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MPUMEHEHME HOBbIX METO/IOB IIOCTPOEHHUA MHOTOCJIOMHBIX
MOJIYSMIIMPUYECKUX MOJEJIEN K 3AJIAYE HEJTMHEMHOT O U3TMBA KOHCOJIBHOI'O
CTEPKHA"

AHHOTAIMA

JanHas cmamwvs nocesiujeHa HO80l Memodo/102ul, KOMopyo Mbl pazpabomanu 0151 NOCMpPOeHUsl
Modesell Ha ocHoge zemepo2eHHOol uHdopmayuu, skatouarouell duddepeHyuaibHvle ypagHeHus U
donosHumeabHble JaHHble. OCHOBHAS udesi 3aKa4aemcsi 8 pa3pabomke HOB8020 Kadccd
Mamemamuyeckux modeell, 8 pamMKax KOmopozo nosi8AsIlomcsi Jono/HUMeAbHvle 803MOHCHOCMU
0/151 NOCMPOEHUS yMOYHsIeMOUl MOJeaU HA OCHOBE COUeMAHUS! KAACCUYECKUX U HO8bIX Memodos. Mul
cmpoum daHHble MOdeaU NYMEM NPUMEHEHUS KAACCUYeCKUX (hopMY.a HUCAEHHO20 UHMEe2PUPO8AHUS
dugdepeHyuabHbIX YpasHeHUll K UHMeps8asy ¢ nepeMeHHbIM 8epXHUM hpedesoM. Imom nodxod
Obl1 nposepeH Ha 3adave HeAUHEUHO020 U32Uuba KOHCO/bHO20 MEemAaAuYecKkozo cmepicHs. B
Kayecmae ucxo0Ho020 duggepeHyua1bHOo20 YPAasHEHUs Mbl 831U dugdepeHyuaibHoe ypagHeHue
04151 npsiMo2o udeasbHO ynpyeoz20 6eCKOHeYHO MOHK020 cmepicHA. [lasi udmepeHull Mbul 835U
peabHblll CmepiceHb, Komopblil He 18./151emcsl HU Uded/1bHO yhpyauM, HU 6€CKOHEeYHO MOHKUM, HU
npsiMbiM. B pe3ysibmame npuMeHeHUs1 Hawux Memogdos, Mbl NOAYHUAU NPUOAUNCEHHYIO MODesb, 0151
KOMopoli mo4HOCMb ONUCAHUSI Ped/bHO20 CMepiCHS 8bllle, YeM Yy MO4YH020 peuwleHUs UCXOOH020
dugdepeHyuaabHozo  ypasHeHus. Hawu  ucciedosaHuss  8axcHbl 015  00/20CPOYHO20
NPO2HO3UPOBAHUSI COCMOSIHUSL U N0B8eJeHUsl CMPOUMEAbHbIX 6A/A0K U CHUMAWUX 31EMEHMO8
NnodsEMHbIX KPAHO8 U Opy2UX PeaabHbIX MEXAHU3MO8.
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NEW METHODS OF MULTILAYER SEMIEMPIRICAL MODELS IN NONLINEAR BENDING OF
THE CANTILEVER

Abstract

This article focuses on a new methodology that we have developed for building models based on
heterogeneous information, which includes differential equations and additional data. The basic idea
is to develop a new class of mathematical models, in which there are additional opportunities to build
and Refine models based on the combination of classical and new methods. We build these models by
applying the classical formulas for the numerical integration of differential equations to the interval
with a variable upper limit. This approach was tested on the problem of nonlinear bending of a
cantilever metal rod. As the original differential equation we get the differential equation for elastic
perfectly straight, infinitely thin rod. For our measurements we took the actual rod that is neither
perfectly elastic or infinitely thin nor straight. The result of the application of our methods, we
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obtained the approximate model for which the accuracy of the description of the real terminal is
higher than the exact solution of the original differential equation. Our research is important for long-
term forecasting of the status and behavior of construction beams and compression elements of cranes
and other real mechanisms.

Keywords

New methods of building; multilayer models; nonlinear bending of the cantilever; bending of the metal
rod.

Introduction

Modeling of complex technical objects is often hampered by insufficient knowledge of the processes occurring
in them. As a result, the structure and coefficients of the differential equations describing these processes are not
known accurately, the boundary conditions are known even less accurately. The problem of identifying equations
and boundary conditions from the results of observations (the inverse problem) is usually much more complicated
than the direct problem of solving a differential equation with boundary conditions. One of the methods for solving
such problems is the approach based on the construction of the neural network model of the object by differential
equations and additional data [1-8].

However, the training of neural networks requires a fairly large computational cost. To accelerate these
processes, a new class of multi-layer models was developed [9-12], with which it is possible to do it without a
complicated training procedure. In this paper, this approach is tested on the task of modeling a real object using
our experiments.

The essence of the approach is to apply the known recursive formulas for the numerical integration of
differential equations to an interval with a variable upper limit. As a result, an approximate solution is obtained as
a function of this upper limit. In this paper, this approach is applied to the problem of modeling the shape of the
bend of a directly cantilevered metal rod. In this case, attempts to select the coefficients of the equation in such a
way that its exact solution corresponds to the experimental data with an acceptable accuracy did not lead to
success. The developed methods can be used for long-term forecasting of the behavior of building beams, various
structural elements of load-lifting machines and mechanisms taking into account the real picture of wear, aging
and corrosion of metal.

Material and methods

The measurements were performed with a straight rod made of an aluminum alloy 940 mm long with a circular
cross-section with a diameter of 8 mm and a mass of 126 grams. One end of the rod was tightly fixed. At the other
end of the tube we weighted weights 100 grams, 200 grams and so up to 1900 grams. The positions of the rod
were fixed with increasing mass, which acted on the unattached end of the object under study. The tube was
photographed after attaching and detaching of every weight.

As a mathematical model, the equation of a large static deflection of a thin homogeneous physically linear
elastic rod is used under the action of distributed q and concentrated p forces [14].

2 2

dig_imgL (m‘+z)cosezo (1)
dz D (m

Where D and L are the constant flexural rigidity and length of the rod; 6 - is the angle of inclination of the

tangent; z=1—s/ L - s -the natural coordinate of the curved axis of the rod, measured from the seal, m - the

mass of the rod, m; _ the mass of the load. In the experiment performed, the distributed and concentrated forces

were the weights of the rod and the load at the end.
The boundary conditions have the form:

@ =0; 0
dz

z=0

:60

z=1

The angle 0 is related to the coordinates of the points on the rod by the equalities:

o Cos(@);ﬂ = Sin(0); (2)
ds ds

To obtain the equation (1) we used the equation of small pure bending of an ideal straight rod of infinitesimal
length in the projection on the tangent to the line of large deflection.

Equations (1) and (2) describe the object in question inaccurately - the rod has a yield zone near the seal, has
geometric and physical errors. By our methods, an approximate model is constructed by the equation (in the
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problem under consideration, these are equations (1 and 2)), the parameters of which are refined from the
measurement data.
We rewrite equation (1) in the form:

2
?ijza(,ui+Z)C089 (3)

mgL? m,
a= My =—
where D | m,
As indicated earlier, equation (3) describes the process of bending a rod with a large error. This statement was

confirmed by numerical experiments. To build a more adequate model we move from the system (2 - 3) to its
approximate parametric solution X(S,6,,a)and Y(S, 8,,a) . Parameters ,,a can be found by the method of

least squares, by minimization of:
N
2 2
D (X(5,65,2) = %) +(¥(5;, 65, 2) Vi) (4)
j=1
Here N - number of points at which measurements were taken, {X;, Y, } - the coordinates of the points at which
measurements were taken corresponding to the marks on the rod atdistance S; from the embedding. In this case,
S; are not known in advance. To search for them the length of the rod is divided into 100 parts and as S; we take

a number corresponding to the minimum value of the corresponding summand in the sum (4). Due to the fact that
the number §; is not known beforehand minimization (4) was conducted using the random search method [16].

To define functions X(S;,8,,a), Y(S;,8,,a) we used method [9-12]. Its essence with respect to equation (3)

is that the known formulas for the numerical solution of differential equations should be applied not to the interval
[0,1] but to an interval with a variable upper limit [0, Z] . In this case, instead of a table of numbers, we get a

function 49(2, (90, a) ,» and the parameters of the problem 190 ,d are among its arguments.

From 6(z, 6y, a) we go over to the original Cartesian coordinates, integrating (2) according to
the Simpson formula for a variable-length interval:

T R

-y St a2

=1

We applied this formula in calculations for M =10.
As a result of the substitution, we obtain the dependences X(S,6,,a) and Y(S, ,, ) . Parameters 6,,8, as it

was mentioned above, are found by minimization of expression (4).
We present the results of calculations for above mentioned modification [9-12] of implicit Euler method [15]

with one step. As a result, we obtain an approximate equation 8(z) = 6, + zza(,ui +2)c0s(#(z)), from which

we find an approximate solution:

2
0(2) =2 6, +z%a(y +12) ,
JL+22%a(u, +2)(6, + 2%a(y +2)) +1

where 6, =0(0) the angle of the rod at its end. Substitution (5) into Simpson formulas let us to obtain

(5)

dependence X(S,6,,a) u Y(S,6,,a). There are no restrictions on the parameters €, and a.

In fact, accuracy of the given solution is higher, when the parameter @ is lower, butin case of an approximate
type of equation (3) we are interested not in a small error in the solution of this equation, but in the accuracy of
the compliance with measurement data.

Calculations. Let's give the results of calculations for three values of the mass of the cargo M, =0 grams,
m, =700 grams u M, =1500 grams. Figure 1 compares the measurement data and the results of calculations

using formula (5) for M, =0 grams.
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200 400

Figure 1. Theoretical and experimental rod deflection curves obtained by using formula 5 for the mass of the cargo M, = 0
grams
The standard deviation of the measurement results from the theoretical curve {X(S, 6,,), Y(S, 6,,a)} is 2.25

mm. The error lies within the measurement error.
On the figure 2 there is a comparison of measurement data and calculation results by formula (5) for m, = 700

grams.
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Figure 2. Theoretical and experimental rod deflection curves, obtained by using formula 5 for mass M, = 700 grams

The standard deviation of the measurement results from the theoretical curve {X(S, 6,,), Y(S, 6,,a)} is 2.05

mm. The error lies within the measurement error.
On the figure 3 there is a comparison of measurement data and calculation results by formula (5) for

m, =1500 grams.
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Figure 3. Theoretical and experimental rod deflection curves, obtained by using formula (5) for the mass of the cargo 1500
grams

The standard deviation of the measurement results from the theoretical curve {X(S, 6,,), Y(S, 6,,a)} is 3.39

mm. The error lies within the measurement error.

146



We note that similar results were obtained for other values of the mass of the cargo. Interest is the possibility
of predicting the deflection of the rod, depending on the weight of the load. For this we studied the dependence of

the parameters 6,8 and | from ;. For the formula (5) the following results were obtained:
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Figure 5. Dependence @ (mm) from the mass of the cargo Hi
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Figure 6. Dependence | from the mass of the cargo Hi

(9)

The data from the graph show that parameters @ and | practically do not change almost at all intervals of the

change in the mass of the cargo and angle @, varies linearly. Let's compare the experimental data with the results

of calculations using formula (6) for a =0.03, | =850 u 6, calculated on the base of the linearly dependence,

that is built by first two dots of the graph 4 for the mass of the cargo 100 gram.
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Figure 7. Theoretical and experimental rod deflection curves, obtained by using formula (5) for a =0.03, | =850 and 6,
calculated on the base of the linear dependence, that is built by first two dots of the graph 4 for the mass of the cargo 100 gram

It can be seen from the graph that the discrepancy between the theoretical curve and experimental data differs
no more than 10 mm, which can be considered a satisfactory result.

Results and Discussion

The fundamental difference between our method and traditional numerical methods is the obtaining of a
function instead of a table of numbers, while the parameters of the problem naturally enter into the number of
arguments of this function. This circumstance makes it possible to use the obtained models as components of
cognitive systems, as they are easily adapted when new information about the modeled object appears.

A typical situation for practice is the situation when the results of observations of a real object contradict the

mathematical model obtained on the basis of an attempt to apply known physical laws. In this situation, man
often seek to refine the physical model of the object and obtain differential equations that reflect the processes
occurring in it more accurately.

In particular, we can try to refine the coefficients of the equations. To solve such problems, there are a number
of approaches, one of which is the use of neural networks [4, 7]. Sometimes no choice of parameters allows us to
reflect the experimental data with reasonable accuracy, then it is necessary to change the structure of the model,
which can lead to a sharp complication of differential equations and does not always ends successfully in a
reasonable time. These difficulties often lead to the fact that the model of the object is constructed empirically by
interpolation from experimental data.

Our method allows us to apply an intermediate approach, which consists in obtaining approximate semi-
empirical formulas based on an inaccurate differential model and measurement results. Known theorems on the
error of numerical methods [15] allow us to state that we can obtain an arbitrarily exact approximation to the
solution of a differential equation by using a partition into a sufficiently large number of intervals. Our approach
allows us to obtain formulas without the use of interpolation, which can be refined from the experimental data.
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