
On the Modernization of ExplorViz

towards a Microservice Architecture

Christian Zirkelbach, Alexander Krause, and Wilhelm Hasselbring
Software Engineering Group
Kiel University, Germany

{czi,akr,wha}@informatik.uni-kiel.de

Abstract

Software systems evolve during their lifetime and
therefore face several challenges. Changing require-
ments or upcoming feature requests make modifica-
tions or extensions inevitable. Especially long-living
software systems have often been built as monolithic
applications and are based on obsolescent architec-
tures and technologies. This circumstance makes it
difficult for developers to maintain or extend software.
In this paper, we report on the modernization process
of our open source research project ExplorViz – mov-
ing from a monolithic towards a microservice archi-
tecture. We describe our previous version within the
project and present how we solved the modernization
and handled occurring problems. Afterwards, we il-
lustrate our modernized software system and point
out the obtained benefits. Finally, we delineate open
questions for the ongoing development.

1 Introduction

Software systems evolve over time and encounter diffi-
culties during their life cycle. Often these systems are
modified or extended, induced by new requirements
or upcoming requests from customers. In the context
of long-living software systems, these systems have of-
ten been built in form of monolithic applications and
are comprised of obsolescent architectures and tech-
nologies. A key problem of monolithic applications is
that all components are developed on a single code-
base among several developers. This basically means,
that if a developer wants to modify code or add a
new feature, he needs to be certain that the remain-
ing code and provided services are still working af-
ter his changes [10]. A solution to this problem can
be employing a different architectural style, namely
a microservice architecture, composed of several self-
contained systems [9]. This style offers more flexibil-
ity and scalability on the one hand and replaceability
of single components on the other hand [12]. Since
2012, we develop the open source research project Ex-
plorViz,1 a web-based monitoring and visualization
tool for large software landscapes [11]. ExplorViz fea-

1https://www.explorviz.net

tures two different visualizations – an abstract soft-
ware landscape and a detailed application level visu-
alization, which are built-upon collected monitoring
information. Since the first version, we have con-
tinually developed and improved our software, e.g.,
by replacing single components or adding new fea-
tures. Thus, it was inevitable to make changes to the
code and even architectural amendments. This cir-
cumstance made it more and more difficult over time,
to maintain and extend our software, especially for
external developers, e.g., computer science students.
Overcoming these problems was our initial incentive
for the modernization. Similar decision triggers for
developers in other projects are depicted in [1]. We
performed an architectural modernization of our open
source project ExplorViz and provided a simple way
to enhance our software via extensions.

The remainder of this paper is organized as follows.
In Section 2, we describe the monolithic architecture
of our open source project, referred to as ExplorViz
Legacy , and point out problems during development.
Afterwards, we present our approach to address the
presented problems in Section 3. In Section 4, we dis-
cuss related work regarding our approach. Finally, the
conclusions are drawn and open questions are delin-
eated.

2 ExplorViz Legacy

The idea behind ExplorViz was initially conceptu-
alized in 2012 and first published a year later [6].
Since then, the project has evolved greatly in feature
count, source lines of code, and research interests.
For instance, we investigated alternative visualization
approaches with cutting-edge input and output
devices in the context of program comprehension [7,
8]. These have been developed in terms of extensions,
e.g., a Virtual Reality mode. Most of these extensions
are the result of student’s theses or seminar papers.
As of today we count a growing number of twenty
student’s theses and more than ten Git branches in
the context of the visualization functionality, i.e.,
landscape and application renderings.

EMLS 2018: 5th Collaborative Workshop on Evolution and Maintenance of Long-Living Software Systems @ SE18, Ulm, Germany 39

https://www.explorviz.net


Java and its Remote Procedure Calls (RPC) are
taught early in lectures, therefore we utilized the
Google Web Toolkit (GWT) as primary web frame-
work for our project. GWT enables writing Java
code for both server- (backend) and client-logic (fron-
tend) in a single project. It compiles client-related
Java- to respective JavaScript-code (JS), thus en-
abling the execution in web browsers. Additionally,
the toolkit introduces GWT RPC (GRPC) for trig-
gering actions on the server or exchanging data over
HTTP. Therefore, client-server communication is eas-
ily usable for non-professional developers and does not
require manual parsing of Java objects to obtain a
common transport format, e.g., JavaScript Object No-
tation (JSON). This particular technology of network
communication eases the development, especially for
our students.

<<device>>
Server

<<device>>
Client

<<component>>
ExplorViz Legacy

<<component>>
Database

<<component>>
Filesystem

<<executionEnvironment>>
Browser

*

HTTP

Figure 1: Architectural overview of ExplorViz Legacy

In Figure 1 the deployment and simplified software
stack of our GWT-based ExplorViz Legacy is shown.
It can be deployed on a single server node. On startup,
ExplorViz Legacy automatically creates a database
for user management. The filesystem is facilitated to
store serialized landscape objects, i.e., the underlying
data models, that are retrieved from monitoring data
and used for visualization.

The presented project setup was used since 2012
and published in 2013 on Github.2 During subse-
quent development we frequently migrated client code
from Java to JS using GWT’s JavaScript Native Inter-
face (JSNI), i.e., embedded JS code in Java methods.
The reason behind this alteration of GWT’s intended
workflow was the utilization of modern JS libraries
to simplify the usability for users. The result was a
fragmentation of ExplorViz’s codebase in JSNI- and
Java-methods. This was further deteriorated when we
substituted GWT’s WebGL implementation with the
JS-based library three.js. three.js provides a high level
of abstraction for 3D rendering and thus offers a better
maintainability and extensibility for new developers.

In 2016 we stopped the development of new fea-
tures in ExplorViz. GWT seemed to disappear in a
variety of other projects. Additionally, there was no
major update of the toolkit for at least a year. Mean-
while Google released a new programming language
which can also be used for web development, called

2https://github.com/ExplorViz/Explorviz

Dart. This language is used by Google itself to build
many applications as noted on the related website.3

Since it was announced that JSNI will be removed
with the release of GWT 3, we were in need of migrat-
ing code once again. At this time ExplorViz Legacy
contained a great amount of JS code. Therefore, we
decided to drop GWT as scaffold and modernize the
monolithic project with new technologies and less de-
pendencies to modules of the underlying web frame-
work.

3 Modernization Procedure

Two major communication technologies emerged from
practical realization when implementing web services.
Research shows that SOAP-based services are in fact
less performant and do not support mobile devices
as good as their RESTful counterparts [5]. Further-
more, the latter eases the development and influences
the characteristics of a system, e.g., scalability and
flexibility [3, 5].

In [13] the authors present how the German e-
commerce provider Otto modernized the underlying
software system of their online shop. Instead of refac-
toring the old monolithic system, they completely re-
implemented the functionality, using a microservice
architecture. The developed microservices communi-
cate only by accessing REST APIs. This redesign re-
sulted in a highly scalable and fault tolerant software
system.

The previously mentioned issues in ExplorViz
Legacy (see Section 2) and the experience reports
about successful utilization of alternative technolo-
gies, e.g., RESTful APIs, were triggers for a modern-
ization of the ExplorViz project. We no longer saw
advantages of preferring GWT over other web frame-
works. Therefore, we decided to split the codebase
into two separated projects, i.e., backend and fron-
tend. The backend is implemented as a Java-based
web service providing a RESTful API for clients.
Since client-side code is mostly written in JS nowa-
days, we choose this programming language for the
frontend.

Figure 2 depicts the new architecture and simpli-
fied software stack of ExplorViz. Backend and fron-
tend are now two self-contained microservices. Thus,
they can be deployed on different server nodes. In
detail, we employ distinct technology stacks with in-
tegrated storage. This allows us to exchange a single
or both microservices, as long as we take our specified
interfaces into account.

The backend provides a RESTful API for fron-
tend instances and is based on the Jersey framework,4

which implements the Servlet 3.0 specification. This
is utilized to implement a web service without the
need to state a web.xml file, i.e., the servlet configura-
tion file. Instead, we use javax.servlet.annotations to

3https://webdev.dartlang.org
4https://jersey.github.io

EMLS 2018: 5th Collaborative Workshop on Evolution and Maintenance of Long-Living Software Systems @ SE18, Ulm, Germany 40

https://github.com/ExplorViz/Explorviz
https://webdev.dartlang.org
https://jersey.github.io


<<device>>
Server A

<<device>>
Client

<<device>>
Server B<<microservice>>

Backend

<<component>>
Filesystem

<<component>>
Database

<<component>>
ExplorViz (Jersey)

<<microservice>>
Frontend

<<component>>
Filesystem

<<component>>
ExplorViz (EmberJS)

<<executionEnvironment>>
Browser

1..* *

HTTP
HTTP
(REST)

Figure 2: Overview of the modernized ExplorViz architecture

define servlet declarations and mappings. We expect
this approach will ease the development, especially for
students.

ExplorViz’s new frontend uses the client-side JS
framework Ember.js (Ember), 5 which allows us to
use to provide software visualizations with a WebGL-
enabled browser. Ember is based on the Model View
ViewModel architectural pattern. As a result, man-
ual Document Object Model accesses are not neces-
sary and developers need less code. Ember allows
and emphasizes the use of components in web sites,
i.e., self-contained, reusable, and exchangeable user
interface fragments. We employ this feature to encap-
sulate visualization modes. Therefore, they can be
included, containing all necessary logic by inserting
a single line of code. Network communication, e.g.,
fetching a landscape from the backend, is abstracted
by so-called adapters. These make it easy to send or
request data by using convention over configuration,
if the backend applies the same rules for URL defini-
tions.

The introduced microservices represent the core of
ExplorViz. As for future extensions, we implemented
clean and comprehensive interfaces for both compo-
nents, that allow the registration of extensible func-
tionalities. A student implementing new mechanics
will therefore use a template extension as starting
point. Those extensions access core mechanics only
by a defined read-only API, which is implemented by
the backend, respectively frontend. The modulariza-
tion enables us to improve the backend or frontend,
while not breaking extension support.

In summary, both frameworks are exchangeable
with respect to their language domain. The backend
would primarily need to define new ways to provide
data. Since client-side JS frameworks have similar el-
ements and approaches, we think substituting Ember
can be done with little effort.

5https://www.emberjs.com

4 Related Work

In [2], the authors conduct a case study addressing
the evolution of a software system, which has been
scarcely documented. The case study involves archi-
tecture recovery and planning and execution of several
evolution cycles. Compared to our approach, we did
not recover the architecture, since we did not want to
keep the obsolete monolithic architecture, which was
provided by GWT. Furthermore, we did not need to
apply a series of refactoring iterations to modernize
our software system.

[10] compares the development and cloud deploy-
ment of an enterprise application based on a mono-
lithic approach and a microservice architecture. Their
approach contains common elements to our applied
process. They employ modern technologies for sepa-
rate microservices, e.g., Java in the backend and JS
in the frontend. Contrary to their results, we did not
face any of the mentioned problems during the migra-
tion, like failures or timeouts.

According to [5], RESTful services can improve sys-
tem flexibility, scalability, and performance in com-
parison to SOAP-based web services. Additionally,
REST-based services are easier to consume and com-
pose, based on well-defined standards and heteroge-
neous operations. They provide an approach to mi-
grate SOAP-based to RESTful services. Unfortu-
nately, their approach is not applicable for us, since
our project is based on GWT instead of SOAP.

In [4], the authors present a survey of various
approaches to move from legacy systems towards
a Service-Oriented-Architecture (SOA) environment.
Basically, they distinguish between four different cat-
egories – replacement, wrapping, redevelopment, and
migration. While Replacement is self-explanatory,
wrapping employs a new interface for existing com-
ponents to make them accessible in form of services.
Redevelopment employs reverse and reengineering ap-
proaches to add necessary functionality to the legacy
system. Finally, a migration moves a legacy system to

EMLS 2018: 5th Collaborative Workshop on Evolution and Maintenance of Long-Living Software Systems @ SE18, Ulm, Germany 41

https://www.emberjs.com


the more flexible environment. Thus, the original sys-
tem’s data and functionality can be preserved. Based
on the type of legacy system, tool support, and fur-
ther criteria, a different technique or strategies can
be employed. Unfortunately, their present migration
and redevelopment strategies are not adaptable for
our process, since these focus on SOA environments
instead of microservices.

5 Conclusions

In this paper, we report on our modernization pro-
cess of ExplorViz from a monolithic towards a mi-
croservice architecture. We pointed out encountered
problems during our development since 2012, espe-
cially those related to the architecture underneath
our software. Consequently, we described ExplorViz
Legacy , the previous version of our open source re-
search project, and presented solutions to address the
existing problems. Afterwards, we revealed our mod-
ernized software system and emphasized the obtained
benefits. Even though our modernization process is
still in progress, we were already able to employ a mi-
croservice architecture in order to ease maintainabil-
ity on one hand, and extensibility on the other hand.
Finally, we would like to delineate some of our open
questions:

• How can we derive best practice guidelines from
our migrations for other projects?

• Does the rapid evolution of JS frontend frame-
works influence the ongoing evolution of Ex-
plorViz?

• How can we reposition ExplorViz as an open
source visualization framework for diverse data,
as exemplarily shown in [14]?

References

[1] J. Koskinen et al. “Software Modernization De-
cision Criteria: An Empirical Study”. In: Pro-
ceedings of the 9th European Conference on
Software Maintenance and Reengineering. Mar.
2005, pp. 324–331.

[2] F. Cuadrado et al. “A Case Study on Software
Evolution towards Service-Oriented Architec-
ture”. In: Proceedings of the 22nd International
Conference on Advanced Information Network-
ing and Applications. Mar. 2008, pp. 1399–1404.

[3] S. Vinoski. “RESTful Web Services Develop-
ment Checklist”. In: IEEE Internet Computing
12.6 (Nov. 2008), pp. 96–95.

[4] A. A. Almonaies, J. R. Cordy, and T. R. Dean.
“Legacy system evolution towards service-
oriented architecture”. In: Proceedings of the In-
ternational Workshop on SOA Migration and
Evolution. 2010, pp. 53–62.

[5] B. Upadhyaya et al. “Migration of SOAP-based
services to RESTful services”. In: Proceedings
of the 13th IEEE International Symposium on
Web Systems Evolution (WSE). Sept. 2011,
pp. 105–114.

[6] F. Fittkau et al. “Live trace visualization for
comprehending large software landscapes: The
ExplorViz approach”. In: Proceedings of the
First IEEE Working Conference on Software
Visualization (VISSOFT). Sept. 2013, pp. 1–4.

[7] F. Fittkau, A. Krause, and W. Hasselbring.
“Exploring software cities in virtual reality”.
In: Proceedings of the 3rd IEEE Working Con-
ference on Software Visualization (VISSOFT).
Sept. 2015, pp. 130–134.

[8] F. Fittkau, E. Koppenhagen, and W. Has-
selbring. “Research Perspective on Supporting
Software Engineering via Physical 3D Models”.
In: Proceedings of the 3rd IEEE Working Con-
ference on Software Visualization (VISSOFT).
IEEE, Sept. 2015, pp. 125–129.

[9] S. Newman. Building microservices: designing
fine-grained systems. O’Reilly, 2015.

[10] M. Villamizar et al. “Evaluating the monolithic
and the microservice architecture pattern to de-
ploy web applications in the cloud”. In: Proceed-
ings of the 10th Computing Colombian Confer-
ence (10CCC). Sept. 2015, pp. 583–590.

[11] F. Fittkau, A. Krause, and W. Hassel-
bring. “Software landscape and appli-
cation visualization for system compre-
hension with ExplorViz”. In: Informa-
tion and Software Technology (2016).
http://dx.doi.org/10.1016/j.infsof.2016.07.004.

[12] T. Salah et al. “The evolution of distributed
systems towards microservices architecture”. In:
Proceedings of the 11th International Confer-
ence for Internet Technology and Secured Trans-
actions (ICITST). Dec. 2016, pp. 318–325.

[13] W. Hasselbring and G. Steinacker. “Microser-
vice Architectures for Scalability, Agility and
Reliability in E-Commerce”. In: Proceedings
of the International Conference on Software
Architecture Workshops (ICSAW). Apr. 2017,
pp. 243–246.

[14] C. Zirkelbach. “Juggling with Data: On the
Lack of Database Monitoring in Long-Living
Software Systems”. In: Proceedings of the
4th Collaborative Workshop on Evolution and
Maintenance of Long-Living Software Sys-
tems (EMLS). Softwaretechnik-Trends 2. 2017,
pp. 62–65.

EMLS 2018: 5th Collaborative Workshop on Evolution and Maintenance of Long-Living Software Systems @ SE18, Ulm, Germany 42


	Introduction
	ExplorViz Legacy
	Modernization Procedure
	Related Work
	Conclusions



