
Towards Data-driven
Continuous Compliance Testing

Andreas Steffens
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

steffens@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

lichter@swc.rwth-aachen.de

Marco Moscher
RWTH Aachen University

Aachen, Germany
marco.moscher@rwth-aachen.de

Abstract—Recent studies show that security vulnerabilities
are caused by neglecting best-practices for the configuration of
software and the underlying infrastructure. Due to the rising
complexity of software systems and the accelerated speed of
software releases using mechanisms like continuous delivery
the problem gets even more challenging. Existing processes
and methods are not adequate to cope with these challenges.
This paper proposes an approach for continuous compliance
testing. Using well-known methods from software testing, this
approach enables an organization to define, organize, and execute
compliance tests in a structured and reusable way. We focus in
our approach onto integrating a software-centric point of view for
modeling compliance requirements. By embedding our approach
into a deployment pipeline automated continuous compliance
testing can be realized.

Index Terms—software testing, system testing, continuous soft-
ware engineering, compliance, security, devops

I. INTRODUCTION

Software must run on a defined operating infrastructure
to fulfill its purpose. In recent years, the assessment of
infrastructure gained more and more attention from a security
perspective. OWASP identified the Misconfiguration of Server
as one of the top10 security risks [1] for web applications. The
misuse of the underlying infrastructures by apps even rose to
the first place for mobile platforms.

Therefore, Organizations like the Center of Internet Security
(CIS)1, NIST2 and the German BSI3 developed and published
tools, guidelines, checklists and benchmarks, which offer the
opportunity to assess a system.

To assess the operating infrastructure, so called compliance
tests need to be performed. Lewis and Bassetti [2] define
compliance testing as a general practice to determine if all
mandatory requirements from a specification are met. In our
context we use the more focused defintion. The ISTQB4 [3],
[4] and the ISO Standard 27002 [5] for cyber security defines
compliance as the adherence of legal and contractual regula-
tions and further external requirements like results from audits
and reviews. In general compliance tests are based on external
compliance rules, policies and standards.

1www.cisecurity.org
2www.nist.gov
3www.bsi.de
4International Software Testing Qualifications Board

This paper is motivated by a lack of a structured and
reliable way to organize and assess compliance aspects, which
is intensified due to increasing software and infrastructure
complexity. Beside this, the challenges of growing pace in
software development through agile and automated delivery
of new functionality and software, are inevitable. Concepts
and methods like continuous delivery [6] or DevOps [7] offer
solutions for these problems. Compliance testing is forced to
keep up with these circumstances.

Otherwise, the compliance status of the operating infrastruc-
ture will erode, which leads to system misconfiguration and
security vulnerabilities. In general a system misconfiguration
has serious impact on the system and software security as
stated in the OWASP Top 10 report. Thus the automation of
compliance testing is necessary.

Besides testing the operating infrastructure for global stan-
dards and regulations, the operating infrastructure has to be
compliant to the software and its configuration. Therefore,
from a software perspective new compliance requirements are
introduced. Any software vendor should be interested, that
their software products and their customers infrastructure are
compliant. For example, if a software component requires a
special cryptographic library to provide sufficient security, it
is necessary to check if this requirement is satisfied before
bringing the software into operation. As a consequence, the
infrastructure provided by the customer needs to be tested for
compliance. Therefore, the vendor should be able to define
custom compliance requirements for single or multiple related
software components. Consequently, these specific software
compliance requirements need to be tested as well, before de-
ployment, after a deployment and during operation. Basically,
compliance needs to be ensured continuously..

Although, it is easy to define certain compliance require-
ments on small scale, it gets more difficult when enlarging the
scope towards complex enterprise systems. Hence a modular
approach of defining, assigning, and checking those compli-
ance requirements as already established for various standards
from a software-centric perspective is needed.

This paper introduces an novel approach to fill this gap.
The main contribution is an unified model for specifying,
managing and executing compliance tests with a software-
centric viewpoint. It supports the stakeholders to ensure, that

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 78



Fig. 1: Data-Driven Testing [8]

the unique landscapes of software systems are compliant. In
addition it enforces the integration into proven concepts like
Continuous Integration and DevOps.

The paper is structured as follows. The next section will
introduce the needed background of continuous delivery and
data-driven testing. In section 3 will define the concept of a
software-centric point of view for compliance testing. Based
on theses results we introduce our model for continuous
compliance testing. The subsequent section will deal with
some important aspects as reusability and validation and
the integration into DevOps. COMET, a tool implementing
our approach, will be briefly described in the next section,
followed by a short discussion about related work and existing
tools for compliance testing. A final section will provide the
conclusion and some proposals for future research in this area.

II. BACKGROUND

A. Data-Driven Testing
Data-Driven Testing (DDT) [8] is a testing technique, where

one test may contain more than one set of data values. Because
the same test logic is applied in different test cases. Based
on parametrized tests, data is injected into the tests from
an external data source before executing the actual tests.
Figure 1 illustrates the process of DDT. In the setup phase,
the external data is loaded into the test framework and for
each data set a dedicated test is executed on the system
under test (SUT). DDT increases the reuse of test code and
eases the maintenance of this code base. In the approach
presented in this following we derive compliance test data
from a model comprising rules, software components, and
parametrized tests. All of these can be specified by different
stakeholders.

B. Continuous Delivery
Humble and Farley [6] define continuous delivery as a set of

practices, which enables to speed-up, automate and optimize
the delivery of software artifacts to the customer with even
higher quality in a continuous manner. These practices are
highly related to common agile practices like iterative and

incremental development. Scrum [9], an agile project man-
agement method, requires to produce a shippable increment at
the end of each sprint.

Continuous delivery uses an automated development infras-
tructure, called deployment pipeline, which automates nearly
every step of the delivery process. Each commit of a developer
enters the deployment pipeline and an automated process is
started, which produces a new software increment as a result
artifact.

The deployment pipeline incorporates all activities known
from continuous integration [6] as automatic build, unit testing,
and static code analysis. In addition to these, the pipeline
performs testing activities like integration, performance, and
security testing. All these tasks are executed in a defined
order of stages. After each stage the test results a evaluated
at a quality gate, which stops the processing if the quality
conditions are not met. If all quality gates are passed, the
software artifact is stored and can be accessed and used from
external clients; it is released.

If the software is directly used in an production environment
this extension is called continuous deployment. Continuous
delivery favors the principle of shift left [10], which means
to test as much as early as possible. This also includes to run
the tests in an environment which follows the properties of
the target environment, e.g. the production system. To achieve
this, the specific properties of the target environment needs to
be known and to be ensured in every stage of the deployment
pipeline, the environment needs to be compliant.

Compliance testing and continuous delivery are compati-
ble to extend each others functionality and usefulness. The
following section will introduce an approach to specify these
compliance requirements for environments. Finally, we present
a tool to run compliance tests using data-driven testing in a
continuously manner.

III. COMPLIANCE TESTING FROM A SOFTWARE-CENTRIC
POINT OF VIEW

The existing approaches to compliance testing like the CIS
Benchmarks or the guidelines published by BSI target low
level and minimal requirements for secure infrastructures.
For companies and the affected stakeholders like the Chief
Security Office (CSO) or the Chief Information Officer, it is
hard to apply these guidelines to their current set of software
systems. In general, most organizations apply the basic levels.
We argue, that this level of compliance testing needs to be
improved by extending the viewpoint from the infrastructure
to the software systems and complete landscapes running on
these infrastructures. We propose to shift to a software-centric
perspective. Each software introduces additional individual
requirements for the configuration of infrastructure and even
of related software. These requirements need to be considered
when conducting a compliance test. The following example
explains the purpose and the need for a software-centric
point of view. Consider a software system with the following
requirements regarding the web server software Apache httpd5

5http://httpd.apache.org/

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 79



running on a Linux server node:
• The software Apache httpd runs as the user www-data.
• Apache httpd uses the local TCP port 80 to provide the

web pages to external clients via HTTP.
• The served web pages are stored in a directory which can

be specified with the property DOCUMENT ROOT.
• This directory needs to be readable and writable.
• It writes its logs to the directory /var/log/apache2.

From these requirements we can deduce new configuration
related requirements which need to be fulfilled to be able to run
the Apache httpd software. Failing one of these requirements
will result in a non-operational system. So, these requirements
add new rules, to ensure that the system is configured correctly
and compliant to the software.

Software systems nowadays do not consist of one software
component but of multiple. Complex software applications
form a distributed landscape of software components running
on different nodes in the network. These landscapes can be
specified and compiled dynamically and will change during
the application lifecycle.

Consequently, from a software point of view all the con-
figuration requirements of the different software components
need to be considered when performing a compliance test for
this software system.

Based on these insights, the following sections introduce
a well-defined domain model for compliance testing which
incorporates a software-centric point of view.

IV. CONTINUOUS COMPLIANCE MODEL

The proposed Continuous Compliance Model can be seen as
a domain model for continuous compliance testing. Following
the principles of Domain-Driven Design [11], the model is
divided into five bounded contexts which represents specific
concerns regarding compliance testing.

Figure 2 visualizes the continuous compliance. The contexts
Operation and Software represent the software-centric point
of view. Compliance inhabits concepts regarding compliance
rules and their organization. The Technical context deals with
the implementation of assessments as parameterized tests. The
Execution context contains concepts necessary to perform,
evaluate, and save tests and their results. The following
sections will elaborate on the identified concepts and their
relationships.

A. Compliance

A Compliance Rule defines the shape of a specific aspect
or property of the SUT which needs to be checked. If the rule
is fulfilled the system is compliant regarding this specific rule.
A compliance rule can comprise multiple varying Compliance
Tests to assess the desired property.

Examples of compliance rules for a secure web service
could be:

1) The SUT provides a service on the local port TCP 443.
2) The SUT uses the protocol HTTP to communicate on

port 443.

3) The SUT offers encrypted communication secured by
SSL/TLS on Port 443 with a minimal version of TLS
1.2.

4) The SUT uses a valid SSL certificate to encrypt its
communication on port 443.

A Compliance Rule Set is a collection of specific compli-
ance rules which belong together and need to be checked
together. The examples from above can be aggregated to a
rule set for checking a web server.

As compliance rules can be very specific, this leads to
a reduced reuse potential of this rules. Therefore, we intro-
duce variables which enable and support reuse of rules. A
compliance rule becomes parameterized in the same way as
parametrized tests [8]. A more generalized version of the rules
from above could look as following:

1) The SUT provides a service on the local port TCP
VAR PORT.

2) The SUT uses the protocol HTTP to communicate on
port VAR PORT.

3) The SUT offers encrypted communication secured by
SSL/TLS on port VAR PORT with a minimal version
of TLS 1.2.

4) The SUT uses a valid SSL certificate to encrypt its
communication on port VAR PORT.

The variable VAR PORT is specific to the current SUT
and can vary for different systems and/or different software
components. The version of TLS could be also transformed
into a variable, but a compliance rule should be defined as
precise as possible (e.g., we do not want to allow to change
the TLS version to on older less secure one). Organization
wide policies can be applied at this level, the need for more
context specific data (as a port number) can be delegated to
higher level software components.

The relation between compliance rules and software com-
ponents will considered closer in a subsequent section.

B. Compliance Tests
To check for compliance we need an automated way to

evaluate compliance rules and apply them to actual systems
and environments. Our approach to compliance testing dif-
ferentiates between compliance rules and the way they are
evaluated. This is represented by the concept of a Compliance
Test. A compliance test is an implementation of an assessment
of system properties. A compliance test can be executed and
evaluated automatically. It offers a defined set of variables,
which needs to be assigned before execution. The final test
code will be derived and generated during execution of the
test.

The technology used to evaluate the required properties for
a compliance rule, can be chosen freely. Hence, the technology
is not important and our approach is therefore technology
agnostic.

Listing 1: Parameterized Compliance Test with InSpec
c o n t r o l ” T e s t F o r O p e n P o r t ” do

im pa c t 1 . 0

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 80



Operation

Software

Compliance

Technical

Compliance Test

Compliance RuleCompliance
Rule Set

Software 
Component

System

Component 
Landscape

Environment

Parameter

Execution

Generated
 Test Case

Test Execution

Test Execution 
Report

Fig. 2: Continuous Compliance Model

d e s c r i b e p o r t (VAR PORT) do
i t { s h o u l d b e l i s t e n i n g }

end
end

Listing 1 defines a compliance test using InSpec6 to check
if a certain port is used.

A compliance test can be used by a compliance rule to
asses for its required system properties. A compliance rule
can use multiple compliance tests. As the implementation of
compliance test is unrelated to specific compliance rules, the
development of compliance tests can focus on offering a highly
reusable set of tests as a library for specifying compliance
rules.

C. Software Components and Landscapes

As there is a need to incorporate a software-centric point of
view into compliance testing, we introduced Software Com-
ponent, Component Landscape and System as model elements
into the Continuous Compliance Model.

A Software Component represents a software artifact/prod-
uct that has requirements regarding the configuration of the
infrastructure and defines desired properties and aspects of a
system or node. A software component can define variables
to model properties which are required but can be assigned to
context-specific values.

As an example of such a component conside Apache httpd.
A corresponding variable could be the PORT for the web
server software with a default value (e.g., PORT = 80).

A Component Landscape is a set of software components
which form a working application or product. A component
landscape can be distributed among different nodes in a
network.

6https://www.chef.io/solutions/compliance/

Software components and component landscapes can be
associated with compliance rules and rules sets to model
specific compliance requirements.

D. Software System

A Software System is the representation of a real operating
software system running on various nodes in a network.

A software system is a specific set of component landscapes
and components and comprises an Environment, which speci-
fies the actual nodes in a network, where the components are
running. Software components and landscapes can be part of
multiple systems. On such a system a compliance test can be
conducted, as it is accessible and assessable by compliance
tests.

Based on these concepts, the necessary compliance tests to
assess a system can be derived. Figure 3 depicts a concrete
compliance testing scenario for the Apache httpd web server
and a custom software component. These two components
form a component landscape which is instantiated as a soft-
ware system running on AWS. For Apache httpd the specified
compliance rules and tests are added to the model.

E. Continuous Compliance Testing

To perform compliance testing in a continuous manner and
to embed it into a continuous delivery process, we have to
define possible interaction points, where a deployment pipeline
can integrate and execute a compliance model. The software
or framework operating on the continuous compliance model
needs to manage multiple test executions to produce reports
which can be evaluated by the pipeline.

To generate executable test cases, the compliance model
which is represented as directed acyclic graph (DAG) is
traversed. Each path represents an individual test case, which
will be executed and evaluated. While traversing the model,

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 81



Software

Operation

Technical

Compliance

«Compliance Test»
TestForOpenPort

«Compliance Test»
TestForHTTP

«Compliance Test»
TestValidCert

«Compliance Rule»
Open Server-Port 

«Compliance Rule»
Webserver-

Protocol HTTP
«Compliance Rule»
Active SSL 

«Compliance Rule»
Valid Certificate 

«Compliance Test»
TestSSLConn

«Compliance Rule Set»
SecureWebserver

«Software Component»
Apache httpd

«System»
WebService@AWS

«Parameter»
Port

port=443

«Environment»
AWS

«Software Component»
Application WS

«Component Landscape»
WebService

Fig. 3: Compliance Model for Apache httpd

variables are resolved top-down to their final corresponding
value. At the technical level, all variable values are injected
as parameters for the compliance tests, which are implemented
as parameterized tests. So each path of the graph results in a
Generated Test Case.

A Test Execution Report is an artifact containing all test
results from all Test Executions, which ran a specific instance
of the Continuous Compliance Model. To ensure traceability
a test execution includes the executed generated test cases.

The example compliance model depicted in Figure 3 leads
to the generation of four different test cases. The variable
PORT defined on the software level will be delegated down to
the technical level and injected as a parameter for each test.

1) Validation & Simulation: Based on a complete model
validation and simulation activities can be performed to gain
insights about the current compliance status without even
running the tests explicitly, e.g. missing or conflicting variable
definitions can be discovered on model level by analyzing
different paths and the potential test cases. Contradictory rules
can be discovered when modeling a new software landscape
or system. Techniques like constraint solving can be applied
to find a compliant configuration for the modeled system.

2) Risk computation: To each compliance rule a risk value
can be assigned, which indicates the potential risk if it is not
fulfilled by the SUT. All risk values will be aggregated along

the paths and added in the root node, the system element,
to gain a singular risk value for this specific software in
this specific environment at the time of execution of the
compliance tests.

3) Reusability: Our approach supports and enforces reuse
of technical, compliance, and software model elements when
modeling and adding new elements. Current compliance stan-
dards like CIS or BSI can be easily modeled as compliance
rules or compliance rule sets and then be assigned to certain
software components which are operated in the organization.
By means of variables, the rules can be tailored to specific
environments and systems without touching the implemented
standard itself. Test case implementations can be reused in
different rules for different purposes. In the end the tests, rules,
and components form a standardized organization-wide library
of compliance related artifacts.

4) Continuous Delivery: Continuous delivery and its tech-
nical implementation, the deployment pipeline, define various
stages where testing activities can be performed. As continu-
ous compliance testing is a form of nonfunctional testing [2]
it can be performed in a similar fashion as performance tests
or security tests.

But in addition the compliance rules and tests can be used
for checking test systems and environments used during a
pipeline run, to ensure a proper compliance state before per-

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 82



forming additional functional testing or to test deployment and
provisioning mechanisms. Chef Automate7 uses this approach
to test Infrastructure As Code [12].

5) DevOps: As the compliance model integrates informa-
tion about the desired target production environment and about
how the software is operated it also supports the DevOps
mindset [13]. Operational information is managed by model-
based and generative software engineering methods.

By supporting and implementing ShiftLeft, developers get
in touch with operational principles and constraints. In agile
projects this will have an impact on software design and
architecture.

In addition, former non-related activities like IT-Governance
will be aligned with software development. Due to the de-
coupled structure, the compliance model can be defined by
different stakeholders. Compliance rules may be defined by a
CSO but the corresponding compliance tests are provided by
developers. We skip the organizational and cultural issues of
compliance modeling and testing as this is out of the scope of
this paper.

V. TOOLING: COMET

COMET is a web-based continuous compliance testing
framework, based on the continuous compliance model (see
figure 2) The user of COMET can add compliance tests, rules
and software components to build a continuous compliance
testing scenario. The architecture of COMET follows the
bounded contexts introduced in Section IV defining technical,
compliance, software, operation and execution related areas.
The user can define and modify entities of these areas inde-
pendently. To build a complete compliance testing model the
user needs to provide or reuse elements of all areas.

COMET is able to execute a continuous compliance model,
by traversing the model, resolving the variables with the
system, software, or rule specific input-data, injecting these
data into the parametrized compliance tests, then generates
and executes the generated test cases. In the end the software
will provide a report with the results of the execution.

Figure 4 depicts the COMET report screen after the execu-
tion. Sensitive informations are defaced by blurring these parts
in the screenshot. All results, failed and successful tests, can
be analyzed by the user. The system reports the accumulated
risk value derived from all failed compliance tests. Currently,
COMET supports only InSpec as possible test technologies,
but the architecture provides a defined hot-spot to add new
testing technologies.

VI. RELATED WORK

The area of compliance and compliance testing has been
in the focus of research and industry for quite some time.
Frameworks like COBIT [14] and ITIL [15] are reference
models for IT-Governance which include also activities re-
garding compliance. These models operate on a higher more
process-oriented level and rely on documents and manual

7chef.io

audits, e.g. ITIL defines a compliance registry where all
compliance requirements and the intended way they should
be assessed are documented. But it offers no mechanism to
automate these assessments.

From a technical perspective some tools has been developed
to perform compliance tests on a running system. But, the
research topic “compliance as code” and continuous com-
pliance testing are relatively new and not yet that present.
Tools like Chef InSpec8, RedHat OpenScap9, UpGuard10, CIS-
CAT11 and others allow to define and execute compliance tests.
Although, the possibilities to automate compliance testing, to
integrate it into continuous delivery and to manage multiple
complex environments are limited. A software-centric point of
view is not incorporated in any of these tools. But, COMET
builds upon these technologies and uses them to implement
compliance rules.

Academia and industry are discussing about extending
the scope from DevOps to SecDevOps, DevSecOps or De-
vOpsSec [16], [17] and all emphasize that security should
be embedded into the existing approaches of DevOps. To
this extend, first attempts facing automation and integration
into DevOps exist and enable security testing and compliance
verification in an automated manner. Hasicorp’s Sentinel12

defines policy-as-code, equivalent to a compliance rule, which
can be integrated into organization’s deployment and cloud
products. But, modeling and maintaining complex compliance
scenarios with this approach is quite hard.

VII. CONCLUSION AND FUTURE WORK

Compliance testing is getting more and more attention as for
example misconfigured infrastructures are one of the top secu-
rity risks for software systems. A lot of effort has been spent by
organizations like NIST or the BSI to collect knowledge and
best practices to come up with guidelines and benchmarks. But
these are quite general and focus on the infrastructure level.
So, an organization operating or developing software struggles
with ensuring compliance and at the same time incorporating
all the necessities of their various software products.

This paper presents a novel approach to continuous compli-
ance testing, which enables and provides a structured way to
specify, organize and execute compliance tests. The approach
focuses on integrating a software-centric view into compliance
modeling. Therefore, it becomes necessary to model the actual
software components in addition to the infrastructure and their
relation to compliance rules. Compliance tests are derived by
analyzing the specified software elements and their assigned
compliance rules. The tailoring of these tests to specific envi-
ronments is supported by using concepts of data-driven testing
with the extension that the data is generated on demand based
on the compliance model during execution. This eases the
reuse of compliance rules as these are similar to parameterized

8https://www.chef.io/solutions/compliance/
9https://www.open-scap.org/
10https://www.upguard.com/
11https://learn.cisecurity.org/cis-cat-landing-page
12https://docs.hashicorp.com/sentinel/

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 83



Fig. 4: Report Screen of COMET

tests. Due to its generative nature, the approach can be easily
automated and embedded into a continuous delivery process
and so is paving the way to continuous compliance testing.
Applying compliance testing in early stages of the deployment
pipeline, by using the rules in integration test environments,
supports fast and early feedback of the compatibility of the
target environment with the most recent software versions.

We offered a first glimpse on our tool COMET, which
implements our approach. A conducted case study, which uses
COMET in an industrial context is out of scope of this paper.

In future we plan to further evaluate our approach and gain
more insights into the challenges of compliance testing. Espe-
cially the integration of different stakeholders like developers,
security experts, product owners and managers into the process
of developing and maintaining continuous compliance models
is challenging. We seek to integrate concepts of business IT
alignment to tackle this challenge.

REFERENCES

[1] OWASP Foundation, “OWASP - Top 10 2013-A5-Security
Misconfiguration,” 2013. [Online]. Available: https://www.owasp.org/

[2] W. E. Lewis and W. H. C. Bassetti, Software Testing and Continuous
Quality Improvement, Second Edition. Boston, MA, USA: Auerbach
Publications, 2004.

[3] International Software Testing Qualifications Board, “ISTQB Standard
glossary of terms used in Software Testing.” [Online]. Available:
http://glossar.german-testing-board.info/#eng

[4] D. Graham, E. V. Veenendaal, I. Evans, and R. Black, Foundations of
Software Testing: ISTQB Certification. Intl Thomson Business Pr, 2008.

[5] D. I. für Normung Normenausschuss Informationstechnik und
Anwendungen, E DIN ISO/IEC 27002: Leitfaden für das
Informationssicherheits-Management (ISO/IEC 27002:2014), ser.
DIN-Normen: Deutsches Institut für Normung. Beuth, 2014.

[6] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, 2010.

[7] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, 1st ed. Addison-Wesley Professional, 2015.

[8] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[9] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[10] Donald Firesmith, “Four types of shift left testing,” 2015.
[Online]. Available: https://insights.sei.cmu.edu/sei blog/2015/03/four-
types-of-shift-left-testing.html

[11] E. Evans, “Domain-Driven Design: Tackling Complexity in the Heart
of Software,” Folia primatologica international journal of primatology,
vol. 70, no. 5, p. 560, 2003.

[12] K. Morris, Infrastructure as Code: Managing Servers in the Cloud.
O’Reilly Media, 2016.

[13] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, 1st ed. Addison-Wesley Professional, 2015.

[14] I. S. Audit and C. Association, Cobit 5. ISA, 2012.
[15] W. Johannsen and M. Goeken, Referenzmodelle fr IT-Governance -

strategische Effektivitt und Effizienz mit COBIT, ITIL und Co: mit einem
Praxisbericht. dpunkt.verlag, 2007.

[16] J. Bird, DevOpsSec: securing software through continuous delivery.
O’Reilly Media, 2016.

[17] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword?
- mapping research on security in devops,” in 2016 11th International
Conference on Availability, Reliability and Security (ARES), Aug 2016,
pp. 542–547.

CSE 2018: 3rd Workshop on Continuous Software Engineering @ SE18, Ulm, Germany 84


