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ABSTRACT 

Interactive notebooks are increasingly popular among scientists to 

expose computational methods and share their results.  However, 

it is often challenging to track their dataflow, and therefore the 

provenance of their results. This paper presents an approach to 

convert notebooks into scientific workflows that capture explicitly 

the dataflow across software components and facilitate tracking 

provenance of new results. In our approach, users should first 

write notebooks according to a set of  guidelines that we have 

designed, and then use an automated tool to generate workflow 

descriptions from the modified notebooks. Our approach is 

implemented in NiW (Notebooks into Workflows), and we 

demonstrate its use by generating workflows with third-party 

notebooks.  The resulting workflow descriptions have explicit 

dataflow, which facilitates tracking provenance of new results, 

comparison of workflows, and sub-workflow mining.  Our 

guidelines can also be used to improve understandability of 

notebooks by making the dataflow more explicit. 
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1 INTRODUCTION 

Interactive notebooks have become very popular in science to 

capture computational experiments [14]. These notebooks include 

code, visualizations, and explanations, and can be easily shared 

and re-run. 

As scientists carry out their research, they may need to 

compare the results and methods of different experiments.  This 

involves comparing final results, comparing intermediate results, 

comparing steps of the method, and comparing parameter values.  

Since notebooks contain raw code, it can be hard to understand 

how new results are generated, as well as to compare notebooks.  

In contrast, workflows offer modular components to run code, and 

have an explicit dataflow. This can facilitate provenance capture, 

as well as automated mining of reusable workflow fragments [4].  

Workflows also facilitates understanding and performing 

comparisons, particularly for non-programmers [6]. 

This paper presents an approach for converting notebooks into 

workflow descriptions by mapping various aspects of notebook 

cells into workflow components and dataflow. Our approach is 

implemented in NiW, a prototype tool to convert Jupyter 

Notebooks 1  into WINGS workflows [7]. Based on the 

assumptions of our approach, we propose a set of guidelines for 

designing notebooks that facilitate the conversion and can be used 

by notebook developers to improve the understandability of their 

notebooks.  

2 DATAFLOW AND PROVENANCE IN 

WORKFLOWS AND NOTEBOOKS 

This section discusses general issues for identifying dataflow and 

tracking provenance in notebooks, compared with simple dataflow 

in workflows.  Our work to date has focused on mapping Jupyter 

Notebooks to workflow descriptions that can be used in the 

WINGS workflow system [6], but many of the issues will be 

common for other notebook and workflow systems.   

2.1 Dataflow in Workflows 

Workflows capture explicitly the dataflow across software 

components. We describe here a very simple dataflow 

representation and workflow structure that we assume in the rest 

of the paper.  This approach is used in several workflow systems, 

including WINGS [6], Pegasus/Condor [4], and Apache Taverna 

[12]. 

Each software component (or step) of a workflow may have 

multiple datasets as inputs, multiple datasets as outputs, and 

multiple parameters, which are provided as simple numeric or 

Boolean values. A dataset generated by a component can be input 

to another component, thereby indicating the flow of data (i.e., the 

dataflow) from a component to another.   

A workflow management system can run a workflow if the 

software components can be executed and the respective input 

datasets and parameter values are provided.  Because the dataflow 

is explicitly captured in the workflow, the system can record the 

provenance of each new dataset generated by the workflow.  

                                                                 
1 http://jupyter.org 
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The dataflow of a workflow is often shown as a graph.  

Workflows can be compared as graphs.  Indeed, graph algorithms 

have been used to query workflow repositories [1], and to mine 

workflow repositories to find commonly occurring sub-workflows 

[5]. Visual user interfaces that show the dataflow graph in a 

workflow are easy to use for non-programmers [8].   

2.2 Overview of Computational Notebooks 

Notebooks aggregate text and code, grouped into a sequence of 

containers or cells. Cells can be code cells, markdown cells, and 

raw cells. Code cells have running code usually with one 

programming language such as Python, R, Java, etc. Code cells 

are the heart of notebooks. Markdown cells are comments and 

documentation, so users can add graphics, formatting, etc. These 

cells are not linked with any other cells and run without 

interfering other cells. Raw cells display raw text without any 

conversions, and are much less used. Unlike raw and markdown 

cells, code cells are linked with each other when the notebook 

runs, though code cells run like a single unit of code. Thus, when 

a code cell performs any activity (e.g. initialize a variable), the 

next code cell to be run carries it on as though there were no other 

cells in between. Outputs are shown in the notebook when a cell 

code includes a plot or print statement. 

     Jupyter Notebook 2  is one of the most popular notebook 

platforms. They were originally named IPython Notebooks since 

they are primarily used with Python, but expanded with kernels 

for several other programming languages other than Python. A 

kernel is a program that runs the notebook’s code.  

2.3 Understanding Dataflow of Notebooks 

We analyzed a diversity of Jupyter Notebooks to understand their 

dataflow and the provenance of their results. Common problems 

that we found include:  
 

1. Processing: A user may not have a clear understanding of 

what are the main processing cells of a notebook. For 

example, cells for assigning values to variables or 

importing libraries are not processing units and should be 

placed in the same cell that uses those variables.  

2. Dataflow: Input file names are either implicit in the code 

or defined as parameters through method calls in previous 

cells. This represents implicit dependencies between cells, 

and therefore make it difficult to understand the dataflow 

among them. In addition, users may also have difficulty 

figuring out what files were generated by a given cell.  

3. Inputs: Input files may contain pointers to other files that 

are opened and used as inputs inside of a cell.  This 

creates an implicit dependency that is difficult to detect.  

4. Outputs: When a cell does not have an explicit output it 

is very difficult to understand what kind of process that 

cell performed. A cell may overwrite a file with the same 

name generated by other cells, so it can be hard to track 

the provenance of newly generated files. Notebooks can 

                                                                 
2 http://jupyter.org/ 

generate visualizations, but those do not necessarily 

generate output files.  

5. Files: It is very difficult to understand how the files in 

notebook folders correspond to the cells that used or 

generated the files.  

6. Data: Some notebooks are available in repositories 

without any test data. Therefore, this makes it hard to 

understand the expected data format of the input files and 

the outputs generated by the notebook.  It also makes it 

hard to rerun the notebooks. 

      In summary, many problems arise in trying to understand what 

is the dataflow across the cells of a notebook and how they use or 

generate notebook files. This makes it very hard to figure out the 

provenance of any results.  This also makes it hard to understand a 

notebook, as well as comparing different notebooks.   

3 MAPPING NOTEBOOKS TO WORKFLOWS 

When mapping notebooks into workflows, many issues must be 

addressed. We discuss here those issues, and our approach to 

tackle them.  We start with general issues.  After that, we focus on 

issues specific to Jupyter Notebooks and Python, since that has 

been the focus of our work so far.  Then we discuss issues specific 

to the WINGS workflow system, which is the target of our 

mappings.   

3. 1 Components 

3.1.1 Executable Code  

     Differences: Each component in a workflow must have some 

running code within it. In notebooks, cells may contain solely 

value assignment to variables, function declarations or library 

imports, or documentation, which are not executable code by 

themselves and cannot be easily mapped into a workflow 

component.  Another difference is that in notebooks even though 

code is split cell by cell, most of the splits only exist to benefit 

human readability and do not actually affect the code itself. Cells 

are used just to modularize the code.  As a result, different users 

may break up the code at different places and it will not matter 

much if the sequential order to run these cells is preserved when 

there are any data dependencies between them. In contrast, in 

workflows the code is split into components which are isolated 

from one another and that individually carry out a meaningful 

function. An example of this is that if a variable is created in a 

component and used in a second component, the latter will not 

have access to this variable unless it is generated by the former as 

an output and explicitly consumed as an input by the second 

component.   

     Approach: Each notebook cell with running code will be 

mapped to a workflow component. If a notebook cell does not 

have running code and only has library imports or method 

declarations, it will become part of a cell that requires that 

information. 
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3.1.2 Libraries and Methods 

Differences: A notebook only needs to import a library or 

state a method once. Since workflows are componentized, the 

imports and method declarations need to be done in each 

workflow component that uses them. 

Approach: Every library used in the notebook will be 

imported into all workflow components created. A method will be 

included in a component only if the method is used in it. 

3.1.3 Open Files 

Differences: A notebook can open a file and use it in any 

subsequent cell. In a workflow, a file can be used only inside the 

component that has that file as input. 

Approach: If a file is opened and used across many cells, 

those cells will be merged into a single component. Note that an 

alternative approach might be to create separate components for 

each of the cells and open and close the file in each of those 

components, but this would result in inefficiencies if the data is 

written to files and read from files too many times.  

3.1.4 Markdown Cells 

Differences: Markdown cells in notebooks do not contain 

running code, but need to be included in the workflow as 

documentation so that the information that they contain is not lost. 

Workflow components can have documentation. There can be 

more markdown cells than code cells. In addition, the relationship 

between markdown cells and code cell is not explicit. A 

markdown cell may be related to either its previous or its 

subsequent cell. 

Approach: Since the relationship between markdown cells 

and code cells is unknown, the assignment is made in the 

following way: a markdown cells’ information will be attached to 

the documentation of the component created for its subsequent 

code cell. 

3.1.4 Component Naming 

Differences: In a notebook, a cell does not have a name.  In a 

workflow, a component has a name that generally describes the 

function of the component is in the workflow.  

Approach: A name will be generated for each component of 

the workflow, starting with “Component” followed by the 

ordering number from the cell (e.g., Component1, Component2 

and Component3). 

3.2 Data and Parameters 

3.2.1 Parameters  

Differences: In notebooks, method parameters are set through 

program variables. In workflows, parameters are inputs to 

components and provided by users. In workflows, if parameters 

are coming from other components, these parameters must be 

passed explicitly through a file.  

Approach: Variables of primitive types (i.e., Boolean, string, 

integer, float, date, etc.) that are given constant values in 

notebooks will be mapped to parameters in workflows, and they 

will be given the name that was used in the notebook. 

3.2.2 Input Files  

Differences: A notebook may be given input data once at the 

beginning, and there is no need to pass data through files from cell 

to cell. In a workflow, a component must output a data file that is 

then an input to another component. 

Approach: A data file will be explicitly generated from the 

notebook code in order to be passed to another component in the 

workflow. Code will be added to the component that generates the 

data so that the resulting data is written into a file that can be 

passed to the next component. Although this may not be an 

efficient approach, it facilitates provenance tracking which is very 

important in scientific analysis. 

3.2.3 Output Files 

Differences: In a notebook, cells can write results directly into 

files in the local file system. Other cells show results in 

visualizations.  In contrast, workflows generate results in output 

files. 

Approach: When a notebook cell writes into files in the local 

file system, the corresponding workflow component will have an 

output corresponding to that file.  When a notebook cell shows a 

visualization, a workflow component will be created to generate 

that visualization as an output file. 

3.3 Workflow Structure 

3.3.1 Dataflow 

Differences: In a notebook, although cells are specified 

sequentially they might be executed in any order or a cell may not 

be executed at all. In a workflow, the flow of data among 

components must be specified, and all components are executed.  

Approach: The identifiers of the files generated and 

consumed by components generated for a given notebook will be 

used to obtain the dataflow between the components, and the 

dataflow will be explicitly stated in the workflow structure. We 

assume that notebooks run the cells sequentially, so we do not 

consider any parallelism in the execution. 

3.4 Python-Specific Differences 

A few mappings are challenging because of the specific way that 

Python is used in Jupyter Notebooks.  The IPython kernel allows 

notebooks to use special functions that the standard Python 

interpreter does not support. Since a workflow component would 

be executed using standard Python, these functions cannot be 

directly mapped. Notebooks are also designed for human 

readability and are, as a result, much more documented and 

aggregate more resources than plain Python code. In addition, 

notebooks include Python commands to generate visualizations 

(e.g., graphs), which are executed and the results shown in the 

notebook but not necessarily saved.   

3.4.1 Visualizations 

Differences: Notebooks show visualizations which may not be 

saved into a file. Workflow components would generate 

visualizations and save them in an output file. 



SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al. 

 

4 

 

Approach: If the notebook does not save a visualization, the 

workflow will automatically save the visualization in a file. 

3.4.2 Magic Commands 

Differences: Notebooks have IPython kernel commands know 

as magic commands. They start with “%” and can list all 

variables, return the directory being used, etc. Magic commands 

only work on IPython kernels. The Python standard interpreter 

does not recognize these commands since it is not Python code. 

Approach: Magic commands will be replaced with pre-

defined Python code that implements them. For magic commands 

where no code is available, they will be ignored and not mapped. 

3.4.3 Automatic Output  

Differences: In a notebook, if a variable is printed (using the 

print statement), it will appear as an output. In a software 

component, that code would not generate an output. 

Approach: A workflow component that includes print 

commands will have an extra output with all the results from the 

print statements. 

3.5 WINGS-Specific Differences 

A few mappings are specific to requirements in the WINGS 

workflow system. In WINGS, the code for each software 

component has an associated script that indicates the command 

line invocation for the software, but notebooks do not have this. 

Input files are also treated differently from notebooks.  In 

WINGS, input files are classified into a hierarchy of data types. 

Semantic metadata properties can be specified as well for all input 

files.  Notebooks do not have either. 

3.5.1 Software Components   

Differences: Each workflow component has an associated 

script that invokes the code to be executed in that component. The 

script for a workflow component in WINGS must specify the 

invocation command, number of inputs, parameters and outputs 

that the code for the component expects. Notebooks do not have 

this information. 

Approach: After mapping the code from the cells of the 

notebook into components, a script will be generated for each 

component indicating the invocation command together with the 

total number of inputs, outputs and parameters. 

3.5.2 Input Data Files  

Differences: In WINGS, each input file is assigned a data 

type. In notebooks, there are no data types or metadata for the 

files. 

Approach: All input files will be considered to be of the same 

general data type.   

3.5.3 Workflow Components 

Differences: In WINGS, each workflow component is 

assigned to a type in a component type hierarchy based on its 

function. 

Approach: All workflow components will be given a general 
component type.  

3.6 Usability Requirements 
Our approach requires that users make changes to their notebooks 

in order to facilitate the conversion of notebooks into workflows. 

We took into account additional requirements to reduce the 

burden to users and maximize the utility of the changes required: 

 The user should have to make minimal changes to a 

notebook to allow the conversion tool to generate a 

workflow.  

 Any changes made to a notebook should improve its 

readability and documentation as well as facilitate its 

conversion into a workflow. 

 Any changes made to a notebook should be independent 

of the target workflow system. 

 Any changes made to a notebook should improve the 

understanding of the dataflow. 

 The workflows should include all the documentation of 

the original notebooks. 

 All the results generated by a notebook should be 

generated by the workflow as well, even if they are not 

explicit in the notebook. 

 A conversion tool should automate the process as much as 

possible, and some manual intervention may be needed 

after running it. 

4   GUIDELINES TO DEVELOP NOTEBOOKS  

Based on our approach to map notebooks into workflows, we 

designed a set of guidelines that users can follow to facilitate the 

conversion of notebooks into workflows. Users who are not 

creating workflows will be able to use these guidelines to create 

notebooks that have more explicit dataflow, which will facilitate 

understanding, comparisons, and reuse by others.   

We list here the set of guidelines, each with a justification. 

1. Provide at least one cell with running code: a 

workflow component must have running code within it 

to be created and a workflow must be composed of at 

least one component. 

2. Write into files any newly generated data: the code in 

a cell should write to files with the intermediate and 

final data generated, so that other cells can use those 

files. This will make the dataflow across cells more 

clear. Here we have a trade-off between input/output 

(I/O) performance in disk and provenance capture. 

3. Keep code that uses the same file in the same cell: if 

files are opened and used across many cells, all those 

cells should be merged into a single cell, making the 

notebook cells and workflow components more 

modular.  

4. Keep the notebook clean and working: the cells that 

are not needed to run the notebook should be removed 

and the code in cells must be running correctly to create 

the workflow components. 
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5. Ensure that the notebook produces correct results 

when running its cells from top to bottom: the 

notebook cells are considered sequentially (i.e., from 

top to bottom) to create the workflow structure. This 

makes it easier to capture the dataflow between cells 

and understand the notebook. 

6. Provide meaningful names for variables and files: 

these names should make clear what kind of data the 

files contain. Avoid names such as “load” or “data05”. 

Instead, use names like “PluviometricCalculation” or 

“SensorReadings”. This makes the visual presentation 

of notebooks and workflows more readable. 

These guidelines aim to facilitate the automated conversion of 

notebooks into workflows. They also improve the 

understandability of notebooks by making the dataflow more 

clear. 

5   NiW: A Tool for Converting Notebooks into 

Workflows  

NiW (Notebooks into Workflows) is a prototype system that 

implements our approach to convert notebooks into workflows. 

Our current NiW prototype creates workflows for WINGS system 

from Jupyter Notebooks. The software is available online [3].  

     NiW takes as input a notebook file and generates: 1) a zip file 

for each workflow component (e.g., Component1.zip), containing 

the component code as a Python script (e.g., Component1.py), a 

script file (named io.sh) to handle the inputs and outputs of the 

component, and a script (named run) to execute the component; 2) 

a file with a list of the names of the components and their inputs, 

outputs, and parameters; and 3) the workflow structure. NiW 

generates first (1) and (2) and uses those files to automatically 

create (3). NiW also creates the data type “File” and associates all 

data files (inputs, intermediate, and results) to this data type. NiW 

uses the notebook’s filename to name the workflow. 

     Figure 1 illustrates how the notebooks are converted into 

workflows by NiW using the approach outlined in Section 3. 

5.1   Current Limitations of NiW 

The following are limitations of our current NiW implementation. 

Python is the only programming language supported. The use of 

magic commands is restricted, currently only the magic command 

%matplotlib (which allows visualizations to be generated) is 

supported. The only methods supported for opening files are the 

built-in method “open” and the method "read_csv" from Pandas,3 

a well-known data analysis library in Python. Only Matplotlib can 

be used to generate visualizations. Finally, the notebook should 

run fully without errors. This is because if an error occurs while 

executing a notebook, it would be difficult to identify how data 

are generated and used throughout all the cells. Moreover, errors 

in code might be propagated to the workflow components. 

5.2   Using NiW 

To demonstrate how NiW works we have chosen a Jupyter 

Notebook for computational journalism taken from 

http://nbviewer.jupyter.org/gist/darribas/4121857.  This notebook 

was created by journalists at The Guardian newspaper and uses 

real world data to analyze and map the incidents during the 2012 

Gaza-Israel crisis, exploiting the spatial as well as the temporal 

                                                                 
3 http://pandas.pydata.org 

 
Figure 1. Using NiW to generate a WINGS workflow from a Jupyter Notebook. 
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dimension of the data. The modified version of the notebook, the 

WINGS workflow, and the workflow execution are available at 

[3].  

We modified the notebook based on the guidelines presented 

in Section 4, and to address the limitations of our current 

implementation of NiW mentioned above. The only changes 

required by our guidelines in the notebook code were related to 

guideline #3 – to write newly generated data into files: (1) saving 

the data retrieved online in a local file, instead of loading it in 

memory to be used in subsequent cells; (2) saving changes made 

to the data in each cell into a new file; (3) opening the updated 

data file saved by (2) in subsequent cells.  

The nine code cells in the original notebook resulted in five 

workflow components. The code cells containing only library 

imports were merged with other components as well as the cells 

containing the declaration code of the function parse_loc. The 

inputs of the workflow are the parameters api_key, request_url 

and query, variables with assignment to string values in the 

original cell. After retrieving the data, it is saved as a CSV file by 

Component1. Components 3, 4 and 5 save the graphs generated 

for future inspection, originally showed inline in the notebook. 

The modified notebook is improved for use by scientists 

with respect to the original version in several respects, such as 

making inputs explicit, saving intermediate results, merging 

related cells into meaningful components, and making outputs 

explicit. 

Figure 2 shows the workflow created by NiW using the 

modified notebook as input. Note that even if notebooks always 

have a sequential structure, workflows do not.  In this case, there 

are three components at the bottom that could be run in any order 

because there are no data dependencies across them.  This helps a 

user see how the different steps are related.  Unfortunately, the 

workflow is not more understandable because the components and 

datasets do not have very meaningful names.  A user could easily 

edit the workflow in WINGS to change those names.   

One benefit of the workflow is to support comparison and 

provenance when run with new datasets.  Journalists from The 

Guardian created the input dataset in collaboration with Internet 

users. If the input data is updated, the workflow could easily be 

executed again, and its results can be compared. Since all the 

intermediate results are stored as provenance information, they 

may also be compared to previous executions. Another benefit of 

the workflow is to compare the results when the code changes.  In 

this case, the notebook is collaborative and can be extended by 

users via GitHub. When the notebook is changed, NiW can be re-

run and a new workflow would be generated and executed. The 

workflows for different notebook versions can be easily 

compared. 

6 RELATED WORK 

There are several related approaches to expose the dataflow 

within scripts and/or to map scripts into structures that support 

provenance tracking.   

      NoWorkflow [11] captures provenance information from 

scripts to help scientists understand the script execution. However, 

this approach does not simplify the understanding of the script 

specifications for non-programmers. YesWorkflow [10] enables 

scientists to make explicit the dataflow in scripts by providing 

special tags that scientists use to annotate the scripts. These 

annotations split the script into steps and clarify the inputs and 

outputs of each step as well as the structure of the workflow. It 

enables the creation of a visualization based on these annotations, 

helping scientists to understand the dataflow within the script. 

However, the scientist still has a script which is difficult to reuse 

compared to workflows. 

      W2Share [2] focus on the conversion of scripts into scientific 

workflows. This approach automatically generates workflows 

from annotated scripts. However, this work does not consider 

peculiarities of notebooks.  

 [13] proposes an approach to capture provenance from 

notebooks automatically allowing the analysis of provenance 

information within the notebook, both to reason about and to 

debug their work. [9] captures dataflows from notebooks by 

specifying a unique and persistent identifier for each cell and its 

outputs which can be referred in other cells. In our work we 

provide guidelines to notebook designers to improve the 

understanding of the notebooks by scientists, and then converted 

the modified notebooks into workflows automatically. 

7 CONCLUSIONS 

We presented an approach to map notebooks into workflows, 

addressing many issues that arise because of the implicit dataflow 

in notebooks.  We introduced a set of general guidelines for 

notebook developers that help make dataflow more explicit, 

which improves understandability and provenance tracking.  We 

 
Figure 2. WINGS workflow created from The Guardian’s notebook. 
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implemented NiW, a prototype tool that can convert notebooks 

that follow those guidelines into workflows, in particular Jupyter 

Notebooks into WINGS workflows.  

     An important area of future work is to make workflows more 

understandable.  Users could edit the names of the workflow 

components and datasets to make them more meaningful.  

Another approach would be to use metadata tags for notebooks to 

facilitate the creation of components and workflows. For example, 

a metadata tag could be added in the notebook to give each cell a 

meaningful name, so that NiW would use that name rather than a 

synthetic one.  Another example is the assignment of markdown 

cells to workflow components, could also be addressed by using 

metadata tags provided by the notebook creator. 

     Future work also includes the automatic generation of 

notebooks from workflows.  This would be useful for users who 

reuse workflows written by others, as it would enable them to use 

the notebook environment to inspect the code that implements the 

workflows.  In addition, a notebook diagram could be included in 

the notebook to make the role of each cell clearer. 

     An interesting direction for future work is to explore the use of 

workflows for tracking provenance of notebook results and for 

comparing different notebooks. Workflows can provide 

provenance records for all the newly generated results.  In 

addition, the structure of workflows makes it easier to compare 

notebooks because they expose the similarities, the common sub-

workflows, and the differences in implementations. There are 

many opportunities to explore the interplay between notebooks 

and workflows in terms of alternative user interfaces, execution 

paradigms, and provenance tracking, and comparison and reuse. 
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