
Tight integration of Web APIs with Semantic Web

Barry Nouwt 1

1 TNO - Netherlands Organization for Applied Scientific Research, The Hague, Netherlands
Barry.Nouwt@tno.nl

Abstract. This short paper describes an initial work to facilitate a better fusion
of Web APIs and Linked Data. It explores how the Semantic Web (SW) com-
munity can benefit from data available through Web APIs. We believe a tight
integration of Web APIs with SW technologies like SPARQL, OWL and rea-
soning has several advantages over loose integration. We demonstrate how a
SPARQL query can be executed against a virtual triple store consisting of vir-
tual triples from (possibly multiple) Web APIs. We discuss the challenges and
limitations faced and describe further research on this topic.

Keywords: Semantic Web, Web API, Apache Jena.

1 Introduction

Semantic Web (SW) standards such as OWL [1], RDF [2] and SPARQL [3] promise
to solve the harmonization and interoperability issues among the large amount of data
sources available on the Web [10]. Using these standards when publishing and query-
ing data is a good practice to enhance accessibility, reusability and reasoning across
different sources, use cases and domains. However, to fully leverage the benefits of
SW technologies, data sources on the Web should be in principle accessible via a
SPARQL endpoint that allows to query RDF/OWL data, but in practice this is not the
case. Although there are valid examples of SPARQL endpoints1, the majority of data
sources on the Web are exposed using different technologies, such as Web APIs or
websites, which require an additional effort to be integrated with SW technologies.

In this paper we investigate how data that is only available through Web APIs can
be integrated with data offered via SPARQL endpoints. Such integration would great-
ly increase the number of data sources to which SW technologies can be applied,
since the number and usage of Web APIs is increasing [10]. For example, the most
famous social media platforms provide comprehensive Web APIs that give users ac-
cess to their social information, and several public transport organizations expose
their travel information via Web APIs. Further, various Web APIs exist that provide
information on topics like weather, maps or news.

Some related work has dealt with facilitating a better fusion of Web APIs and the
SW. For example, the work in [4] aims to achieve a similar integration goal with
SPARQL endpoints, although for relational databases rather than Web APIs. Their

1 A list of SPARQL endpoints can be found here: https://www.w3.org/wiki/SparqlEndpoints

2

approach of translating SPARQL to SQL achieves integration at the level of SPARQL
queries, while we propose to integrate on the level of the triple store. The efforts in
[5], [6] and [9] propose the use of a RDF/OWL model to describe meta data about
Web APIs with the option to map the Web API response to other RDF/OWL models.
The solution in [7] adopts an ‘ontology based access’ approach to heterogeneous data
sources on the Web, and the work in [8] tries to integrate semantically enriched Web
APIs with SW technologies like SPARQL. These works address the lack of semantics
in Web APIs, while our work assumes a Web API’s semantics is mapped to a
RDF/OWL model and investigates how actual integration without loss of functionali-
ty could be achieved.

The rest of the paper is structured as follows: Section 2 differentiates between tight
and loose integration of Web APIs with SW technologies, and elaborates on the ad-
vantages of tight integration. Section 3 provides the main contribution of this paper by
describing our initial attempt to realize a tight integration scenario. Finally, Section 4
discusses the limitations of our results, presents the challenges that still remain open
and proposes some topics for further research.

2 Integration

We consider a typical SW solution as a solution that consists of the following four
elements:

 An RDF/OWL model that describes the domain knowledge in the form of classes
and properties about which a user wants interesting answers

 a SPARQL endpoint that allows users to formulate their SPARQL query (question)
and receive the SPARQL result (answer)

 a triple store that is the database where answers to user questions are looked up,
and

 the actual data that is a collection of facts in terms of the classes and properties
described in the RDF/OWL model.

Whenever a user formulates a SPARQL query, the answers are sought in the actual
data in the triple store. Optionally, additional facts that can be derived by the reasoner
and included in the search for an answer. The integration of Web APIs with SW tech-
nologies like SPARQL, OWL and reasoning can be realized in a ‘tight integration’ or
‘loose integration’ manner.
Tight integration has several advantages over loose integration. Consider the example
of a RDF/OWL model that defines a city that has a label, an average temperature and
a population size, which is shown in Fig. 1.

3

Fig. 1. Our simple example model in which cities have an average temperature and a popula-
tion size.

Although the city’s label and population sizes are available as triples in a triple store,
the average temperature is only available through a public Web API. This Web API
requires a city name and returns the average temperature for this city. Fig. 2 shows
two different scenarios for answering a user that requests both the population size and
the average temperature for the city of Amsterdam.

Fig. 2. The difference between what we call loose integration and tight integration of Web APIs
with SW technologies such as SPARQL.

In the left part of Fig. 2, which we refer to as the ‘loose integration’ scenario, a
SPARQL query retrieves the population size of Amsterdam from the triple store and
this is combined, separately, with the result from the Web API request for the average
temperature of the city of Amsterdam. In the right part of Fig. 1, which we refer to as
the ‘tight integration’ scenario, the following SPARQL query retrieves both the popu-
lation size of Amsterdam and its average temperature at once.

SELECT ?temp ?popsize
{
 :Amsterdam :hasAvgTemp ?temp .
 :Amsterdam :hasPopulationSize ?popsize .
}

4

In this case, the Web API request to retrieve the average temperature is triggered as
part of the execution of the above SPARQL query.

The two scenarios differ in the way in which the Web API request is mapped to the
model. With loose integration, the mapping between the Web API and the model is
implemented in the separate component that combines the SPARQL results with the
Web API results. The advantage is that combining these results on a case-by-case
basis is fairly straightforward, but the disadvantage is that a user can no longer use the
SPARQL interface and this limits the possible questions one can ask. Since asking
random SPARQL queries is an important benefit that SW technology offers, this
loose integration scenario is not desirable.

On the other hand, with tight integration the semantics of the Web API is mapped
onto the domain model about cities, their population and average temperature, so that
it is possible to automatically determine when and how to use the Web API. Although
such integration requires a lot more effort to be implemented, the data behind the Web
API is treated as if it were normal triples. These, so to say, virtual triples act as if the
data was copied and transformed into triples and stored in the triple store, but instead
the data stays in its original source behind the Web API, and is additionally available
to the usual SW technologies such as SPARQL and reasoning.

3 Implementation

Our attempt to tightly integrate a Web API with a SPARQL endpoint for the consid-
ered example uses the concept of a virtual triple store, which has the function to ex-
pose the data behind a Web API as if they were triples. We have used Apache Jena
Fuseki to implement the virtual triple store, since it is well-documented on how to
extend its internal graph implementations, and for its integrated SPARQL engine and
endpoint (Fuseki) that allow easy testing and demonstrating.

We have developed the VirtualRDFGraph Java library, which is a library that al-
lows to expose multiple Web APIs as if they were triples stored in a Apache Jena
graph. We have used the Service Provider Interface (SPI) loading facility included in
Java to make this library automatically include any mappings that occur on the
classpath. Each Web API requires a custom mapping that determines how the Web
API result should be represented, as if they were triples written in terms of a certain
RDF/OWL model. In the city example considered in this paper, the mapping should
contain detailed information on how the result of the average temperature Web API is
mapped to the city model and how this result can be converted into triples on-the-fly.

When the SPARQL query above is executed on a virtual triple store, the query gets
interpreted by the Apache Jena’s SPARQL engine (ARQ). The SPARQL engine cre-
ates a query execution plan by cutting the WHERE clause of the query into subject-
predicate-object (SPO) patterns. In our case the query is cut as follows:

:Amsterdam :hasAvgTemp ?temp

and

5

:Amsterdam :hasPopulationSize ?popsize

Each of these SPO patterns are sent to our VirtualRDFGraph implementation. In
turn, the VirtualRDFGraph sends the patterns to the registered Web API mapping to
retrieve triples that match the pattern. The first triple :Amsterdam :hasAvgTemp
?temp triggers a Web API call based on the :hasAvgTemp property in the pattern,
and uses Amsterdam as the parameter value. The Web API response contains the
average temperature of Amsterdam, which is, for example, 15 degrees. The mapping
converts the response into the following triple:

:Amsterdam :hasAvgTemp “15”^^xsd:integer

The second SPO-pattern :Amsterdam :hasPopulationSize ?popsize

does not result in any triples for the Web API mapping, since the
:hasPopulationSize property does not occur in its mapping. However, it gives
results on the actual triples in the triple store, as follows:

:Amsterdam :hasPopulationSize “813562”^^xsd:integer

As a result, both triples above are returned to the SPARQL engine, which then
combines them in the SPARQL response below and sends it back to the user. The
response contains a single binding for the two selected variables ?temp and ?pop-
size.

{
 "head": {
 "vars": ["temp" , "popsize"]
 } ,
 "results": {
 "bindings": [
 {
 "temp": {"type": "literal" , "value": "15"},
 "popsize": {"type": "literal", "value": "813562"},
 }
]
 }
}

4 Discussion

We acknowledge that the example presented in this paper is rather simple, but it of-
fers a good basis to reflect on the limitations that we have encountered and elaborate
on the challenges that still remain open. This section concludes our short paper by
discussing these limitations and challenges, and proposing some directions for future

6

research on the topic. An important limitation we have faced is that the VirtualRD-
FGraph limits the SPARQL queries that could be answered. An important feature of
SPARQL queries is that they can be reversed. For our example, this means not asking
the average temperature for the city of Amsterdam, but rather asking the cities with an
average temperature of 15 degrees, which in SPARQL looks as follows:

SELECT ?city
{
 ?city :hasAvgTemp “15”^^xsd:integer .
}

In the ?city :hasAvgTemp “15”^^xsd:integer . triple pattern, the
variable has been moved from the object location of the SPO-pattern to its subject
location, causing problems when calling the average temperature Web API.

Since the Web API from our example expects a particular city and returns the av-
erage temperature (and not the reverse2), we can no longer simply use the subject of
the triple pattern and send it to the Web API. In this case, the subject is not a concrete
value, but a variable, and thus we have nothing to send as a parameter to the Web
API. Our current VirtualRDFGraph implementation returns a message saying that the
above SPARQL query is not supported, but this neglects one of the major benefits
that SW technology has to offer, i.e., asking random questions about a particular do-
main.

The only solution to this, without extending the Web API, is feeding the Web API
one city at a time from a list of all cities, and collect and return those cities that have
an average temperature of 15 degrees. The triple pattern itself no longer contains
enough information and more context information is necessary, i.e. a list of all cities.
The following query retrieves the necessary context information:

SELECT ?city
{
 ?city a :City
}

Unfortunately, our current implementation at the graph level does not allow access
to this required context information. An alternative could be to implement the integra-
tion at the reasoner level, making the access to contextual information hopefully easi-
er to realize. In this alternative, the average temperature Web API can be thought as
an external (black-box) reasoner that can infer the average temperature based on a
given city. Further research is required to test the viability and compare these two
approaches.

Another challenge is the tight integration of Web APIs that do not return a single
value (such as our average temperature Web API does) but returns a more complex

2 The Web API could be extended to not only return the average temperature given a particu-

lar city, but also return a list of cities given an average temperature, but extending will not
always be an option.

7

structure with multiple values. Instead of mapping a Web API to a single (data) prop-
erty, the mapping might become considerably more complex. A solution could be to
map the same Web API multiple times, each time focusing on a single value in the
response and ignoring the rest.

Currently, the mapping between the Web API and the RDF/OWL model is cap-
tured in Java source code and this limits the usability of the VirtualRDFGraph. Initia-
tives like [5], [6] and [9] might provide ways to describe these mappings in a more
user friendly way.

References

1. Hitzler P., Krötzsch M., Parsia B., Patel-Schneider P.F., Rudolph S. (2009). OWL 2 Web
Ontology Language Primer, http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

2. Schreiber G., Raimond Y., Manola F., Miller E., McBride B. (2014). RDF 1.1 Primer,
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

3. W3C SPARQL Working Group (2013). SPARQL 1.1 Overview,
https://www.w3.org/TR/rdf-sparql-query/

4. Bagosi T. et al. (2014) The Ontop Framework for Ontology Based Data Access. In: Zhao
D., Du J., Wang H., Wang P., Ji D., Pan J. (eds) The Semantic Web and Web Science.
CSWS 2014. Communications in Computer and Information Science, vol 480. Springer,
Berlin, Heidelberg

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., ... & Sirin,
E. (2004). OWL-S: Semantic markup for web services. W3C member submission, 22,
2007-04.

6. De Bruijn, J., Fensel, D., Kerrigan, M., Keller, U., Lausen, H., & Scicluna, J. (2008). The
Web Service Modeling Ontology. Modeling Semantic Web Services: The Web Service
Modeling Language, 23-28.

7. Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology based
access to distributed and semi-structured information. In Database Semantics (pp. 351-
369). Springer US.

8. Mouhoub, M. L., Grigori, D., & Manouvrier, M. (2015, May). LIDSEARCH: A SPARQL-
Driven Framework for Searching Linked Data and Semantic Web Services. In European
Semantic Web Conference (pp. 112-117). Springer International Publishing.

9. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., & Domingue, J. (2010).
iServe: a linked services publishing platform. In CEUR workshop proceedings (Vol. 596).

10. Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A., & Dustdar, S. (2016). From the Service-
Oriented Architecture to the Web API Economy. IEEE Internet Computing, 20(4), 64-68.

