

 NiW: Converting Notebooks into Workflows

to Capture Dataflow and Provenance
Lucas A. M. C. Carvalho1, Regina Wang2, Yolanda Gil2, Daniel Garijo2

1University of Campinas, Institute of Computing, Campinas, SP, Brazil
2University of Southern California, Information Sciences Institute, Marina del Rey, CA, U.S.A

lucas.carvalho@ic.unicamp.br, gil@isi.edu, dgarijo@isi.edu

ABSTRACT

Interactive notebooks are increasingly popular among scientists to

expose computational methods and share their results. However,

it is often challenging to track their dataflow, and therefore the

provenance of their results. This paper presents an approach to

convert notebooks into scientific workflows that capture explicitly

the dataflow across software components and facilitate tracking

provenance of new results. In our approach, users should first

write notebooks according to a set of guidelines that we have

designed, and then use an automated tool to generate workflow

descriptions from the modified notebooks. Our approach is

implemented in NiW (Notebooks into Workflows), and we

demonstrate its use by generating workflows with third-party

notebooks. The resulting workflow descriptions have explicit

dataflow, which facilitates tracking provenance of new results,

comparison of workflows, and sub-workflow mining. Our

guidelines can also be used to improve understandability of

notebooks by making the dataflow more explicit.

CCS CONCEPTS

• Information systems → Artificial intelligence; Knowledge

representation and reasoning

KEYWORDS

Scientific Workflows; Workflow Design; Electronic Notebooks.

1 INTRODUCTION

Interactive notebooks have become very popular in science to

capture computational experiments [14]. These notebooks include

code, visualizations, and explanations, and can be easily shared

and re-run.

As scientists carry out their research, they may need to

compare the results and methods of different experiments. This

involves comparing final results, comparing intermediate results,

comparing steps of the method, and comparing parameter values.

Since notebooks contain raw code, it can be hard to understand

how new results are generated, as well as to compare notebooks.

In contrast, workflows offer modular components to run code, and

have an explicit dataflow. This can facilitate provenance capture,

as well as automated mining of reusable workflow fragments [4].

Workflows also facilitates understanding and performing

comparisons, particularly for non-programmers [6].

This paper presents an approach for converting notebooks into

workflow descriptions by mapping various aspects of notebook

cells into workflow components and dataflow. Our approach is

implemented in NiW, a prototype tool to convert Jupyter

Notebooks 1 into WINGS workflows [7]. Based on the

assumptions of our approach, we propose a set of guidelines for

designing notebooks that facilitate the conversion and can be used

by notebook developers to improve the understandability of their

notebooks.

2 DATAFLOW AND PROVENANCE IN

WORKFLOWS AND NOTEBOOKS

This section discusses general issues for identifying dataflow and

tracking provenance in notebooks, compared with simple dataflow

in workflows. Our work to date has focused on mapping Jupyter

Notebooks to workflow descriptions that can be used in the

WINGS workflow system [6], but many of the issues will be

common for other notebook and workflow systems.

2.1 Dataflow in Workflows

Workflows capture explicitly the dataflow across software

components. We describe here a very simple dataflow

representation and workflow structure that we assume in the rest

of the paper. This approach is used in several workflow systems,

including WINGS [6], Pegasus/Condor [4], and Apache Taverna

[12].

Each software component (or step) of a workflow may have

multiple datasets as inputs, multiple datasets as outputs, and

multiple parameters, which are provided as simple numeric or

Boolean values. A dataset generated by a component can be input

to another component, thereby indicating the flow of data (i.e., the

dataflow) from a component to another.

A workflow management system can run a workflow if the

software components can be executed and the respective input

datasets and parameter values are provided. Because the dataflow

is explicitly captured in the workflow, the system can record the

provenance of each new dataset generated by the workflow.

1 http://jupyter.org

K-CAP2017 Workshops and Tutorials Proceedings,

© Copyright held by the owner/author(s)

SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al.

2

The dataflow of a workflow is often shown as a graph.

Workflows can be compared as graphs. Indeed, graph algorithms

have been used to query workflow repositories [1], and to mine

workflow repositories to find commonly occurring sub-workflows

[5]. Visual user interfaces that show the dataflow graph in a

workflow are easy to use for non-programmers [8].

2.2 Overview of Computational Notebooks

Notebooks aggregate text and code, grouped into a sequence of

containers or cells. Cells can be code cells, markdown cells, and

raw cells. Code cells have running code usually with one

programming language such as Python, R, Java, etc. Code cells

are the heart of notebooks. Markdown cells are comments and

documentation, so users can add graphics, formatting, etc. These

cells are not linked with any other cells and run without

interfering other cells. Raw cells display raw text without any

conversions, and are much less used. Unlike raw and markdown

cells, code cells are linked with each other when the notebook

runs, though code cells run like a single unit of code. Thus, when

a code cell performs any activity (e.g. initialize a variable), the

next code cell to be run carries it on as though there were no other

cells in between. Outputs are shown in the notebook when a cell

code includes a plot or print statement.

 Jupyter Notebook 2 is one of the most popular notebook

platforms. They were originally named IPython Notebooks since

they are primarily used with Python, but expanded with kernels

for several other programming languages other than Python. A

kernel is a program that runs the notebook’s code.

2.3 Understanding Dataflow of Notebooks

We analyzed a diversity of Jupyter Notebooks to understand their

dataflow and the provenance of their results. Common problems

that we found include:

1. Processing: A user may not have a clear understanding of

what are the main processing cells of a notebook. For

example, cells for assigning values to variables or

importing libraries are not processing units and should be

placed in the same cell that uses those variables.

2. Dataflow: Input file names are either implicit in the code

or defined as parameters through method calls in previous

cells. This represents implicit dependencies between cells,

and therefore make it difficult to understand the dataflow

among them. In addition, users may also have difficulty

figuring out what files were generated by a given cell.

3. Inputs: Input files may contain pointers to other files that

are opened and used as inputs inside of a cell. This

creates an implicit dependency that is difficult to detect.

4. Outputs: When a cell does not have an explicit output it

is very difficult to understand what kind of process that

cell performed. A cell may overwrite a file with the same

name generated by other cells, so it can be hard to track

the provenance of newly generated files. Notebooks can

2 http://jupyter.org/

generate visualizations, but those do not necessarily

generate output files.

5. Files: It is very difficult to understand how the files in

notebook folders correspond to the cells that used or

generated the files.

6. Data: Some notebooks are available in repositories

without any test data. Therefore, this makes it hard to

understand the expected data format of the input files and

the outputs generated by the notebook. It also makes it

hard to rerun the notebooks.

 In summary, many problems arise in trying to understand what

is the dataflow across the cells of a notebook and how they use or

generate notebook files. This makes it very hard to figure out the

provenance of any results. This also makes it hard to understand a

notebook, as well as comparing different notebooks.

3 MAPPING NOTEBOOKS TO WORKFLOWS

When mapping notebooks into workflows, many issues must be

addressed. We discuss here those issues, and our approach to

tackle them. We start with general issues. After that, we focus on

issues specific to Jupyter Notebooks and Python, since that has

been the focus of our work so far. Then we discuss issues specific

to the WINGS workflow system, which is the target of our

mappings.

3. 1 Components

3.1.1 Executable Code

 Differences: Each component in a workflow must have some

running code within it. In notebooks, cells may contain solely

value assignment to variables, function declarations or library

imports, or documentation, which are not executable code by

themselves and cannot be easily mapped into a workflow

component. Another difference is that in notebooks even though

code is split cell by cell, most of the splits only exist to benefit

human readability and do not actually affect the code itself. Cells

are used just to modularize the code. As a result, different users

may break up the code at different places and it will not matter

much if the sequential order to run these cells is preserved when

there are any data dependencies between them. In contrast, in

workflows the code is split into components which are isolated

from one another and that individually carry out a meaningful

function. An example of this is that if a variable is created in a

component and used in a second component, the latter will not

have access to this variable unless it is generated by the former as

an output and explicitly consumed as an input by the second

component.

 Approach: Each notebook cell with running code will be

mapped to a workflow component. If a notebook cell does not

have running code and only has library imports or method

declarations, it will become part of a cell that requires that

information.

Converting Notebooks into Workflows SciKnow’2017, December 2017, Austin, Texas USA

 3

3.1.2 Libraries and Methods

Differences: A notebook only needs to import a library or

state a method once. Since workflows are componentized, the

imports and method declarations need to be done in each

workflow component that uses them.

Approach: Every library used in the notebook will be

imported into all workflow components created. A method will be

included in a component only if the method is used in it.

3.1.3 Open Files

Differences: A notebook can open a file and use it in any

subsequent cell. In a workflow, a file can be used only inside the

component that has that file as input.

Approach: If a file is opened and used across many cells,

those cells will be merged into a single component. Note that an

alternative approach might be to create separate components for

each of the cells and open and close the file in each of those

components, but this would result in inefficiencies if the data is

written to files and read from files too many times.

3.1.4 Markdown Cells

Differences: Markdown cells in notebooks do not contain

running code, but need to be included in the workflow as

documentation so that the information that they contain is not lost.

Workflow components can have documentation. There can be

more markdown cells than code cells. In addition, the relationship

between markdown cells and code cell is not explicit. A

markdown cell may be related to either its previous or its

subsequent cell.

Approach: Since the relationship between markdown cells

and code cells is unknown, the assignment is made in the

following way: a markdown cells’ information will be attached to

the documentation of the component created for its subsequent

code cell.

3.1.4 Component Naming

Differences: In a notebook, a cell does not have a name. In a

workflow, a component has a name that generally describes the

function of the component is in the workflow.

Approach: A name will be generated for each component of

the workflow, starting with “Component” followed by the

ordering number from the cell (e.g., Component1, Component2

and Component3).

3.2 Data and Parameters

3.2.1 Parameters

Differences: In notebooks, method parameters are set through

program variables. In workflows, parameters are inputs to

components and provided by users. In workflows, if parameters

are coming from other components, these parameters must be

passed explicitly through a file.

Approach: Variables of primitive types (i.e., Boolean, string,

integer, float, date, etc.) that are given constant values in

notebooks will be mapped to parameters in workflows, and they

will be given the name that was used in the notebook.

3.2.2 Input Files

Differences: A notebook may be given input data once at the

beginning, and there is no need to pass data through files from cell

to cell. In a workflow, a component must output a data file that is

then an input to another component.

Approach: A data file will be explicitly generated from the

notebook code in order to be passed to another component in the

workflow. Code will be added to the component that generates the

data so that the resulting data is written into a file that can be

passed to the next component. Although this may not be an

efficient approach, it facilitates provenance tracking which is very

important in scientific analysis.

3.2.3 Output Files

Differences: In a notebook, cells can write results directly into

files in the local file system. Other cells show results in

visualizations. In contrast, workflows generate results in output

files.

Approach: When a notebook cell writes into files in the local

file system, the corresponding workflow component will have an

output corresponding to that file. When a notebook cell shows a

visualization, a workflow component will be created to generate

that visualization as an output file.

3.3 Workflow Structure

3.3.1 Dataflow

Differences: In a notebook, although cells are specified

sequentially they might be executed in any order or a cell may not

be executed at all. In a workflow, the flow of data among

components must be specified, and all components are executed.

Approach: The identifiers of the files generated and

consumed by components generated for a given notebook will be

used to obtain the dataflow between the components, and the

dataflow will be explicitly stated in the workflow structure. We

assume that notebooks run the cells sequentially, so we do not

consider any parallelism in the execution.

3.4 Python-Specific Differences

A few mappings are challenging because of the specific way that

Python is used in Jupyter Notebooks. The IPython kernel allows

notebooks to use special functions that the standard Python

interpreter does not support. Since a workflow component would

be executed using standard Python, these functions cannot be

directly mapped. Notebooks are also designed for human

readability and are, as a result, much more documented and

aggregate more resources than plain Python code. In addition,

notebooks include Python commands to generate visualizations

(e.g., graphs), which are executed and the results shown in the

notebook but not necessarily saved.

3.4.1 Visualizations

Differences: Notebooks show visualizations which may not be

saved into a file. Workflow components would generate

visualizations and save them in an output file.

SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al.

4

Approach: If the notebook does not save a visualization, the

workflow will automatically save the visualization in a file.

3.4.2 Magic Commands

Differences: Notebooks have IPython kernel commands know

as magic commands. They start with “%” and can list all

variables, return the directory being used, etc. Magic commands

only work on IPython kernels. The Python standard interpreter

does not recognize these commands since it is not Python code.

Approach: Magic commands will be replaced with pre-

defined Python code that implements them. For magic commands

where no code is available, they will be ignored and not mapped.

3.4.3 Automatic Output

Differences: In a notebook, if a variable is printed (using the

print statement), it will appear as an output. In a software

component, that code would not generate an output.

Approach: A workflow component that includes print

commands will have an extra output with all the results from the

print statements.

3.5 WINGS-Specific Differences

A few mappings are specific to requirements in the WINGS

workflow system. In WINGS, the code for each software

component has an associated script that indicates the command

line invocation for the software, but notebooks do not have this.

Input files are also treated differently from notebooks. In

WINGS, input files are classified into a hierarchy of data types.

Semantic metadata properties can be specified as well for all input

files. Notebooks do not have either.

3.5.1 Software Components

Differences: Each workflow component has an associated

script that invokes the code to be executed in that component. The

script for a workflow component in WINGS must specify the

invocation command, number of inputs, parameters and outputs

that the code for the component expects. Notebooks do not have

this information.

Approach: After mapping the code from the cells of the

notebook into components, a script will be generated for each

component indicating the invocation command together with the

total number of inputs, outputs and parameters.

3.5.2 Input Data Files

Differences: In WINGS, each input file is assigned a data

type. In notebooks, there are no data types or metadata for the

files.

Approach: All input files will be considered to be of the same

general data type.

3.5.3 Workflow Components

Differences: In WINGS, each workflow component is

assigned to a type in a component type hierarchy based on its

function.

Approach: All workflow components will be given a general
component type.

3.6 Usability Requirements
Our approach requires that users make changes to their notebooks

in order to facilitate the conversion of notebooks into workflows.

We took into account additional requirements to reduce the

burden to users and maximize the utility of the changes required:

 The user should have to make minimal changes to a

notebook to allow the conversion tool to generate a

workflow.

 Any changes made to a notebook should improve its

readability and documentation as well as facilitate its

conversion into a workflow.

 Any changes made to a notebook should be independent

of the target workflow system.

 Any changes made to a notebook should improve the

understanding of the dataflow.

 The workflows should include all the documentation of

the original notebooks.

 All the results generated by a notebook should be

generated by the workflow as well, even if they are not

explicit in the notebook.

 A conversion tool should automate the process as much as

possible, and some manual intervention may be needed

after running it.

4 GUIDELINES TO DEVELOP NOTEBOOKS

Based on our approach to map notebooks into workflows, we

designed a set of guidelines that users can follow to facilitate the

conversion of notebooks into workflows. Users who are not

creating workflows will be able to use these guidelines to create

notebooks that have more explicit dataflow, which will facilitate

understanding, comparisons, and reuse by others.

We list here the set of guidelines, each with a justification.

1. Provide at least one cell with running code: a

workflow component must have running code within it

to be created and a workflow must be composed of at

least one component.

2. Write into files any newly generated data: the code in

a cell should write to files with the intermediate and

final data generated, so that other cells can use those

files. This will make the dataflow across cells more

clear. Here we have a trade-off between input/output

(I/O) performance in disk and provenance capture.

3. Keep code that uses the same file in the same cell: if

files are opened and used across many cells, all those

cells should be merged into a single cell, making the

notebook cells and workflow components more

modular.

4. Keep the notebook clean and working: the cells that

are not needed to run the notebook should be removed

and the code in cells must be running correctly to create

the workflow components.

Converting Notebooks into Workflows SciKnow’2017, December 2017, Austin, Texas USA

 5

5. Ensure that the notebook produces correct results

when running its cells from top to bottom: the

notebook cells are considered sequentially (i.e., from

top to bottom) to create the workflow structure. This

makes it easier to capture the dataflow between cells

and understand the notebook.

6. Provide meaningful names for variables and files:

these names should make clear what kind of data the

files contain. Avoid names such as “load” or “data05”.

Instead, use names like “PluviometricCalculation” or

“SensorReadings”. This makes the visual presentation

of notebooks and workflows more readable.

These guidelines aim to facilitate the automated conversion of

notebooks into workflows. They also improve the

understandability of notebooks by making the dataflow more

clear.

5 NiW: A Tool for Converting Notebooks into

Workflows

NiW (Notebooks into Workflows) is a prototype system that

implements our approach to convert notebooks into workflows.

Our current NiW prototype creates workflows for WINGS system

from Jupyter Notebooks. The software is available online [3].

 NiW takes as input a notebook file and generates: 1) a zip file

for each workflow component (e.g., Component1.zip), containing

the component code as a Python script (e.g., Component1.py), a

script file (named io.sh) to handle the inputs and outputs of the

component, and a script (named run) to execute the component; 2)

a file with a list of the names of the components and their inputs,

outputs, and parameters; and 3) the workflow structure. NiW

generates first (1) and (2) and uses those files to automatically

create (3). NiW also creates the data type “File” and associates all

data files (inputs, intermediate, and results) to this data type. NiW

uses the notebook’s filename to name the workflow.

 Figure 1 illustrates how the notebooks are converted into

workflows by NiW using the approach outlined in Section 3.

5.1 Current Limitations of NiW

The following are limitations of our current NiW implementation.

Python is the only programming language supported. The use of

magic commands is restricted, currently only the magic command

%matplotlib (which allows visualizations to be generated) is

supported. The only methods supported for opening files are the

built-in method “open” and the method "read_csv" from Pandas,3

a well-known data analysis library in Python. Only Matplotlib can

be used to generate visualizations. Finally, the notebook should

run fully without errors. This is because if an error occurs while

executing a notebook, it would be difficult to identify how data

are generated and used throughout all the cells. Moreover, errors

in code might be propagated to the workflow components.

5.2 Using NiW

To demonstrate how NiW works we have chosen a Jupyter

Notebook for computational journalism taken from

http://nbviewer.jupyter.org/gist/darribas/4121857. This notebook

was created by journalists at The Guardian newspaper and uses

real world data to analyze and map the incidents during the 2012

Gaza-Israel crisis, exploiting the spatial as well as the temporal

3 http://pandas.pydata.org

Figure 1. Using NiW to generate a WINGS workflow from a Jupyter Notebook.

Notebook
cells

Workflow
steps

Jupyter Notebook WINGS Workflow

Making inputs explicit

Saving intermediate results

Merging related cells
in components

Component2.py

Run.sh (wrapper)
NiW

http://nbviewer.jupyter.org/gist/darribas/4121857
http://pandas.pydata.org/

SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al.

6

dimension of the data. The modified version of the notebook, the

WINGS workflow, and the workflow execution are available at

[3].

We modified the notebook based on the guidelines presented

in Section 4, and to address the limitations of our current

implementation of NiW mentioned above. The only changes

required by our guidelines in the notebook code were related to

guideline #3 – to write newly generated data into files: (1) saving

the data retrieved online in a local file, instead of loading it in

memory to be used in subsequent cells; (2) saving changes made

to the data in each cell into a new file; (3) opening the updated

data file saved by (2) in subsequent cells.

The nine code cells in the original notebook resulted in five

workflow components. The code cells containing only library

imports were merged with other components as well as the cells

containing the declaration code of the function parse_loc. The

inputs of the workflow are the parameters api_key, request_url

and query, variables with assignment to string values in the

original cell. After retrieving the data, it is saved as a CSV file by

Component1. Components 3, 4 and 5 save the graphs generated

for future inspection, originally showed inline in the notebook.

The modified notebook is improved for use by scientists

with respect to the original version in several respects, such as

making inputs explicit, saving intermediate results, merging

related cells into meaningful components, and making outputs

explicit.

Figure 2 shows the workflow created by NiW using the

modified notebook as input. Note that even if notebooks always

have a sequential structure, workflows do not. In this case, there

are three components at the bottom that could be run in any order

because there are no data dependencies across them. This helps a

user see how the different steps are related. Unfortunately, the

workflow is not more understandable because the components and

datasets do not have very meaningful names. A user could easily

edit the workflow in WINGS to change those names.

One benefit of the workflow is to support comparison and

provenance when run with new datasets. Journalists from The

Guardian created the input dataset in collaboration with Internet

users. If the input data is updated, the workflow could easily be

executed again, and its results can be compared. Since all the

intermediate results are stored as provenance information, they

may also be compared to previous executions. Another benefit of

the workflow is to compare the results when the code changes. In

this case, the notebook is collaborative and can be extended by

users via GitHub. When the notebook is changed, NiW can be re-

run and a new workflow would be generated and executed. The

workflows for different notebook versions can be easily

compared.

6 RELATED WORK

There are several related approaches to expose the dataflow

within scripts and/or to map scripts into structures that support

provenance tracking.

 NoWorkflow [11] captures provenance information from

scripts to help scientists understand the script execution. However,

this approach does not simplify the understanding of the script

specifications for non-programmers. YesWorkflow [10] enables

scientists to make explicit the dataflow in scripts by providing

special tags that scientists use to annotate the scripts. These

annotations split the script into steps and clarify the inputs and

outputs of each step as well as the structure of the workflow. It

enables the creation of a visualization based on these annotations,

helping scientists to understand the dataflow within the script.

However, the scientist still has a script which is difficult to reuse

compared to workflows.

 W2Share [2] focus on the conversion of scripts into scientific

workflows. This approach automatically generates workflows

from annotated scripts. However, this work does not consider

peculiarities of notebooks.

 [13] proposes an approach to capture provenance from

notebooks automatically allowing the analysis of provenance

information within the notebook, both to reason about and to

debug their work. [9] captures dataflows from notebooks by

specifying a unique and persistent identifier for each cell and its

outputs which can be referred in other cells. In our work we

provide guidelines to notebook designers to improve the

understanding of the notebooks by scientists, and then converted

the modified notebooks into workflows automatically.

7 CONCLUSIONS

We presented an approach to map notebooks into workflows,

addressing many issues that arise because of the implicit dataflow

in notebooks. We introduced a set of general guidelines for

notebook developers that help make dataflow more explicit,

which improves understandability and provenance tracking. We

Figure 2. WINGS workflow created from The Guardian’s notebook.

Converting Notebooks into Workflows SciKnow’2017, December 2017, Austin, Texas USA

 7

implemented NiW, a prototype tool that can convert notebooks

that follow those guidelines into workflows, in particular Jupyter

Notebooks into WINGS workflows.

 An important area of future work is to make workflows more

understandable. Users could edit the names of the workflow

components and datasets to make them more meaningful.

Another approach would be to use metadata tags for notebooks to

facilitate the creation of components and workflows. For example,

a metadata tag could be added in the notebook to give each cell a

meaningful name, so that NiW would use that name rather than a

synthetic one. Another example is the assignment of markdown

cells to workflow components, could also be addressed by using

metadata tags provided by the notebook creator.

 Future work also includes the automatic generation of

notebooks from workflows. This would be useful for users who

reuse workflows written by others, as it would enable them to use

the notebook environment to inspect the code that implements the

workflows. In addition, a notebook diagram could be included in

the notebook to make the role of each cell clearer.

 An interesting direction for future work is to explore the use of

workflows for tracking provenance of notebook results and for

comparing different notebooks. Workflows can provide

provenance records for all the newly generated results. In

addition, the structure of workflows makes it easier to compare

notebooks because they expose the similarities, the common sub-

workflows, and the differences in implementations. There are

many opportunities to explore the interplay between notebooks

and workflows in terms of alternative user interfaces, execution

paradigms, and provenance tracking, and comparison and reuse.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the US National

Science Foundation under award ICER-1440323 and ICER-

1632211 (EarthCube RCN IS-GEO), and in part by the Sao Paulo

Research Foundation (FAPESP) under grants 2017/03570-3,

2014/23861-4 and 2013/08293-7. We would like to thank many

collaborators for their feedback on this work, in particular Jeremy

White and Zachary Stanko.

REFERENCES
[1] Bergmann, R.; and Gil, Y. Similarity Assessment and Efficient Retrieval of

Semantic Workflows. Information Systems Journal, 40. 2014.

[2] Carvalho, L. A. M. C.; Malaverri, J. E. G.; Medeiros, C. B. Implementing

W2Share: Supporting Reproducibility and Quality Assessment in eScience. In

Proceedings of the 11th Brazilian e-Science Workshop, São Paulo, Brazil, 2017.

[3] Carvalho, L. A. M. C, Wang, R and Garijo, D. (2017, December 9).

KnowledgeCaptureAndDiscovery/niw: Notebooks into workflows 0.0.1 (Version

0.0.1). Zenodo. http://doi.org/10.5281/zenodo.1098344

[4] Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman,C., Mehta, G.,

Vahi, K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C. and Katz, D. S.

Pegasus: a Framework for Mapping Complex Scientific Workflows onto

Distributed Systems. (2005) Scientific Programming Journal, vol. 13, pp. 219-

237.

[5] Garijo, D.; Corcho, O.; Gil, Y.; Gutman, B. A.; Dinov, I. D.; Thompson, P.; and

Toga, A. W. FragFlow: Automated Fragment Detection in Scientific Workflows.

In Proceedings of the IEEE Conference on e-Science, Guaruja, Brazil, 2014.

[6] Garijo, D.; Corcho, O.; Gil, Y.; Braskie, M. N.; Hibar, D.; Hua, X.; Jahanshad,

N.; Thompson, P.; and Toga, A. W. Workflow Reuse in Practice: A Study of

Neuroimaging Pipeline Users. In Proceedings of the IEEE Conference on e-

Science, Guaruja, Brazil, 2014.

[7] Gil, Y.; Ratnakar, V.; Kim, J.; Gonzalez-Calero, P. A.; Groth, P.; Moody, J.; and

Deelman. Wings: Intelligent Workflow-Based Design of Computational

Experiments. E. IEEE Intelligent Systems, 26(1). 2011.

[8] Hauder, M.; Gil, Y.; Sethi, R.; Liu, Y.; and Jo, H. Making Data Analysis

Expertise Broadly Accessible through Workflows. In Proceedings of the Sixth

Workshop on Workflows in Support of Large-Scale Science (WORKS'11), held

in conjunction with SC 2011, Seattle, Washington, 2011.

[9] Koop, D., and Patel, J. Dataflow Notebooks: Encoding and Tracking

Dependencies of Cells. In 9th USENIX Workshop on the Theory and Practice of

Provenance (TaPP 17). USENIX Association. 2017.

[10] McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky,

K., Cao, Y., Chirigati, F., Dey, S., Freire, J. and Huntzinger. YesWorkflow: A

User-Oriented, Language-Independent Tool for Recovering Workflow

Information from Scripts., D. International Journal of Digital Curation 10, no. 1

(2015): 298-313.

[11] Murta, L., Braganholo, V., Chirigati, F., Koop, D. and Freire, J. noWorkflow:

capturing and analyzing provenance of scripts. In International Provenance and

Annotation Workshop (pp. 71-83). Springer. 2014.

[12] Oinn, T., M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble,

A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R.

Stevens, A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow

environment for the life sciences. Concurrency and Computation: Practice and

Experience, 18(10), 2006.

[13] Pimentel, J.F.N., Braganholo, V., Murta, L. and Freire, J. Collecting and

analyzing provenance on interactive notebooks: when IPython meets

noWorkflow. In Workshop on the Theory and Practice of Provenance (TaPP),

Edinburgh, Scotland (pp. 155-167), 2015.

[14] Shen, H. Interactive notebooks: Sharing the code. Nature, 05 November 2014.

