
Towards Federated �eries for Web of Things Devices
Sejal Jaiswal

Université. Jean Monnet, CNRS,
F-42023 Saint-Étienne, France

cj.sejal@gmail.com

Maxime Lefrançois
Univ. Lyon, Mines Saint-Étienne, CNRS, Laboratoire

Hubert Curien UMR 5516,
F-42023 Saint-Étienne, France
maxime.lefrancois@emse.fr

ABSTRACT
In the emerging Web of Things (WoT), a vast majority of devices do
not consume nor produce RDF, notably because of their inherent
constraints that prevent them from manipulating textual RDF syn-
tax. However, it would be relevant to query against these sources
irrespective of the (lightweight) formats they use, combined with
other Linked Data. In fact the data these WoT devices expose con-
tain crucial real-time information, and being able to tap directly
into this information could enable smarter industrial applications.
In this paper, we are interested in querying indi�erently SPARQL
endpoints, RDF documents, and non-RDF document exposed by
WoT devices in a �exible and extensible way. The core of this solu-
tion is an extension of SPARQL-LD. The SPARQL SERVICE clause
is extended and can be used to query also non-RDF sources for
which we know some RDF lifting mechanism.

1 INTRODUCTION
Even though RDF was adopted as a W3C recommendation for data
interchange on the Web, not all data producer in the IoT/WoT in-
dustry follow RDF as a standard model. Constrained devices or
things on the WoT ecosystem tend to prefer lightweight formats,
mostly binary such as EXI1 or CBOR2 due to their inherent band-
width, memory, storage, and/ or battery constraints. However, it
would be relevant to query against these sources irrespective of the
formats they use, combined with other Linked Data. In fact the data
these WoT devices expose contain crucial real-time information,
and being able to tap directly into this information could enable
smarter industrial applications.

The SPARQL query language enables to retrieve and manipulate
a RDF dataset, which consists of a default graph, and set of named
graphs. SPARQL 1.1 Federated Query [14] introduces the SERVICE
clause, thanks to which a query author can direct a portion of a
query to a particular SPARQL endpoint that is potentially working
1 https://www.w3.org/TR/exi/
2https://tools.ietf.org/html/rfc7049

© 2017 Copyright held by the author/owners.
SEMANTiCS 2017 workshops proceedings: SIS-IoT
September 11-14, 2017, Amsterdam, Netherlands

with a di�erent RDF dataset. SPARQL-LD [5] extends the applica-
bility of the SERVICE operator to RDF Sources so as to exploit the
Web of Linked Data: the SPARQL engine attempts to retrieve the
RDF Graph located at the endpoint URL, and executes the portion
of the query against this RDF Graph.

In this paper, we propose to extend this solution further for
querying also non-RDF Web resources for which some RDF lifting
mechanism is known. This allows one to semantically query WoT
devices while allowing them to expose the data in the format and
structure they prefer. Doing so also allows for standardized access
to all formats of data through the use of SPARQL. This shall be help-
ful for the current industry to adapt to the principles of Semantic
Web without having to change much their existing solutions. Such
an extended SERVICE clause allows to write queries with portions
that are explicitly targeting some speci�c WoT devices that host
their own HTTP server. This allows for low-level querying scenar-
ios such as “What temperature value does sensor x observe?”. On
the other hand, we argue that a higher level of abstraction could
be bene�cial for other querying scenarios such as “What is the
temperature on the second �oor?”.

The rest of the paper is organized as follows: Section 2 introduces
a motivating example for the proposed solution. Section 3 discusses
related work done in the �eld. Section 4 describes the proposed
extension of SPARQL-LD. Section 5 describes how the proposed
solution can be integrated with principles of query federation to
query non-RDF data sources as well. Section 6 reuses the moti-
vating example to explain the working of the solution. Section 7
discusses in brief the evaluation, implementation. Finally, Section 8
concludes the paper and suggests future works planned for further
enhancement of the solution.

2 MOTIVATING EXAMPLE
Consider a WoT-enabled smart o�ce3 with two �oors. For simplic-
ity, we consider the case of only the 2nd Floor with just one room
that has connected sensors and actuators. Floor 2 (<room/2>) houses a
heater that exposes temperature property (<room/2#temperature>) and
an occupancy sensor with occupancy property (<room/2#occupancy>).
We assume that some description of the building and the devices is
available in a Data Catalogue [Section 5.1] and the data generated
by the devices and it’s sensors is hosted on some URL. Listing be-
low is a condensed version of the Data Catalogue and shows some
details for Floor 2. The namespaces are those available with the
online service http://pre�x.cc/.
<room/2> a seas:Room , sosa:FeatureOfInterest ;

ssn:hasProperty <room/2#temperature> ;

seas:onFloor 2 .

3https://w3c.github.io/wot-architecture/

https://www.w3.org/TR/exi/
https://tools.ietf.org/html/rfc7049
http://prefix.cc/
https://w3c.github.io/wot-architecture/

SIS-IoT’17, July 2017, Amsterdam, Netherlands Sejal Jaiswal and Maxime Lefrançois

<room/2#temperature> a sosa:ObservableProperty,

seas:TemperatureProperty .

<Heater/2> a sosa:Sensor, rdfp:RDFSource ;

sosa:observes <room/2#temperature> ;

rdfp:describedBy [

a rdfp:GraphDescription ;

rdfp:validationRule """

?temp_obs a sosa:Observation ;

sosa:hasFeatureOfInterest ?room ;

sosa:observedProperty ?temperature ;

sosa:hasSimpleResult ?temp_value ."""^^ex:bgp ;

rdfp:presentedBy [a rdfp:GraphPresentation ;

rdfp:mediaType "application/json" ;

rdfp:liftingRule <lifting-rule-1.rqg>] .

We want to allow an end user to query the devices by launching
a SPARQL query such as the one in Listing below without having to
worry about the various data formats used by the devices/sensors or
even the distributed nature of the data sources. This query should
answer the question: “What are the rooms that have the property
‘temperature’ and ‘occupancy’? What values do the sensors that have
these property depict?”

SELECT ?room WHERE {

?room a seas:Room , sosa:FeatureOfInterest ;

ssn:hasProperty ?temperature, ?occupancy ;

seas:onFloor ?floor .

?temperature a sosa:ObservableProperty, seas:TemperatureProperty .

?occupancy a sosa:ObservableProperty, seas:OccupancyProperty .

?temp_obs a sosa:Observation ;

sosa:hasFeatureOfInterest ?room ;

sosa:observedProperty ?temperature ;

sosa:hasSimpleResult ?temp_value .

?occ_obs a sosa:Observation ;

sosa:hasFeatureOfInterest ?room ;

sosa:observedProperty ?temperature ;

sosa:hasSimpleResult ?occ_value .

}

There are multiple problems to be tackled here, such as the
physical setup during deployment, setting up APIs to access the
sensor’s data along with the content lifting rule [12], publishing of
the data catalogue, etc. However our major focus for this paper is
integrating the proposed solution with query federation principles,
such that it allows us to query the light-weight format used by the
sensors and the devices to expose their data.

3 RELATEDWORK
To execute queries over the Web of Linked Data, two main infras-
tructure exist based on the data source location: central repository
and distributed repository. With central repository, query service
is provided over a repository where data is collected from various
sources on the Web. For distributed repository, the data need not be
available at a single location for query service. Distributed method
of data access can be further divided into two di�erent querying
approaches: Link Traversal [8] and federation [6]. In link traversal,
data is discovered by following HTTP URIs. Link Traversal could
also be an e�cient method for query federation [1], however the
scenario we work with will not be able to exploit the advantages
of Link Traversal fully due to the lack of referenced links within
a link to identify further data. Hence, we choose only Federated
Query principles for federating the results from various sources.
Federated query is the ability to take a query and provide solutions

based on information from many di�erent sources. In query fed-
eration, a user query is transformed into several sub-queries and
the result is generated by combining the intermediate results from
the integrated data sources. There are studies done explaining the
infrastructure of federation query [6] as well as studies focused on
the basis of federation query processing strategy [9].

SPARQL-LD [5] is an extension of SPARQL 1.1 Federated Query
[14] that exploits the Web of Linked Data by extending the applica-
bility of the SERVICE operator. This enables to query any HTTP
Web source containing RDF data (what is called RDF Source in
RDF 1.1).We shall use an extended version of SPARQL-LD to exploit
the real-time and dynamic nature of Linked Data in our proposed
solution.

One of the primary visions of Semantic Web is to enable ma-
chines to exchange and process web content easily. This vision is
hampered by the coexistence and usage of many heterogeneous
data formats and models. For data conversion from various formats
to RDF (called RDF lifting) which can then be easily queried using
SPARQL, we have used principles of SPARQL-Generate [11, 12] with
respect to constrained devices that produce binary data. SPARQL-
Generate is based on SPARQL and leverages its expressible and
extensible nature to be able to support RDF lifting for new data for-
mats. Although we chose to use SPARQL-Gnerate, one could design
similar solutions that make use of any other existing RDF-lifting
mechanisms such as JSON-LD contexts [16], RML mappings [4], or
XSPARQL rules [13].

The bene�ts of extending SPARQL-LD with the principles of RDF
lifting is that, we shall be able to integrate in the same SPARQL
query: i) RDF data stored in RDF dataset, ii) data from SPARQL
endpoints, iii) RDF data fetched from any RDF source (in any of
the RDF syntax) and iv) non-RDF data obtained in any arbitrary
data format, but for which a RDF lifting mechanism is known.

4 QUERYING DOCUMENTS IN ARBITRARY
FORMATS

In order to query one or more SPARQL Protocol services, one
can use the principles of the SPARQL 1.1 the SERVICE operator
for federated SPARQL queries [3]. SPARQL 1.1 Federated Query
allows for combining group graph patterns that are to be evaluated
over several SPARQL Protocol services within a single query. The
endpoints of the services to be queried are provided as parameters
to the SERVICE operator.

However, for data that is published/available in a RDF format
but not necessarily set up through an endpoint, we make use of
SPARQL-LD to directly access and exploit the RDF graphs. SPARQL-
LD has an extended SERVICE de�nition that tries to fetch and query
the RDF triples that may exist in the given resource at execution
time.

SPARQL-LD does not cater to resources that do not have a RDF
representation. Hence we make an extension to SPARQL-LD, en-
abling the use of non-RDF web documents published by constrained
devices that host their own HTTP server. Our implementation uses
the Content-Li�ing-Rule HTTP response header �eld as de�ned
in [10]. The value of this parameter is an absolute URI that iden-
ti�es some RDF lifting mechanism (SPARQL-Generate, JSON-LD

Towards Federated �eries for Web of Things Devices SIS-IoT’17, July 2017, Amsterdam, Netherlands

Context, RML Mapping, etc.). Our extension of SPARQL-LD imple-
ments the support of lifting rules expressed as SPARQL-Generate
queries [11]. This allow us to execute portions of a query to the
RDF generated from lightweight documents in arbitrary formats
exposed by constrained WoT devices.

Such a lifting rule could be hosted on the device manufacturer’s
website for example.

5 QUERY FEDERATION
The proposed solution is described and integrated within the 3
main phases of any query federation engine: Sources Selection,
Federated �ery Formation and Federated �ery Execution as
shown in Figure 1.

5.1 Sources Selection
It would not be e�cient to send every piece of query to all the data
sources, we need to determine the relevant data sources. In fact, it
is crucial in constrained environments to preserve the longevity of
the devices (battery life) and the bandwidth. For the solution we
propose, we assume contextual information about the devices and
what they expose is available in a Data Catalogue. Such a Data Cat-
alogue could be constructed by the dataset publisher, the installer
of the devices, or automatically thanks to automatic registration
from the devices. We issue queries against this catalogue to identify
which of the data sources are relevant for a particular part of the
query. More precisely, we suppose that each data source is linked
to some Basic Graph Pattern (i.e., a RDF Graph with variables) that
describes the type of RDF graph that would be the result of lifting
the document retrieved at any time. This would allow us to check
whether a source has a partial solution to the high level query. It
is worth noting here, that many other mechanisms exists[7, 15] to
identify proper data sources other than a Data Catalogue and the
proposed solution can be adjusted with respect to the meta-data
source available.

5.2 Federated Query Formation
In the Federated �ery Formation phase, we decompose the input
query and build a new query with the union of multiple SERVICE
clauses that are to be issued to the source endpoints selected in the
previous phase: that means those (i) whose context is relevant (e.g.,
that are on the �oor one want to query the temperature of), and (ii)
capable of providing some relevant information. Each sub-query
is built combining the biggest subset possible that is common to
the Basic Graph Pattern the source exposes, and the Basic Graph
Pattern in the input Query. Grouping several triples together like
reduces the number of look-up to the same source and minimizes
the intermediate join process.

5.3 Federated Query Execution
In the Federated �ery Execution phase, the sub-queries built in the
Federated �ery Formation phase are executed upon the relevant
sources as identi�ed in the Sources Selection phase. This phase
involves the use of the extended SERVICE clause as described in
Section 4. If the endpoint/document to be queried against is not in
RDF format, we launch a GET request to get the lifting rule and the
document whose content are to be lifted or transformed. We then

transform the data de�ned in the lifting rule and execute the sub-
query against the resulting RDF graph. The obtained intermediate
results are then federated and the �nal result is passed back to the
user.

6 USAGE SCENARIO: EXAMPLE
In the Sources Selection phase, we learn from the data catalogue
that not all triple patterns of the input query can be answered
from a single data source. Hence, we issue a SELECT query to
determine what triples can be answered by each of the data sources.
This particular data source is added in the SERVICE clause of the
sub-query. In the Federated �ery Formation phase, we use the
information drawn from the Sources Selection phase to put together
the triples aimed for the same data sources and this creates a sub-
query. However, the SERVICE clause might not necessarily be a
SPARQL endpoint, such a case is the major focus of the proposed
solution. If the solution is in a format not handled by SPARQL 1.1
or SPARQL-LD, we look for lifting rule information in the data
catalogue or directly in the HTTP response header �eld Content-
Li�ing-Rule. This lifting rule is used during the Federated �ery
Execution phase, and the intermediate results are then federated to
form the �nal result.
As a real-world use case, the end user can use the result to launch
another command to change the temperature through the heater
in Room 2 based on the occupancy sensor data.

7 EVALUATION AND IMPLEMENTATION
We ran 100 tests against various data sources. Figure 2 shows the
run-time for the tests in increasing order. 50 tests were run against
direct SPARQL endpoints and RDF sources and another 50 tests
against data sources in arbitrary formats. The information for all
data sources was provided through a Data Catalogue.
As expected, data sources with either SPARQL endpoint or RDF
formats have less run-time in general as compared to the arbitrary
data format sources. The results are highly a�ected by the network
status and the number of calls made to the Data Catalogue and
most importantly, the number of endpoints present and the time
taken for lifting the data to RDF as well as the size of the data. The
average run-time for querying against SPARQL endpoints, RDF
sources is noted as 30.31 seconds and the average run-time against
arbitrary formats is noted as 38.02 seconds.

The experiments were run on a computer with processor Intel
Core i5 @2.5 GHz CPU, 4GB RAM and running macOS Sierra (64
bit). The implementation is done in Java 1.8.
The extension of SPARQL-LD to leverage the RDF Presentation
protocol is implemented as a fork of Apache Jena v3.3, and is avail-
able on GitHub4. The motivating example is provided as a test-case.
We aim to get better results on a more advanced system and using
optimization techniques as mentioned in the future works.

8 CONCLUSION AND FUTUREWORK
The problem of exploiting data from heterogeneous sources and
formats is common in the linked data world. In this paper, we
have proposed a solution that draws bene�ts of SPARQL-LD and
is able to directly fetch and query RDF data from any HTTP Web
4https://github.com/thesmartenergy/sparql-ld-extended

https://github.com/thesmartenergy/sparql-ld-extended

SIS-IoT’17, July 2017, Amsterdam, Netherlands Sejal Jaiswal and Maxime Lefrançois

Figure 1: Proposed solution integrated in Query Federation Phases

Figure 2: Run time against various Data Sources

document. The solution comprises an extension of SPARQL-LD
that allows to also query data that is not directly presented in a RDF
format, but for which a RDF lifting rule is known. We then fetch the
URI of the RDF lifting rule along with the document, lift the data
to RDF format and then querying the resultant RDF Graph. This
solution allows us to exploit the dynamic nature of data sources
such as light-weight sensors or devices. We have discussed exten-
sively the working principles and phases of the proposed solution
through the use of a motivating example, which is very close to a
real world use-case scenario.
The proposed solution has the potential to spawn research direc-
tions towards a plethora of exciting new use cases and services as
well as contribute towards the larger picture of �exible and scalable
semantic interoperability for devices and services on the Web of
Things or the Internet of Things at large, making these devices
seemingly follow the principles of Linked Data [2].
The HTTP header �eld Content-Li�ing-Rule we use could be worth
being standardized at the W3C to also include non-native RDF seri-
alizations as Linked Data sources.

Future work planned for the solution includes implementing the
federated query optimization techniques [7, 15] and to include more
test-cases.

REFERENCES
[1] F. Alahmari. Evaluating SPARQL using query federation and link traversal. In

Digital Information Management (ICDIM), 2011 Sixth International Conference on,
pages 79–84. IEEE, 2011.

[2] T. Berners-Lee. Linked data. https://www.w3.org/DesignIssues/LinkedData.html,
jul 2006. Last Accessed: 2017/05/02.

[3] C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating queries in
SPARQL 1.1: Syntax, semantics and evaluation. Web Semantics: Science, Services
and Agents on the World Wide Web, 18(1):1–17, 2013.

[4] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. V. de Walle.
RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data.
In Proceedings of the Workshop on Linked Data on the Web, co-located with the
23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, 2014.

[5] P. Fafalios and Y. Tzitzikas. SPARQL-LD: a SPARQL Extension for Fetching
and Querying Linked Data. In International Semantic Web Conference (Posters &
Demos), 2015.

[6] O. Görlitz and S. Staab. Federated data management and query optimization for
linked open data. In New Directions in Web Data Management 1, pages 109–137.
Springer, 2011.

[7] O. Görlitz and S. Staab. Splendid: SPARQL endpoint federation exploiting void
descriptions. In Proceedings of the Second International Conference on Consuming
Linked Data-Volume 782, pages 13–24. CEUR-WS. org, 2011.

[8] O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL queries over the web of
linked data. The Semantic Web-ISWC 2009, pages 293–309, 2009.

[9] G. Ladwig and T. Tran. Linked data query processing strategies. The Semantic
Web–ISWC 2010, pages 453–469, 2010.

[10] M. Lefrançois. Interopérabilité sémantique libérale pour les services et les objets.
In Actes de la 17ème conférence Extraction et Gestion des Connaissances (EGC’17),
Grenoble, France, Jan. 2017.

[11] M. Lefrançois, A. Zimmermann, and N. Bakerally. A SPARQL extension for
generating RDF from heterogeneous formats. In Proc. Extended Semantic Web
Conference (ESWC’17), Portoroz, Slovenia, May 2017.

[12] M. Lefrançois, A. Zimmermann, and N. Bakerally. Flexible RDF generation from
RDF and heterogeneous data sources with SPARQL-generate. In Proc. of the 20th
International Conference on Knowledge Engineering and Knowledge Management
(EKAW’16), 2016.

[13] A. Polleres, T. Krennwallner, N. Lopes, J. Kopecký, and S. Decker. XSPARQL
Language Speci�cation. W3C Member Submission, Jan. 20 2009.

[14] E. Prud’hommeaux, C. Buil-Aranda, et al. SPARQL 1.1 federated query. W3C
Recommendation, 21, 2013.

[15] B. Quilitz. DARQ–Federated Queries with SPARQL, 2007.
[16] M. Sporny, G. Kellogg, and M. Lanthaler. A JSON-based Serialization for Linked

Data. W3C Recommendation, Jan. 16 2014.

