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ABSTRACT
Analysis of medical images plays a very important role in clinical
decisionmaking. For a long time it has required extensive involve-
ment of a human expert. However, recent progress in data mining
techniques, especially in machine learning, allows for creating
decision models and support systems that help to automatize this
task and provide clinicians with patient-specific therapeutic and
diagnostic suggestions. In this paper, we describe a study aimed at
building a decision model (a classifier) that would predict the type
of treatment (surgical vs. non-surgical) for patients with bone
fractures based on their X-ray images. We consider two types of
features extracted from images (structural and textural) and used
them to construct multiple classifiers that are later evaluated in
a computational experiment. Structural features are computed
by applying the Hough transform, while textural information is
obtained from gray-level occurrence matrix (GLCM). In research
reported by other authors structural and textural features were
typically considered separately. Our findings show that while
structural features have better predictive capabilities, they can
benefit from combining them with textural ones. Interestingly,
there are no statistical differences in overall classification accu-
racy attained by the classifiers considered in the study (it ranges
from 91.0% to 96.1%), however, the most promising one is the
random forest.
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1 INTRODUCTION
Over the last decades medical image processing has made sub-
stantial progress and has attracted attention from researchers
belonging to various fields, e.g., mathematics, computer science,
engineering, physics, biology and medicine [10]. Information
systems that store and process image information (e.g., PACS
– picture archiving and communication systems) have become
an important component of health IT infrastructure and they
are regularly used throughout the patient management process.
Moreover, development of various image modalities has resulted
in challenges associated with their efficient processing and ad-
vanced analysis, also in combination with other available types
of information. The later is often referred to as data fusion [4]. In
this paper we focus on images obtained from a single modality –
X-ray – that represent bone fractures.

Bone fractures constitute the most common type of injury
that occurs in clinical practice. Normally, during the examination
process the physician identifies the fracture and its type, and then
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decides how it should be treated properly. In order to examine
bone fractures variousmedical imaging technologies are available
– they include X-ray and CT (computed tomography) imaging,
with the former being most commonly and widely used for bone
examination. The process of manual examination of an X-ray
image is very time consuming and tedious, therefore, physicians
often make mistakes while inspecting such images [7]. These
mistakes may result in inadequate treatment, like unnecessary
surgeries. Several studies have shown that surgery is not needed
in every case [6]. Moreover, surgical treatment is not only more
expensive than non-invasive one, but it is also more painful.

This problem can be addressed by building computer-aided
diagnostic (CAD) tools that automatically identify the presence
and type (severity) of bone fracture, and then suggest the most
appropriate treatment for a given patient. However, we have to
keep it in mind that human skeleton consist of different types
of bones (short, long, flat, irregular, and sesamoid) [9], therefore
designing a decision model or a CAD system that would deal
with any fracture is a significant challenge [7]. The reason behind
is that every type of bone requires a different type processing
workflow involving specialized image analysis algorithms. Be-
cause of the difficulty related to this problem intense research
has been being conducted in the automated fracture detection
and still there is room for improvement. In this paper we limit the
scope of the problem by providing support only for the decision
related to treatment and by focusing on long bones (arm and leg)
and upper pelvic bones.

Clinical decision models that rely on images are largely depen-
dent on segmentation and feature extraction algorithms. More-
over, building any decisionmodel requiresmedical domain knowl-
edge related to the underlying problem [4]. For example, when
detecting a brain tumor in an MRI (magnetic resonance imag-
ing) scan it is important to have information about the nature of
the tumor. This domain knowledge is helpful when developing
automated approaches for detection of abnormalities and their
further diagnosis [12]. Such abnormalities can be defined by by
their structural characteristic (e.g., area, thickness, or thinness) or
by their textural features (e.g., maximum intensity value, energy,
contrast). The use of the Hough transform has been proved useful
in detecting fracture bones [4] as it incorporates the structural
details of the bones. To perform texture analysis of the bones
famous gray-level co-occurrence matrix (GLCM) is widely used,
which was introduced by Haralick et al. [5]. This technique is
based on the assumption that image texture consists of different
regions or sub-regions defined by the characteristics like bright-
ness, color, energy, etc., and that information about these regions
may be very useful in image analysis.

Recently, application of deep learning methods (e.g., convolu-
tional neural network) to medical imaging problems has gained a
lot of attention [17]. In many problems deep learning has proven
to be more efficient then tradition image processing techniques



and has raised a question regarding the importance of feature ex-
traction among researchers [17]. However, themain problemwith
deep learning is that it requires huge amount of data for learning
(for example, a learning set considered in the recent competition
considered by Kaggle on analyzing fundus images contains tens
of thousands of images), and also does provides no insights into
its "internals", including the discovered knowledge[17].

As already mentioned above, in this paper we deal with X-ray
images of fractured bones. We apply image processing (in particu-
lar feature extraction) techniques and machine learning methods
to build a decision model that would predict an appropriate type
of treatment (surgical vs. non-surgical) a given patient should un-
dergo. Currently, different image processing techniques are used
to analyze X-ray images of different types of bones. While the
majority of proposed methods focus on a single type of features
(either structural or textural) for the identification or classifi-
cation of fractures, we consider both types of features. In this
way we are able to evaluate their impact on the performance
of resulting decision models (classifiers) and potential benefits
resulting from their synergy.

2 RELATEDWORK
Work related to our research comes from the three following
areas: (1) pre-processing of X-ray images (especially for noise
removal), (2) segmenting bones in these images and (3) extracting
features from images. Relevant research work is discussed below:

2.1 Pre-processing
Vijaykumar et al. [15] proposed an algorithm to to remove Gauss-
ian noise present in X-ray images. Their algorithm estimates the
presence of noise in image and replace the value of pixels located
in the center by mean value of the neighboring pixels based on
the threshold value. The proposed filtering algorithm proved to
work better on X-ray images as compared to other filtering ap-
proaches like Wiener, k-means and bilateral-trilateral algorithms.
Another approach for noise removal was presented by Al-Khaffaf
et al. [7] where they used k-fill algorithm (calculating the number
of black and white pixels in a filter window of 3x3) to eliminate
salt and pepper noise. Moreover, Anu et al. [7] used Gaussian
filter of size 3x3 to remove the noise when detecting bone frac-
ture in X-ray images. Finally, Chai et al. [1] used Laplacian filters
to remove noise from the X-ray while developing algorithm for
fracture detection by the help of textural features (GLCM).

2.2 Bone Segmentation
In order to detect the boundaries of an object present in a noisy X-
ray image Aishwariya et al. [13] proposed an approach that starts
with edge detection using Canny edge detection algorithm, and
then applies boundary detection techniques like active contour
model or geodesic active contour model. Smith et al. [14] devel-
oped a method to detect fractures of pelvic bones. The method
uses discrete wavelet transformation for automated segmentation
of the bone boundary. The wavelet transformation is followed
by a sequence of morphological operations – if at the end as a
result a single boundary is detected, this indicates no fracture.
On the other hand, if multiple boundaries are detected, then this
signals one or more fractures.

2.3 Feature Extraction
Chan et al. in [2] uses three different types of transformations
for feature selection i.e., curvelets, wavelets and Haar. Haar per-
formed best as compared to wavelet and curvelet transformation.
Aishwariya et al. [13] proposed to use Sobel for detection of bone
boundaries, and then uses GLCM features to further detect the
presence of bone fractures. This approach was tested on X-ray
images and an accuracy of 85% was achieved. However, the most
difficult task was the segmentation of bone boundaries. Myint et
al. in [11] proposed an algorithm that used edge detection and
the Hough transformation to automatically detect fracture. The
authors reported that their approach works relatively better on
high resolution images. We also used the Hough transform in our
earlier study [4] where it was applied to extract structural fea-
tures from X-ray images. These features were further fused with
non-image data coming from patient record in order to develop
a therapeutic model.

3 PROPOSED APPROACH
As already discussed, physicians make the decision regarding
the treatment (surgical vs. non-surgical) of patients with bone
fractures by manually examining their X-ray images which is a
tedious process and hence error prone. Our goal is to respond
to this challenge by constructing a decision model that would
support physicians while making making such decisions.

An outline of our approach to feature selection and classi-
fier construction is given in Figure 3. We considered different
approaches for pre-processing of X-ray images (see their de-
scription in [7]) and selected the one that is most perceptive in
detecting bone edges (visually) for the data set at hand. It starts
with pre-processing of an X-ray image by applying a median
filter (window size 3x3) for noise removal and contrast enhance-
ment for amplifying bone edges. Then, two parallel branches are
initiated – the first one is responsible for extracting structural
features, and the second one establishes textural features. Both
branches employ several specific image processing techniques
and are described in details below. Once values of features have
been obtained, they are merged in a single feature vector – all
considered features are listed in Table 1. This vector is finally
fed into the learning and classification block where a specific
classifier is constructed and then applied to new objects (X-ray
images also characterized by values of extracted features).

3.1 Extraction of Structural features
We use the Hough transform [11] to extract structural features.
This process consists of the following steps (please refer to [4]
for its illustration):

(1) The Canny operator is applied to a pre-processed image
to detect edges. Moreover, disconnected components are
removed from the resulting image,

(2) The Hough transform is applied to detect the bone fracture
– the process is explained in detail in [11]. Parameters of
the transform are set in such a way that it produces two
peaks for minor fractures and more then two peak values
for major fractures.

3.2 Extraction of Textural Features
Extraction of textural features employs the GLCM transformation
[1]. The required steps are as follows (see also Figure 2):



Figure 1: Outline of the proposed approach

Table 1: Description of features (S – structural feature, T – textural feature)

Feature Type Description

Hough peak - mean S Mean peak value of the Hough transform.

Hough peak - stdev S Standard deviation of peak values of the Hough transform.

Contrast T Measure of the intensity contrast between the image pixel and its neigh-
bor over the selected ROI, the value of contrast is 0 for a constant image
region.

Energy T Measure of sum of square of elements present in gray-level co-
occurrence vector. The value of energy is 1 for a constant image. It
is also known as uniformity of energy and angular second moment.

Homogeneity T Measure of the degree of closeness between values in the gray-level co-
occurrence matrix. The value of homogeneity is 1 for diagonal GLCM
vector.

Correlation T Measure the degree of correlation i.e., how the value of a pixel is cor-
related over the selected region. Value of correlation is 1 for positive
image and -1 for the negative image.

(1) Region of interest (ROI) corresponding to the fracture is
segmented manually from the pre-processed image,

(2) Laplacian filtering is applied to detect bone boundaries,
(3) The GLCM vector is calculated (specifically, it is obtained

by identifying the number of times the pixel i occurred in
a spatial relationship with pixel j), then the textural infor-
mation like contrast, homogeneity, energy and correlation
of an input image is obtained from this 2-Dimensional
vector.

4 COMPUTATIONAL EXPERIMENT
4.1 Experimental Design
We implemented our approach using MATLAB (image process-
ing) and WEKA (learning and classification) [16], thus combin-
ing advantages (wide choice of powerful image processing and

machine learning methods) offered by both tools. This imple-
mentation was applied to a set of X-ray images coming from
the data repository provided by the Wielkopolska Center of
Telemedicine (https://www.telemedycyna.wlkp.pl)– a telecon-
sultation platform for patients with multiple injuries. The repos-
itory includes data of 2030 patients with bone fractures – 1593
(78.5%) underwent a surgery, and the remaining 437 (21.5%) were
treated non-surgically. Each patient has a clinical record with
non-image data (basic demographics, results of laboratory tests)
and a set of 2-5 X-ray images showing fractures at different stages
of treatment. From this repository we randomly selected 210 pa-
tients – 76 (36.2%) non-surgical and 134 (63.8%) surgical cases.
We changed the distribution of classes to make resulting clas-
sifiers less biased towards the surgical class, and the obtained

https://www.telemedycyna.wlkp.pl


Figure 2: Extraction of textural features from an X-ray image: (1) pre-processing, (2) ROI segmentation, (3) application of
Laplacian filter

distribution was established based on suggestions from [3]. More-
over, for each patient we manually selected a single X-ray image
representing a fractured bone at the time when the management
was initiated.

We obtained values of structural and textural features for each
of the selected images and stored resulting feature vectors in an
intermediary ARFF data file for further processing in WEKA. In
fact, we created three versions of this data file to facilitate subse-
quent learning: (1) with structural features only, (2) with textural
features only and (3) with all features. Extraction of features
was performed in MATLAB on a MacBook Pro computer with i5
2.7GHz processor and 8GB of RAM and it took 5.23 minutes to
complete.

We then constructed multiple decision models using avail-
able data. Specifically, we considered the following classifiers
(in brackets with give their symbols used further in the text): a
k-nearest neighbor classifier with k = 7 (7NN), a naive Bayes
classifier (NB), a tree-based classifier induced with the C4.5 al-
gorithm (C45), a rule-based classifier induced using the RIPPER
algorithm (RIP), a random forest classifier (RF), an SVM classifier
(SVM) and a multilayer perceptron classifier (MLP). Most classi-
fiers were generated using default settings in WEKA (for a more
detailed description of corresponding learning algorithms [16]) –
only in NB we used supervised discretization, for SVM we used
cost equal to 1e+6 and a radial basis kernel function with gamma
equal to 0.01, and finally for MLP we specified 3 hidden layers.
Such parameters were established during a preliminary evalua-
tion. Here we should also note that we built three versions of each
classifier – using structural, textural and all features respectively.
While we are aware that building such complex decision models
as RF or MLP using only two structural features may be ques-
tionable, we did it to maintain consistency of the experimental
design.

Classification performance of all classifiers was evaluated in 10
runs of 10-fold cross validation (for better stability of the results)
and we use classification accuracy, overall and for both decision
classes (surgical and non-surgical). Computations in WEKA were
run on the same MacBook Pro as the first part of the experiment
(feature extraction) and it took 10.15 minutes to complete them.

4.2 Results
Classification performance of specific classifiers is given in Table
2wherewe report overall accuracy alongwith accuracy values for
both decision classes. The best results obtained for each classifier
are marked with bold.

The most important observations from Table 2 are the follow-
ing:

(1) Classifiers using the structural features (mean and stan-
dard deviation of peak values obtained using Hough trans-
form) were more accurate than classifiers based on the
textural features (obtained from GLCM). The overall ac-
curacy obtained by all classifiers based on the structural
features exceeded 90% for all of the considered classifiers.

(2) While the textural features alone resulted in the worse
performance for each of the considered classifiers, their
combination with the structural feature always improved
overall classification accuracy. In fact for all considered
classifiers, the best overall accuracy was achieved when
using both structural and textural features. A similar ob-
servation was made for accuracies in specific classes –
the only exceptions were C45 that was more accurate for
the non-surgical class when using structural features, and
SVM that demonstrated the same performance for struc-
tural and all combined features.

(3) The highest overall accuracy (96.1%) was achieved using
RF. It also demonstrated the highest accuracy for the sur-
gical class (99.0%). These results confirm the usefulness
of ensemble classifiers, in particular RF, in the task of
classifying X-ray images reported by other authors [8].

In order to get better insight into captured classification knowl-
edge and thus to enhance explanatory capabilities of our ap-
proach we analyzed the importance of features as perceived by
specific classifiers. Here we focused on classifiers that are capable
of assessing the importance of specific features and considered
C45, RIP and RF. In C45 more important features appear higher
in the tree, for RIP such features appear more frequently and in
stronger rules (i.e., rules with a larger support), and for RF the
importance of features is captured by their weights.

According to RIP the most important attributes are structural
features used in combination with energy from textural features
(see obtained RIP rules in Figure 3). The C45 model gave more
importance to structural features and used them in combination
with correlation from textural features (see Figure 4). RF assign
weights to features showing the most important ones at the top
which are standard deviation and mean of peak values from the
Hough transform followed by a sequence of textural features –
contrast, energy, correlation and homogeneity (see Fig. 5).

We repeated an experiment described in [4] where we applied
data fusion techniques (specifically, combination of data) to build



Table 2: Performance of classifiers based on various sets of features (standard deviation given in brackets; S – structural fea-
tures, T – textural features;⋆ indicates performance that is statistically worse than performance for all features according
to two-tailed T-test)

Classifier Feature set Overall [%] Non-surgical [%] Surgical [%]

7NN S 92.5 (6.7) 89.0 (13.0) 94.0 (7.0)
T 73.4 (8.5)⋆ 57.0 (18.0)⋆ 83.0 (9.0) ⋆
S+T 94.7 (5.1) 91.0 (11.0) 98.0 (4.0)

NB S 89.2 (6.2) 84.0 (15.0) 92.0 (10.0)
T 76.1 (8.3)⋆ 73.0 (21.0) 78.0 (11.0)⋆
S+T 92.6 (5.8) 91.0 (12.0) 94.0 (6.0)

C45 S 91.4 (6.4) 92.0 (14.0) 91.0 (8.0)
T 77.0 (8.3)⋆ 85.0 (18.0) 73.0 (10)⋆
S+T 94.0 (6.7) 89.0 (11.0) 97.0 (5.0)

RIP S 92.5 (6.8) 87.0 (15.0) 95.0 (7)
T 77.0 (8.7)⋆ 77.0 (18.0) 77.0 (11.0)⋆
S+T 94.5 (5.6) 88.0 (14.0) 98.0 (4.0)

RF S 91.5 (6.9) 89.0 (12.0) 93.0 (7.0)⋆
T 77.3 (9.5)⋆ 71.0 (19.0)⋆ 81.0 (10.0)⋆
S+T 96.1 (6.5) 92.0 (11.0) 99.0 (4.0)

SVM S 90.6 (6.5) 80.0 (17.0) 97.0 (5.0)
T 80.5 (7.2)⋆ 69.0 (16) 81.0 (8.0)⋆
S+T 91.0 (6.5) 80.0 (17.0) 97.0 (5.0)

MLP S 91.5 (6.5) 88.0 (14.0) 94.0 (8.0)
T 78.4 (8.1)⋆ 72.0 (19.0)⋆ 82.0 (11.0)⋆
S+T 94.8 (5.1) 94.0 (9.0) 96.0 (6.0)

Figure 3: Decision rules created for the RIP classifier (the
default rule for the surgical class is excluded)

(MeanPeakValue <= 61.5) and (StDevPeakValue >= 35.8)
and (StDevPeakValue <= 51.4) => Treatment = non-surg

(61.0/0.0)
(Energy >= 0.21) and (StDevPeakValue >= 36.2)

and (StDevPeakValue <= 57.5) => Treatment = non-surg
(11.0/0.0)

Figure 4: A decision tree created for C45

Figure 5: Attribute importance based on average impurity
decrease in RF

classifiers based on image and clinical data. In the additional
experiment we used an expanded set of image features containing
all structural and textural features introduced in this study. We
observed their beneficial impact on the performance of classifiers.
However, unlike previously the effect of combining image and
clinical data was negligible and we hypothesize that for our data
set the set of image features are so strong predictor of the type of
treatment that additional clinical features become redundant. We
are going to further investigate it as part of our ongoing study.

5 CONCLUSIONS
In this paper we presented the results of our study where we have
considered structural and textural features extracted from X-ray
images. We have used these features to build decision models
aimed at predicting a proper treatment (surgical vs. non-surgical)
of a patient with bone fracture and evaluated classification per-
formance of these models. Specifically, we checked the following
classifiers – k-nearest neighbor (with k = 7), naive Bayes, a
decision tree, decision rules, a random forest, a support vector
machine (with a radial basis function) and a multilayer percep-
tron. For each of these classifiers we observed an improvement
in the overall classification accuracy when using both structural
and textural features, and the largest increase occurred for the
random forest and naive Bayes classifiers. At the same time,
using textural features alone deteriorated the performance in
comparison to structural features. Hence we can conclude that
the structural features (mean and standard deviation of peak val-
ues obtained using Hough transform) have very good predictive
abilities and that they may additionally benefit from combining
them with the textural features (contrast, energy, homogeneity
and correlation).



As future work we will compare the performance of classifiers
constructed from extracted features with a convolution network
network. We also plan to use more data (e.g., more than one
image per patient) and to automate the process of fracture seg-
mentation. We are planning to consider other ensembles in the
context of data combining both image and clinical features as
this should give ensembles greater flexibility in selecting features
for component classifiers. Finally, we would like to implement
our approach in form of an educational tool that is deployed on
the Wielkopolska Center of Telemedicine platform and used by
physicians and medical students to practice their decision mak-
ing skills. This should also give us an ability to collect new data
and experience from users’ responses and to use this feedback to
improve embedded classifiers.

REFERENCES
[1] Hum Yan Chai, Lai Khin Wee, Tan Tian Swee, and Sheikh Hussain. 2011.

Gray-level co-occurrence matrix bone fracture detection. WTOS 10, 1 (Jan.
2011), 7–16. http://dl.acm.org/citation.cfm?id=2037119.2037121

[2] Kin-Pong Chan and Ada Wai-Chee Fu. 1999. Efficient time series matching by
wavelets. In Proceedings of 15th International Conference on Data Engineering
(Cat. No.99CB36337). IEEE, 126–133. https://doi.org/10.1109/ICDE.1999.754915

[3] David J. Dittman, Taghi M. Khoshgoftaar, and Amri Napolitano. 2014. Selecting
the appropriate data sampling approach for imbalanced and high-dimensional
bioinformatics datasets. 304–310. https://doi.org/10.1109/BIBE.2014.61

[4] Anam Haq and Szymon Wilk. 2017. Fusion of clinical data: A case study to
predict the type of treatment of bone fractures. In New Trends in Databases
and Information Systems - ADBIS 2017 Short Papers and Workshops, AMSD, Big-
NovelTI, DAS, SW4CH, DC, Nicosia, Cyprus, September 24-27, 2017, Proceedings.
294–301. https://doi.org/10.1007/978-3-319-67162-8_29

[5] Robert. M. Haralick. 1979. Statistical and structural approaches to texture.
Proc. IEEE 67, 5 (May 1979), 786–804. https://doi.org/10.1109/proc.1979.11328

[6] Mounier Hossain, V. Neelapala, and J. G. Andrew. 2008. Results of non-
operative treatment following hip fracture compared to surgical intervention.
Injury 40, 4 (April 2008), 418–421. https://doi.org/10.1016/j.injury.2008.10.001

[7] Irfan Khatik. 2017. A study of various bone fracture detection techniques.
International Journal Of Engineering And Computer Science 6, 5 (May 2017),
21418–21423.

[8] Seong-Hoon Kim, Ji-Hyun Lee, Byoungchul Ko, and Jae-Yeal Nam. 2010. X-
ray image classification using random forests with local binary patterns. In
2010 International Conference on Machine Learning and Cybernetics, Vol. 6.
3190–3194. https://doi.org/10.1109/ICMLC.2010.5580711

[9] Kenneth J. Koval and Joseph David Zuckerman. 2006. Handbook of Fractures.
https://books.google.pl/books?id=1x6ZQgAACAAJ

[10] Elizabeth A. Krupinski. 2010. Current perspectives in medical image percep-
tion. Attention, Perception and Psychophysics 72, 5 (01 Jul 2010), 1205–1217.
https://doi.org/10.3758/APP.72.5.1205

[11] San Myint, Aung Soe Khaing, and Hla Myo Tun. 2016. Detecting leg bone
fracture in X-ray images. International Journal of Scientific and Technology
Research 5 (2016), 140–144.

[12] Parveen and Amritpal Singh. 2015. Detection of brain tumor in MRI im-
ages, using combination of fuzzy c-means and SVM. In 2015 2nd Interna-
tional Conference on Signal Processing and Integrated Networks (SPIN). 98–102.
https://doi.org/10.1109/SPIN.2015.7095308

[13] R.Aishwariya, M.Kalaiselvi Geetha, and M.Archana. 2014. Computer-aided
fracture detection of X-ray images. IOSR Journal of Computer Engineering
(IOSR-JCE) 2, 1 (2014), 44–51.

[14] Rebecca Smith, Charles Cockrell, Jonathan Ha, and Kayvan Najarian. 2010.
Detection of fracture and quantitative assessment of displacement measures in
pelvic X-ray images. In 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing. 682–685. https://doi.org/10.1109/ICASSP.2010.5495104

[15] V.R.Vijaykumar, P.T. Vanathi, and P. Kanagasapathy. 2007. Adaptive window
based efficient algorithm for removing gaussian noise in gray scale and color
images. In International Conference on Computational Intelligence and Multi-
media Applications (ICCIMA 2007), Vol. 3. 319–323. https://doi.org/10.1109/
ICCIMA.2007.367

[16] Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data Mining: Practical
Machine Learning Tools and Techniques (3rd ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[17] Guoqiang Zhong, Lina Wang, and Junyu Dong. 2016. An overview on data
representation learning: From traditional feature learning to recent deep
learning. The Journal of Finance and Data Science 2 (2016), 265–278. Issue 4.
https://doi.org/10.1016/j.jfds.2017.05.001

http://dl.acm.org/citation.cfm?id=2037119.2037121
https://doi.org/10.1109/ICDE.1999.754915
https://doi.org/10.1109/BIBE.2014.61
https://doi.org/10.1007/978-3-319-67162-8_29
https://doi.org/10.1109/proc.1979.11328
https://doi.org/10.1016/j.injury.2008.10.001
https://doi.org/10.1109/ICMLC.2010.5580711
https://books.google.pl/books?id=1x6ZQgAACAAJ
https://doi.org/10.3758/APP.72.5.1205
https://doi.org/10.1109/SPIN.2015.7095308
https://doi.org/10.1109/ICASSP.2010.5495104
https://doi.org/10.1109/ICCIMA.2007.367
https://doi.org/10.1109/ICCIMA.2007.367
https://doi.org/10.1016/j.jfds.2017.05.001

