CEUR-WS.org/Vol-2063/salad-paperl.pdf

Evaluation Environment for Linked Data Web
Services

Sebastian Bader!, Alexander Wolf?, Felix Keppmann'

! Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany
2 USU Software AG, 76137 Karlsruhe, Germany

sebastian.bader@kit.edu, al.wolfQ@usu.de,
felix.leif.keppmann@kit.edu

Abstract. In the last decade many approaches and efforts have been
made to introduce semantic services into real-life applications. Neverthe-
less, Linked Data Web Services are still waiting for their major break-
through. We state that improving the capability to compare and eval-
uate different approaches leads to a faster propagation in the field. We
therefore propose a straightforward test and evaluation environment for
distributed Linked Data Web Services. Our implementations allows the
objective comparison of approaches for e.g. API descriptions, service dis-
covery, composition or orchestration.

Keywords: evaluation environment, linked data platform, web services

1 Introduction

The ongoing digitization brings more and more data providers, functionalities
and applications to the Web. For example with the Internet of Things the amount
of available data sources will further increase massively [2]. In addition, a rising
number of services is consumable via Web APIs. But developers have mostly
manually configured consuming applications in mind and therefore document, if
at all, their API in human understandable but unstructured forms. This is not
sufficient for the upcoming volume and variety of new data producers, devices
and applications in the Web. But in order to lift the emerging potential for
businesses and end users, the various components have to be interconnected and
communicate with each other.

Linked Data has the potential to deliver the syntactic and semantic integra-
tion by combining well-understood Web technologies (HTTP, URIs etc.) with
semantic declarations. Its consistent treatment of data and communication pat-
terns paths the way for a fast integration of loosely-coupled systems. The thereby
established distributed architectures can enable a fast generation of powerful ap-
plications by the combination and reuse of services and software artifacts.

However, service and data discovery, composition, and orchestration are de-
manding challenges which already draw major efforts of the Semantic Web com-
munity. But in contrast to the huge volume of developed approaches the actual

progress is hard to measure as most research groups evaluate new approaches on
own test cases and in non-replicable environments. Consequently, an objective
assessment of the current state of the art is hardly possible.

In this work we focus on the creation of distributed service environments in
a declarative manner and make the following contributions: 1) we present an
approach on building generic but adaptable service stubs based on Linked Data
Platform specifications; 2) we provide and describe a prototypical implemen-
tation of these services in a reproducible, distributed, and scalable evaluation
environment; 3) we show the feasibility of the approach in a preliminary evalu-
ation.

2 Related Work

In the recent years Web Services and APIs are more and more shifted from
comprehensive protocols like SOAP towards the more light-wight REST APIs.
Versteden and Pauwels present mu.semte.ch [8], an exemplary platform for mash-
ups of RESTful Linked Data-based microservices. They package the elements of
their platform in Docker® containers to ease their shipment and reuse. But the
adaptability for other scenarios is limited as the mu.semte.ch acts as an exclusive
middleware for any connected application.

Several activities in the last decade promoted the comparison and competi-
tion of approaches and implementations against each other. The Semantic Web
Challenge* pushed recent developments to adding value for end users. The broad
set of criteria allowed a wide range of different use cases. In contrast, the Se-
mantic Web Services (SWS) Challenge citepetrie2008semantic and Web Ser-
vices Challenge (WSC) [1] provided testbeds for specified scenarios and aimed
to present and enhance the maturity of semantic web service technologies. But
even though these efforts drive the comparability of implementations regarding
their scope, a generic method to evaluate developments based on Linked Data
services is still missing.

Joshi et al. [4] face a similar task for the creation of RDF data sets. The pro-
posed LinkGen system is capable of generating sets of Linked Data for specified
vocabularies, configured through a seed parameter. Even malformed, syntactical
and invalid statements are included, making the output realistic for controlled
evaluations of new approaches. Nevertheless, LinkGen is only applicable for data
generation and not services.

3 Service Environment

3.1 Preliminaries

Our approach for distributed, scalable, and reproducible service environments
is build on top of the Representational State Transfer (REST) paradigm for a

3 http://www.docker . com/
4 http://challenge.semanticweb.org

http://www.docker.com/
http://challenge.semanticweb.org

resource-oriented viewpoint on distributed applications and for the interaction
between their components. In addition, the Linked Data paradigm for state
representations, semantics, and interlinking of resources defines a mature data
format for the Web.

This combination of Linked Data and REST has recently been standardized
by the Linked Data Platform (LDP) specification [7] of the World Wide Web
Consortium (W3C). It specifies the semantics and interactions for the concept
of a resource, in particular of the LDP Resource, with its specializations of the
LDP RDF Source which provide state representations that adhere to the RDF
data model. As subtype of the LDP RDF Source, the LDP Container with its
specializations of the LDP Basic Container enables different kind of one-many
parent-child relations between other LDP Container and LDP Resources. Follow-
ing the LDP specifications all interactions towards container and resources are
restricted to basic HT'TP methods (GET, PUT, POST, DELETE) and therefore
guarantee simple and transparent data manipulation. Yet, only data handling is
specified. Web Services of any kind are not regarded by these standards.

3.2 Architecture

The main goal of our approach is to support reproducibility in building service
environments, while, as sub-goals, support scalability in terms of number of ser-
vice hosts and adaptability in terms of service functionality. We strictly comply
to LDP specifications in order to benefit from their mature interaction handling
and data presentation.

The Configuration Layer consists of a limited number of configuration ar-
guments, the so-called seed, that guarantees — for equal argument values — the
same distribution, scale, and functionality in order to reach reproducibility. At
the second layer, the Declaration Layer, we generate — in a reproducible way
— custom or use given deployment declarations based on the provided configu-
ration arguments of the seed layer. This declarations include 1) a composition
declaration, i.e., the specific number of host with their specific configuration,
2) declarations for the host systems, i.e., specify how each host system should
be build, and 3) declarations of different service functionalities that should be
provided by hosts. The Deployment Layer of our architecture is the actual
deployment of the service environment, i.e., the deployment of services at real
virtual and/or physical hosts with a certain functionality as declared by the
second layer.

We enable a declarative adaptation of service functionality by utilizing Nota-
tion3 (N3) rule programs, proposed by the Smart Components approach in [5].
This rule programs are evaluated by an interpreter against RDF graphs and
enable deduction of new knowledge, data transformation, and via build-in func-
tions HTTP interaction as well as mathematical operations. In our approach we
use this rule programs to describe the function between RDF input and RDF
output of services. As the program’s data format is N3 and therefore a super-
set of RDF, they can not be described as LDP RDF Sources but only as LDP

Execution System

Script B - }
L e update (Optional
- build docker- yldocker- - Docker <
compose compose yml Image
- run docker .
- push services =
]
= =
N 3
-, " epioy z
. o]
P . £
deploy . Ty i A g
Mgrmottal -, Marmotta2' " {, Marmotta n
fontainer -, Container -.|. Container
4 CA

E Service 1 | E Service 1 | L1 E Service n |

Docker Engine

Fig. 1. Architecture of evaluation environment

Non-RDF Sources, stored as binary files. The integration of this custom func-
tionality and the execution of the programs are established via HT'TP POST
on certain ’Start’” LDP Resources, which is explicitly marked as optional by the
LDP specification and without further implications for LDP Resources. Only
for LDP Containers the LDP specification provides specific behaviour for HT TP
POST, in particular the creation of child-resources. Relying on LDP Resources,
the proposed behaviour on incoming POSTs is therefore in accordance with the
LDP specifications but also enables the integration of Web Services.

4 Implementation

In the first phase of the deployment process, empty service stubs are deployed
as part of an extended Apache Marmotta® Linked Data Platform Web server®.
At this point, the started LDP server contains some basic configurations and
is already accessible but has no included data or further functionalities beyond
the LDP interaction models. In order to add a Web Service, at least four special
LDP Resources have to be created. We will describe the procedure regarding a
simple service which applies basic mathematical operations on input values and

returns the result.

4.1 Deployment

The building blocks of our testing and evaluation environment are depicted in
Fig. 1. The main control component is a pythonscript which coordinates the
complete setup. Mandatory input parameters of the script are the number of
desired instances, a seed number and the host name of the executing machine.
Started on a system that fulfills the requirements’, the script performs the fol-
lowing tasks in order:

® http://marmotta.apache.org/
5 The source code is available through GitHub: http://github.com/aifb/s2apite
7 System requirements: python 3.5+ ; docker 1.13.0+; docker-compose 1.11.1+

http://marmotta.apache.org/
http://github.com/aifb/s2apite

[I > Idp:Resource
| Idp:BasicContainer ‘—DI ldp:RDFSource | ‘Idp:Nun-RDFSource
JAN

:LinkedData Idp-contains
WebService |

——
hydra:

] hydrazentrypoint
ApiDescription :StartApi
|

| hydra:operation
=| hydra:Operation
| | N
o - o httpm:POST
'InPUtPattern hydra:expects hydra:method

Fig. 2. Basic resources for each service

:Program

:hasProgram

Idp:contai

(1) Pulling a specific docker image® from the public docker repository. This image
is used for all containers running in the evaluation environment. It is based on
tomcat7:alpine’ and contains the enhanced version of Apache Marmotta.

(2) Based on the input parameter, the script creates a docker-compose.yml de-
ployment descriptor. Each docker container gets port 8080 (tomcat/marmotta)
mapped to an individual port of the host machine. The port forwarding uses
ports in range [9000:9000-+n] by default but can be set to any range at starting
time. With this information the docker containers are deployed.

(3) Pseudo-random variants of the service are selected controlled through the
seed parameter. For each instance, a new variant of the service program is created
(like the one in Fig. 3). As the same seed will always generate the same services,
this procedure assures the reproducibility of every scenario.

(4) The generated programs are pushed to the waiting containers by utilizing the
LDP REST-API provided by Marmotta. First, an instance of :LinkedData Web-
Service is required. A :LinkedDataWebService is a subclass of the ldp:Basic-
Container and serves as the Web Service root. It contains all descriptions and
links to the other Web resources. Second, the service gets its execution instruc-
tions through a :Program resource. For now, only declarations in Notation3 are
supported. For further details on the rule-based syntax see [3].

Next, a start resource gets posted to the server in the form of a new ldp: Re-
source. This resource must include an RDF statement declaring it an instance
of the :StartAPI class and conform to the LDP Resource interaction model. As
the server treats members of this class as triggers for services, in contrast to
ldp:Containers or ldp:RDF-Sources, this information changes the default han-
dling of resources, in particular on incoming POST requests.

The last deployment step is the creation of a description resource. For this,
and most other semantic relations between the LDP resources, the outlined
concept relies on the HYDRA [6] vocabulary wherever possible (Fig. 2). For the
execution of a Web Service in this context, a :LinkedDataWebService container, a
:Program and a :Start Api resource are mandatory with optional ApiDescriptions,
Operation and InputPattern declarations.

8 https://hub.docker.com/r/aifb/s2apite/
9 https://hub.docker.com/_/tomcat/

https://hub.docker.com/r/aifb/s2apite/
https://hub.docker.com/_/tomcat/

The script can also be executed against a docker swarm. In this case the
containers are automatically distributed on physical machines which allows to
scale the evaluation environment without any further adjustments. By using this
approach, the only artifact that is required to setup the evaluation environment
is the script itself. Using a certain seed makes environments reproducible.

4.2 Service generator

The main purpose of the evaluation environment is to provide an infrastructure
for generating reproducible, easy to deploy networks of Web-based and semanti-
cally enriched services. Those networks can then be used to test new aggregation,
composition or orchestration methods. After the execution of steps (1) and (2)
the container with LDP Web APIs are up and running but lack any functionality.

A simple example of a service can be the adding of two numeric values.
In our surrounding, such a service is defined by a N3 program, declaring the
transformation from input to return values. This program consists of one or many
rules (Fig. 3) which here specify the transformation of the variables through a
“sum” operator and creates a new triple containing the result.

For test scenarios usually a multitude of different services is required that
can then be orchestrated or aggregated. For a reasonable scenario the services
should of course differ in functionality and interfaces. To allow the evaluation
environment to scale, the service implementations must be generic and param-
eterizable. But if the parametrization is truly random, an once created scenario
can not be repeated. Therefore, we base the selection on a seed value to make
the environment with all its services reproducible.

Our evaluation environment setup script creates services that offer for now
the functionality of basic arithmetic operations (addition, subtraction, division
and multiplication). The services also vary in the number of input parameters.
At the moment, the script generates services that apply operations on 2-26
operands. Which operation is selected and how many operands are used is based
on a pseudo random generator initialized with the seed.

4.3 Execution Engine

As outlined, the service stubs are filled after they have been deployed. Even
more, programs can be modified and even replaced while the instance is active.
The Linked Data-Fu engine [3| provides the necessary capabilities. Originally
designed for Linked Data Stream integration it is also capable to perform HTTP

@prefix ex: <http://example.org/> .
@prefix math: <http://www.w3.org/2000/10/swap/math# > .
{ ?anything ex:summandl 7a;
ex:summand2 7b .
(?a 7b) math:sum ?sum . }
=>{ exresult ex:value ?sum . } .

Fig. 3. Adding two variables declared with Notation3 rules

Deploamenttime in seconds

5 8
Number of deployed services

Fig. 4. Deployment time of Docker container in seconds. Each configuration was con-
ducted five times with one container hosting only one Web Service.

operations in order to interact with RESTful Web resources. As all involved
services actually are of the proposed type, a service can select, invoke and change
other services and even itself.

Whenever a HTTP POST request is sent to a LDP Resource of the :StartApi
class, the corresponding functionality is triggered. The server combines an op-
tionally received RDF graph from the request body with the specific program file
and starts the engine. The computed RDF triples are then collected and written
to the respond message. Therefore, only synchronous requests are possible.

5 Evaluation

We claim that the proposed environment can generate a Web like surrounding
with minimal effort. In order to give a first impression we therefore measure the
necessary computational overhead to establish a certain number of containers.
The tests are conducted on an average office laptop'°.

The results (Fig. 4) show a significant increase of computation time for more
than five instances. It is basically caused by the filled main memory of the
evaluation machine. In the current state, 1 GB to 1.2 GB of main memory
per container are necessary for acceptable responds times. Whenever the docker
engine provides less memory, the deployment time for the corresponding instance
increases drastically.

We assume that the starting process of the Linked Data server is the main
bottleneck. This is supported by recommended settings of Marmotta of about 1
GB. But even if spare memory is available, Docker will start to provide it to the
container after an unpredictable amount of time. That is why the reduction of
the required memory and the optimization of its distribution is one of our next
steps with the highest priority.

10°§7-4600U with 2.10 GHz & 4 cores, 12GB RAM memory, 64-bit Ubuntu 16.04

6 Conclusion

We have outlined an adjustable testing and evaluation infrastructure for LDP-
based Web Services. Conforming to LDP specifications, we implemented a func-
tionality to quickly generate large-scale scenarios for distributed applications
with a reasonable overhead. The generic Web Service stubs allow functionality
adjustments at runtime and therefore support an environment with dynamic
changes under laboratory conditions. On top, the combination of a Linked Data
server with RESTful Web Service capabilities disperses the separation between
data and services.

We illustrated one scenario with an exemplary generator for a set of facile
service instances. This specific evaluation design is solely defined by the generator
script and the configuration parameters (number of instances and the seed value).
It can be deployed anywhere under similar conditions.

Our next steps involve the enhancement of the containers to more elaborate
use cases. Asynchronous calls, streaming capabilities and semantic reasoning are
not yet possible. In addition, we will examine how more complex services with
appropriate semantic descriptions can be generated and the Shapes Constraint
Language'! (SHACL) will be evaluated in order to automatically declare and
validate RDF data in order to exactly define input and output data.

Acknowledgement The research and development project that forms the basis
for this report is funded under project No. 01MD16015 within the scope of the
Smart Services World technology program.

References

1. Bansal, A., Bansal, S., Blake, M.B., Bleul, S., Weise, T.: Overview of the web services
challenge (WSC): discovery and composition of semantic web services. Semantic
Web Services: Advancement Through Evaluation (2012)

2. EMC Digital Universe: The Digital Universe of Opportunities: Rich Data and
the Increasing Value of the Internet of Things. http://www.emc.com/leadership/
digital-universe/ (2014), accessed 30. August 2017

3. Harth, A., Knoblock, C.A., Stadtmdiiller, S., Studer, R., Szekely, P.: On-the-fly in-
tegration of static and dynamic linked data. In: 4th International Conference on
Consuming Linked Data. pp. 1-12 (2013)

4. Joshi, A.K., Hitzler, P., Dong, G.: LinkGen: Multipurpose Linked Data Generator.
In: The Semantic Web — ISWC 2016. pp. 113 — 121. Springer (2016)

5. Keppmann, F.L., Maleshkova, M., Harth, A.: Semantic Technologies for Realising
Decentralised Applications for the Web of Things. In: ICECCS. pp. 71-80 (2016)

6. Lanthaler, M.: Hydra Core Vocabulary. http://www.hydra-cg.com/spec/latest/
core/ (2017), unofficial Draft, accessed 07. July 2017

7. Menday, R., Mihindukulasooriya, N.: Linked data platform 1.0 primer, http://www.
w3.org/TR/1dp-primer/

8. Versteden, A., Pauwels, E.: State-of-the-art Web Applications using Microservices
and Linked Data, http://ceur-ws.org/Vol-1629/paper4.pdf, 24.02.2017

" https://wuw.w3.org/TR/shacl/

http://www.emc.com/leadership/digital-universe/
http://www.emc.com/leadership/digital-universe/
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/
http://www.w3.org/TR/ldp-primer/
http://www.w3.org/TR/ldp-primer/
http://ceur-ws.org/Vol-1629/paper4.pdf
https://www.w3.org/TR/shacl/

