Louridas
Athens University of Economics and Business

Athens, Greece
louridas@aueb.gr

ABSTRACT
Most analytics projects focus on the management of the 3Vs of
big data and use specific stacks to support this variety. However,
they constrain themselves to “local” data, data that exists within
or “close” to the organization, or external data imported to lo-
cal systems. And yet, as it has been recently pointed out, “the
value of data explodes when it can be linked with other data.”
In this paper we present our vision for a global marketplace of
analytics—either in the form of per-entity metrics or per-entity
data, provided by globally accessible data management tasks—
where a data scientist can pick and combine data at will in her
data mining algorithms, possibly combining with her own data.
The main idea is to use the dataframe, a popular data structure
in R and Python. Currently, the columns of a dataframe contain
computations or data found within the data infrastructure of the
organization. We propose to extend the concept of a column. A
column is now a collection of key-value pairs, produced any-
where by a remotely accessed program (e.g., an SQL query, a
MapReduce job, even a continuous query.) The key is used for
the outer join with the existing dataframe, the value is the con-
tent of the column. This whole process should be orchestrated by
a set of well-defined, standardized APIs. We argue that the pro-
posed architecture presents numerous challenges and could be
beneficial for big data interoperability. In addition, it can be used
to build mediation systems involving local or global columns.
Columns correspond to attributes of entities, where the primary
key of the entity is the key of the involved columns.

1 INTRODUCTION
Currently, most big data deployments follow a highly ad hoc, non-
disciplined approach, entailing a high degree of data replication
and heterogeneity, both in terms of storing options and analy-
sis tasks. The system administrator has to choose one (or more)
data management systems from a plethora of alternatives and
facilitate the enterprise’s reporting needs utilizing a wide range
of query languages and analysis techniques. Data management
systems involve traditional RDBMSs, Hadoop clusters, NoSQL
databases, and others. Reporting and analysis tasks include plain
SQL, spreadsheet scripts, MapReduce jobs, R/Java/Python pro-
grams, complex event processing queries, machine learning algo-
rithms, and others. A not-so-new challenge resurfaces: interoper-
ability. How can these systems interact? How can these systems
interoperate?

This necessity has been identified by the current authors
in [7, 8] and more recently by the Beckman report [1]. The Beck-
man report recognized the problems the “diversity in the data
management landscape” creates and asserted “the need for co-
existence of multiple Big Data systems and analysis platforms
is certain” and that in order “to support Big Data queries that

© 2018 Copyright held by the owner/author(s). Published in the Workshop
Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, Vienna,
Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

span systems, platforms will need to be integrated and federated.”
Data integration involves combining data residing in different
sources and providing users with a unified view of them [15].
Data integration can be seen as constructing a data warehouse, or
creating a virtual database (federated/mediated systems). While
data warehousing was the way to go in the past—mainly due to
the dominance of relational systems in data management—there
are well-thought arguments to reconsider a federated approach
in big data applications [20]. Polystores [10], closely related to
federated databases, address the need for managing information
represented in different data models. This is similar to this pa-
per’s motivation: using the answer of computations defined over
different data models and query languages. However, we focus
on standardizing the output of a computation and use it in a
conceptual model, rather than integrating data model and query
capabilities in the system. It is worth mentioning that defining
global views over heterogeneous data sources is not a big data-era
issue and has been extensively discussed in the past (e.g., [2]).

We argue that a standardized and protocol-based approach
can significantly facilitate the unified dissemination, federation
and analysis of data. Once the output of big data computations
(from simple SQL queries to complex predictive models) can be
standardized and accessed globally, anyone can use it in his own
analysis framework.

Section 2 presents an example from the telecom domain and
motivates the paper. It introduces the concept of global dataframes:
dataframes constructed by columns that are globally accessible
and represent a data management task. Section 3 describes the
big picture: a dataframe composed of globally addressed columns.
Section 4 presents the architecture and the necessary APIs to
support the management and usage of these global columns. The
challenges of such an architecture (performance, transactionality
issues, distribution, etc.) are introduced in Section 5. We conclude
with conclusions in Section 6.

2 MOTIVATION
Consider the churn prediction problem in a telecom environment
in the presence of structured and unstructured data. For this
purpose, a predictive model had to be designed and implemented
taking into account the many possible variables (features) char-
acterizing the customer. The goal was to equip the data analyst
with a simple tool that enables fast and interactive experimen-
tation by using features from multiple data sources, involving
different data management systems and data formats. In our case,
the company had a variety of data sources, such as:

• A traditional RDBMS containing basic customer-related
data such as gender, age, address and various demograph-
ics.

• A relational data warehouse storing billing, usage and
traffic activity per contract key—a contract may involve
several customer IDs.



Figure 1: Defining a Tabular View over Multiple Data
Sources

• Flat files produced by statistical packages such as SAS and
SPSS, containing data transformations and precomputed
measures per contract key on different datasets.

• CRM data stored in a relational database, containing meta-
data of customer-agent interactions, including agent’s
notes (text) on the call.

• Email correspondence between customers and the cus-
tomer service center of the company (text).

• Audio files stored in the file system, containing conversa-
tions between customers and agents.

The ultimate goal was to provide the data scientist with a
simple way (a tool of some kind) allowing her to choose and
experiment in an ad-hoc manner with multiple tabular views of
customer-related data. Each different combination of columns
yields a different view. Intuitively, there are two simple yet inef-
fective ways of achieving that: a) by collecting all data in a single
data repository and performing reporting tasks on top of it (a data
lake approach), or b) by programmatically producing it by using
an RDBMS for example as an intermediate storage point. Both
of those are impractical. The first one imposes significant costs
of moving data around and data lakes have received criticism
in terms of governance, security, and lack of consistency [13],
while research tries to mitigate these problems leading to a “data
swamp” [11, 12]. The second one requires significant manual
intervention and is not flexible to schematic updates (changes)
in the underlying data sources.

The solution we chose was to keep data in their respective
host systems and define “tabular” views over these systems (a
mediator approach): start from one or more “base” columns (e.g.,
contract ID, customer ID, area code) and incrementally extend
this “basic” schema with columns containing data or computa-
tions coming from different data sources. For example, one could
define the first column (base) to contain the IDs of customers.
Then, she could add columns corresponding to the age, gender
and educational background for each customer, coming from the
Demographics RDBMS. Then, she could add a column containing,
for each customer, the set of emails the customer has sent in the
last six months. This is a set of texts coming from the CRM data-
base. Then, she could add a column that computes the average
sentiment of these emails, using some Python script. Finally, she
could add a column corresponding to the customer’s monthly
average usage in the last six months, coming from the Billing
Data Warehouse (DW). This process is depicted in Figure 1.

The idea is similar to Multi-Feature SQL [3, 6], MD-Joins [5],
Grouping variables [4] and Associated Sets [9]. In these papers,
one can express a series of outer-joins combined with aggrega-
tion, possibly correlated, in a succinct and concise manner. At
the same time, several efficient evaluation techniques (based on
parallel, distributed and in-memory processing) are presented
for these queries. More recently, the same idea is expressed us-
ing dataframes in R and Python pandas (without correlation

between columns), as well as in Spark. The fundamental differ-
ence between our proposal and these approaches is that we treat,
in principle, our data as columns coming from heterogeneous
sources, and dataframes are composed on the fly from them. In R
and pandas dataframes are typically created from data imported
from different, possibly heterogeneous sources, but the dataframe
reflects the structure of the underlying data. One could adopt a
columnar key-value approach, for example by using exclusively
Series in pandas or atomic vectors and lists in R, but that would
probably defeat the purpose and the philosophy of these frame-
works. Concerning Spark, again dataframes reflect the structure
of underlying data; moreover, most likely data are copied to an
underlying HDFS substrate.

This is the pattern in most big data tasks: building a dataframe
over different datasets, to serve as input to data mining algo-
rithms, visualization tools and reporting systems. Essentially this
could be modeled conceptually as a single tabular data represen-
tation of joined results coming from different data management
systems. Each result consists of the keys used for the outer join
and the corresponding values to be added as a column; it can
therefore be represented as a set of key-value pairs. This formal-
ism is quite appropriate to represent columnar data in a dataframe.
It is simple, prone to distributed, fault-tolerant and scalable im-
plementations, and can easily, naturally in a way, represent most
well-known data models. At the same time, key-value engines,
such as Redis, have been organically developed, through analysis
of real applications at Google, Amazon, Facebook, LinkedIn and
elsewhere.

Going one step further, one can imagine globally available
key-value structures, produced outside the organization and used
in the same manner. For example, an analytics provider could
generate for each Facebook user some social metrics (e.g., num-
ber of checkins in the last month), useful in a data scientist’s
analysis. We envision a global “environment” for these key-value
structures that analysts pick and try into their data mining algo-
rithms or embed into their visualizations and reporting. We call
these widely available key-value structures globalized analytics.
The challenge is to provide a framework for this environment, to
make this process simple, useful and efficient. In the next section
we present our proposal for how such a framework can be build.
The framework will leverage the idea of distributed key-value
pairs used to compose dataframes, over heterogeneous data, al-
lowing users to compose and manipulate tabular views of their
data on the fly.

3 THE BIG PICTURE
Themain abstraction for representing data is a column, consisting
of a set of key-value pairs, called a key-valued structure (KVS).
Columns can be joined to create dataframes. Columns have the
following characteristics:

• Columns may be distributed among different machines.
That means that a dataframe can comprise data residing
in different machines, and the data is joined on the fly to
create an integrated dataframe.

• The column keys must be unique, but the value associated
with a key need not be atomic, so that values can be lists
or sets. Therefore, a column can represent both a vector
of atomic values, as well as associations between keys and
collection of values. In this way a column can act as the
stage between a mapping and a reduce stage in a typical
MapReduce job.



• The values of a column may exist in three states: defined,
not available, and observer. The defined and not available
states correspond to known and known unknowns, respec-
tively. The observer state corresponds to values that we
expect to be filled in the future, possibly more than once.

The observer status allows us to handle data dynamically, from
disparate sources, without requiring that all data be available and
frozen at each source. In effect, this extends the semantics of our
proposed model with reactive programming concepts, e.g., see [17],
and facilitates the handling of streams. Streams are collections of
multiple values that are pushed to their destinations—in contrast
to a pull model, where we request values from a stream, we
can also use a push model, where the source of the stream emits
values that enter the stream. In this way, a stream is an observable.
A column can be an observer that receives the values emitted by
the observable.

Columns can be joined based on the values of their keys. A
dataframe is a collection of columns that have the same set of
keys. The set of keys must be determined at column creation
time, so that the values will be filled in from the underlying data.
Dataframes themselves do not contain data. Their constituent
columns do. That means that when we are presented with a
dataframe and we interact with it, we are in fact interacting
with the underlying columns. Some data may be local, if the
corresponding columns local, but in general data may be remote,
even not yet present when in the observable state.

Note that there is no assumption that the keys of the columns
are consistent. Indeed, keys over heterogeneous data sources are
not consistent in most cases. However, at a certain point there
must be a mapping step, which can either be transparent to our
system, or it can be handled through an intermediate column.
Similarly, values need not be consistent: imagine two monetary
columns being joined in the dataframe, but being expressed in
different currencies 1. Such issues could be tackled with transfor-
mation tasks.

4 ARCHITECTURE
We propose a layer of columns backed by a commonly-referenced
memory space for establishing global views in a tabular data
format. The columns contain data, indexed by their keys. The
underlying key-value structures contain minimal schema infor-
mation:

• The values may be atomic, or theymay be lists or sets. Lists
are ordered, while sets are not; lists may contain multiple
times the same value (at different positions), while sets
obey the usual set semantics.

• Lists and sets may be composed by other lists and sets,
interchangeably, and atomic items. Therefore, lists and
sets can represent arbitrary complex nested structures.

• Atomic values do not need any schema assumptions, so a
column could contain both numeric and string data. For
practical and efficiency reasons, however, an implemen-
tation could choose to represent columns using specific
underlying datatypes. For example, if a column is known
to contain integers, the column could be declared to be of
integer type to speed up calculations. If a column contains
multiple types then it would be represented as a generic
object type.

1Our thanks to the anonymous reviewer who provided this example.

The column data could be stored by any underlying mecha-
nism, which could be a relational database, or a NoSQL key-value
store, or a dynamic data source. The underlying data source is
only relevant to the data scientist at column creation time, where
she has to describe the column; it then remains invisible. The data
source does not need to physically host the data. It may produce
the data that will be filling in the column. In this scenario, the
data in the column are in the observable state as explained in
Section 3.

The data of a column are handled by a Column Manager (CM,
or simply manager). A manager is responsible for providing the
data in the form of key-value pairs. Managers accept incoming
requests from Column Consumers (CCs, or simply consumers).
Consumers and managers communicate according to a CM-CC
protocol that defines the location where the underlying KVS will
be stored. The location of the KVSs is independent of both the
consumer and the manager. They may be stored at either of them,
or somewhere else entirely; moreover, they may be produced
programmatically or be saved in a distributed, redundant manner
among different machines. The location can be negotiated: for
example, the consumer may offer a location that the manager
will accept, the consumer may ask the manager to respond with a
location, or the consumermay suggest a location and themanager
may respond with a different one. In this way, KVSs can be reused
among different consumers. To cover different scenarios, KVSs
reside in a globally addressable storage space.

The idea is simple: A consumer wants to use data from a
manager. The data could be result of an SQL statement, or a
MapReduce job, or a script, etc. The consumer communicates
with the manager and passes to it the address of the KVS. The
consumer also communicates with the KVS and passes to it the
set of keys whose values will be filled in by the manager; the
communication between the consumer and the KVS may take
place well before the communication between the consumer and
the manager. The manager finds the keys in the KVS and fills the
corresponding values.

To create a dataframe, a consumer communicates with the
managers that handle the columns it wants. It passes to each
of the managers the same set of keys and agrees with them on
the addresses of the KVSs that will contain the data. Then the
consumer can obtain the data from the KVS and present them
to the data scientist as an integrated dataframe. Note that the
consumer may access the KVSs at any time, asynchronously, even
before the managers complete the KVSs. This way, dataframes
can incorporate columns corresponding to stream computations.

The above can be implementedwith a two-layered architecture.
At the upper layer we have the consumer-manager communica-
tion. At the lower level we have the set of KVSs. Consumers and
managers communicate with the KVSs using a column-to-KVS
communication protocol. Figure 2 summarizes the aforemen-
tioned discussion.

Currently there are efforts pointing towards a separate ad-
dressable memory layer, such as RAMCloud [18] and Piccolo [19],
which both share the notion of in-memory addressable “tables”
supporting key-value operations. Clarifications, challenges and
opportunities of the proposed architecture are presented below.

5 CHALLENGES AND OPPORTUNITIES
Commonly-Referenced Memory Space. The architecture im-

plies the presence of a well-defined API so CCs can create and
manage KVSs. The development of such an API requires careful
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Figure 2: Defining a Tabular View over Multiple Data
Sources.

consideration. While CRUDE operations are clearly understood,
a discussion is required for the exact format and behavior of each.
In particular, the read operation should allow some filtering of
the KVS, either through a simple predicate over keys and values
or by providing a set of keys to be selected. Our first implemen-
tation [7] allows filtering conditions over just the key, but in
many industrial applications complex expressions involving val-
ues are not uncommon. Other issues that have to be addressed
are: what if a CC does not delete a KVS that has created? Should
the corresponding KVS management system implement garbage
collection? Who is the “owner” of a KVS? What is the “lifetime”
of a created KVS? Which CCs are allowed to access this KVS
and in what mode (read/write)? For example consider Webdis, an
HTTP interface for Redis that provides some insights on these
issues. A similar kind of middleware between data producers
and consumers in the form of publish-subscribe is suggested
in [14]. A commonly-referenced memory layer is also proposed
in Tachyon system [16], constrained however within a cluster.

Globally Addressable Key-Value Sets. This is a conceptual layer,
consisting of systems that provide KVS management according
to the proposed framework. To do so, it should implement the
column-to-KVS API mentioned above, and allow access to a KVS
through an address, internet-wide, following some standardized
addressing scheme. The scheme should capture location hierar-
chies (e.g., domains, sub-domains, etc.) and identify the position
in the memory hierarchy of a KVS. There is no restriction on
what such a system could be. It could store KVSs anywhere in
the memory hierarchy: main-memory, distributed-cache, disk;
it could guarantee (or not) fault-tolerance, availability, etc. In
addition, it should provide answers on how it handles ownership,
lifetime and access control of KVSs.

Suitability for Stream Engines. The layered architecture essen-
tially introduces a referencing layer (i.e., indirection) between
communicating programs (the CC and the CM). This is particu-
larly appropriate for collaborating applications involving stream
data: a stream management CM can continuously produce aggre-
gated data (e.g., the average stock price over a sliding window of
10 minutes) consumed by the CC. The asynchronous access to the
shared KVS allows the data consumer to retrieve data whenever
it deems appropriate (e.g., [18]); alternatively, the data can be
observed continuously by the consumer in a reactive approach
(recall Section 3).

Transactionality Issues. A potentially challenging aspect in
the proposed architecture is the issue of transactional consis-
tency at the KVS layer. We currently consider non-materialized
dataframes, so we do not have to deal with transactions and
isolation at the data sources. However, transactionality issues
still arise, in the case of complex workflows where multiple CCs
constantly request execution from a CM. For example, consider
two separate CC-to-CM connections where both CMs populate
the same KVS. As another example, if a CM is using a remote
address to store a continuously running query that returns a
huge set of key-value pairs, is that large result updated atomi-
cally or incrementally? If some data feeds are slow and some are
fast, one might get an inconsistent (nonserializable) view of the
KVS layer. What (if anything) can the framework do to manage
transactional requirements across systems? For instance, when
a CC creates a KVS (and thus becomes “owner” of the KVS), it
could also specify the required isolation level for that KVS.

Query Response Times. Mediation approaches do not have,
in general, good query response times. This is one of the main
reasons for building data warehouses and having Extraction,
Transformation, and Loading (ETL) processes: storing data into
one system, using a single data model, and having an efficient
query processing engine. However, the goal of this work is not
performance, but functionality and interoperability. We want to
enable users to easily construct data frames in heterogeneous
environments, employing multiple programming languages. Usu-
ally, this data frame will feed some learning algorithm, instead
of being used for online queries. In this context, some of the
columns of a dataframe could be formed as queries over a re-
lational system using a metadata catalog like Hive Metastore.
However, statistical information existing in the Metastore is rele-
vant to the query that produces the column and is transparent to
our architecture that will simply use the end result in an outer
join.

Opportunities. The proposed architecture can also be used to
generalize various existing distributed data management frame-
works, such as distributed relational query processors, MapRe-
duce evaluation algorithms and column-oriented processing en-
gines. However, given the diversity in data management systems,
it opens up a wide range of interesting possibilities, both in terms
of infrastructures and optimization opportunities. The interested
reader can refer to [8].

6 DISCUSSION AND CONCLUSIONS
In this paper, we presented a layered architecture to data interop-
erability based on a ubiquitous universe of remotely accessibly
key-value sets. The architecture uses a number of concepts that
can and will be formalized in an extended version of this paper—
doing so here would be beyond the scope of a vision paper. In
essence, with the proposed architecture we completely decouple
the computation and memory layer of any data management
scenario. By doing so we are able to generalize, abstract and ef-
fectively encapsulate all the key components of distributed data
computation, storage and management. We believe that such
an approach is a first step towards an interoperable universe of
big data systems. Along this way however there are numerous
challenges able to serve as fruitful research directions.
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