
Teaching Pattern-Based Development
Andreas Seitz

Technical University of Munich (TUM)
Department of Informatics

Munich, Germany
seitz@in.tum.de

Bernd Bruegge
Technical University of Munich (TUM)

Department of Informatics
Munich, Germany
bruegge@in.tum.de

Abstract—The use of patterns in software engineering is an

important and widespread concept. However, teaching patterns

to students is challenging because it requires practical knowledge.

To evaluate the usefulness of patterns, students need to remember,

and understand them as well as apply and analyze them.

Pattern-based development (PBD) is a model-based development

approach that focuses on the reuse and extensive use of patterns

throughout the software lifecycle. In this study, we describe

the foundation for teaching PBD to large classes using an

inductive and formative approach. We encourage students to

apply patterns in any stage of the software lifecycle. We apply

agile methodologies, particularly Scrum, to structure lectures

and give students the opportunity to apply patterns in each

iteration. An increment (in our case a simple game) is reviewed

and assessed by the instructors after each iteration. In a case

study, we demonstrate the use of this approach to teach PBD

in two university courses with 500 and 1400 students. From our

experience, we conclude that teaching PBD in large courses works

well and discuss the best practices for other instructors.

I. INTRODUCTION

The application and use of patterns in software engineering
are essential. However, teaching these concepts is challenging.
Patterns serve as a reusable solution for recurring problems;
students should be able to internalize this solution and recall
an applicable pattern by name. Software engineering requires
collaboration and practical application of knowledge [1], [2].
This is particularly true for applying patterns in software
engineering.

While the theoretical delivery of the structure and composi-
tion of patterns is easy, the challenge lies in practically impart-
ing the knowledge. Students should be able to effectively apply
patterns in their university projects or later in their professional
careers. We aim to impart theoretical and practical knowledge
about patterns while also trying to establish patterns as a
language for the students. The approach we are pursuing
must also be applicable to an increasing number of students.
The number of students in our department has risen by 67%
between 2013 and 2016. Since teaching in private lessons or
small groups is not feasible, a method for teaching pattern-
based development (PBD) in large classes is needed.

By developing a new teaching methodology for PBD, we
have introduced a foundation that includes the delivery of
theoretical knowledge about patterns and the skill of practi-
cally applying them. We apply Bloom’s framework to classify
the expectations of what students should learn as the result
of an instruction session [3]. Bloom classified six major

categories of cognitive processes ordered by complexity from
lowest to highest: knowledge, comprehension, application,
analysis, synthesis and evaluation. The goal of teaching PBD
is that students are able to understand and remember the
learned concepts. In our courses, we try to teach patterns as
interactively as possible. Our goal is to encourage students to
achieve cognitive processes at higher levels of the pyramid
and to teach students to analyze, synthesize, and evaluate the
imparted knowledge. Using this technique for teaching PBD
we can attain all of Bloom’s categories of cognitive processes
and allow students to appreciate the beauty of PBD. We aim to
ensure that each element (class, component, or source code)
of a system is covered by a pattern. A coverage or pattern

traceability of 100% is desirable, yet difficult to achieve.
The remainder of this paper is structured as follows. Sec-

tion II explains the foundations on which we have based
the proposed approach for teaching PBD. Teaching PBD is
described in Section III. In Section IV, an application of
this concept in two large university courses is presented. In
Section V, we discuss our experiences and share our best
practices with other instructors interested in teaching PBD.
In conclusion, Section VI summarizes the paper and offers an
outlook into our future work.

II. FOUNDATIONS

The following foundations serve as a basis for the develop-
ment of the proposed approach for teaching PBD.

A. Active, Interactive & Chaordic Learning

Interactive learning involves the combination of lectures
and exercises into interactive classes with multiple iterations
of theory, examples, exercises, solutions and reflection [4].
It is based on the concepts of active, computer-based and
experiential learning and focuses on providing immediate
feedback to improve the learning experience of a large group
of students. In this approach, educators teach and exercise
small chunks of knowledge in short cycles and students receive
immediate feedback regarding the exercises so that they may
reflect and gradually increase their knowledge. This approach
requires the active participation of students and the use of
computers (laptops, tablets, or smartphones) in the classroom.

Chaordic learning is an educational approach that combines
theoretical and experimental learning and includes aspects
of both order and chaos (structured courses with detailed

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 20

instructions represent order while experimental learning and
educational innovation represent chaos) [5], [6].

Interactive and chaordic learning serve as the foundations
on which teaching PBD is based.

B. Pattern-Oriented Analysis and Design & Pattern-Based

Engineering

Yacoub said, “design patterns are immensely powerful, but
to build large-scale robust systems, you need more.” [7] Ya-
coub introduced pattern-oriented analysis and design (POAD),
a methodology for composing proven design patterns into
reliable and robust large-scale software systems. POAD can
be used to quickly create systems that are robust, scalable and
maintenance-friendly thanks to the use of UML class diagrams
as building blocks. Yacoub found that the most difficult part
of software development is not programming but rather the
decision making required in the design phase. These design
decisions are integrated into the system for its entire lifecycle
[7]. Based on this concept, Ackerman developed pattern-based
engineering (PBE); a systematic, disciplined, and quantifiable
approach to software development. PBE involves the use
of pattern specifications and implementations throughout the
software development and delivery process [8].

III. PATTERN-BASED DEVELOPMENT & PATTERN
TRACEABILITY

PBD is a model-based development technique that focuses
on the reuse and extensive use of patterns during analysis,
system design, object design, testing, and build-and-release
management. For each phase of the software lifecycle, dif-
ferent patterns are available and can be applied. For ex-
ample, architectural patterns are used during system design
(cf. Figure 1). Antipatterns can occur in any phase and are
therefore also included when teaching PBD. This approach to
teaching PBD follows an inductive and formative approach.
Traditionally, a university course is divided into 12-14 lectures.
In each lecture, a set of patterns that can be applied in a certain
phase of the software lifecycle are taught. In an interactive
learning approach, these patterns can be applied in small
exercises after the delivery of the theory.

Analysis System
Design

Object
Design Testing Build and

Release

Analysis
Patterns

Architectural
Patterns

Design
Patterns

Testing
Patterns

Build and
Release
Patterns

PATTERN-BASED DEVELOPMENT

Antipatterns

Fig. 1. Pattern catalog for PBD: Patterns can be applied and used throughout
the software lifecycle: analysis, system design, object design, testing, and
build-and-release.

As the course progresses, students learn and apply a variety
of patterns. To further deepen the students’ understanding of
the patterns and their application, a PBD-specific lecture is
held at a specific point in time (cf. Figure 2). In this lecture,

Course

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture n

Pattern 1 Pattern 2 Pattern 4 Pattern n

Analysis System Design Object Design Testing Build & Release

PBD Lecture

Pattern 3

Fig. 2. Structure of a course in which PBD is applied: In lecture 1 through n,
patterns are taught and these patterns are then applied in a PBD lecture that
involves several iterations of applying individual patterns to a certain phase
of the software lifecycle.

students apply already learned patterns using a coherent exam-
ple. The PBD lecture is comparable to a hackathon: the lecture
begins with a problem statement and students work on the
problem throughout the lecture and must achieve and deliver
the results by a defined deadline. Instructors choose a subset
of the patterns already learned and skillfully formulate them
in the problem statement. The structure of the PBD lecture
is important and is therefore explained in more detail in the
following section.

A. Structure of the PBD Lecture

The PBD lecture is based on the Scrum1 framework. Similar
to Scrum, the lecture is divided into several short iterations.
Based on a problem statement, product backlog items (PBIs)
are derived and iteratively implemented. The PBIs are created
by the instructors and are rather generic and intended to stim-
ulate discussion. When formulating the problem statement,
hints to specific patterns should be given. For example, the
phrase “the application must be compatible with the existing
system” indicates the application of the adapter pattern [9].
The amount of work for the PBIs should be feasible to
complete in the given timeframe, which is a challenge for
instructors. Instructors may provide code skeletons and parts
of the implementation needed for specific components that can
be integrated into the increment. These components can be
made available to the students for each iteration (for example
as a git repository).

Product
Backlog

Sprint
Backlog IncrementExercise

. . .

10 - 20
MIN

Product Backlog Item (PBI)
No Dailies

Fig. 3. Exercise iteration for teaching PBD—adopted from Scrum.

Each iteration is either an in-class exercise (IC), a homework
(HW), or a tutorial (T) according to the definitions of different
types of exercises given in [4].

1https://www.scrum.org/

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 21

https://www.scrum.org/

B. Artifacts

PBD involves three artifacts that correspond to the artifacts
defined in Scrum: the product backlog, the sprint backlog
and the increment. Instructors can change and add PBIs in
the product backlog during the lecture and introduce new
requirements or make changes. The sprint backlog is a subset
of the product backlog. Before an iteration, instructors select
PBIs to be implemented and thereby determine which patterns
the students should apply. As soon as the exercise iteration is
started, the sprint backlog cannot be changed. At the end of the
iteration, students must deliver an increment to the instructors
(via continuous integration and delivery), which serves as a
basis for evaluating the students' results.

C. Roles

During the PBD lecture, instructors serve as a proxy cus-
tomer and take the role of a product owner in Scrum. The
instructors are responsible for the product backlog and the
sprint backlog. The students can interact with the instructors
to clarify PBIs. The Scrum framework is adapted to our
needs. The Scrum master (as defined in Scrum) is not required
for a PBD lecture. In this lecture, student collaboration is
encouraged to provide the environment of a development
team in Scrum, XP or pair programming. During an iteration,
students can choose to work alone or as a team; there is no
prescribed team size.

D. Events

A PBD lecture consists of three events that iteratively repeat
during the lecture. An exercise iteration starts with sprint
planning, followed by the actual development work and a
review of the increment. During planning, the selected PBIs for
one iteration are discussed. After all of the students’ questions
have been answered, the exercise time starts: the timeframe
for one iteration is 10-20 min depending on the number and
difficulty of selected PBIs. At the end of the given time period,
the instructors present a possible solution; this corresponds to
the review meeting in Scrum. The instructors indicate which
pattern they intend to use to complete the PBIs and students
may reflect on their own results. In addition to this solution
inspection, students receive feedback from teaching assistants
on their individual solutions. After the end of an iteration, the
next iteration starts immediately with a new selection of PBIs.

IV. CASE STUDY

We applied this approach for teaching PBD in two large
university courses:

1) Introduction to Software Engineering (EIST): manda-
tory course with 1400 bachelor students

2) Patterns in Software Engineering (PSE): elective
course with 500 master students

In both the courses a set of patterns has been introduced, taught
and applied prior to the PBD lecture. We describe the two
courses in more detail and then describe how the PBD lecture
is conducted.

A. EIST

EIST is an introductory course to software engineering in
which students learn to apply relevant concepts and methods
in each phase of a software engineering project. The students
have university-level knowledge of the most important terms
and concepts in the software engineering domain. They are
also aware of the problems and issues that generally must be
considered in software engineering. A non-negligible part of
the course is related to patterns. Several design, architecture
and testing patterns are introduced over four lectures followed
by a PBD lecture with the following iterations:

• Iteration 1: No Pattern Applied (IC)
• Iteration 2: Dealing with Generalization (IC)
• Iteration 3: Strategy Pattern (IC)
• Iteration 4: Observer Pattern (IC)
• Iteration 5: Adapter Pattern (HW)

B. PSE

We have been teaching PSE since 2008. Typically, 500
students register for the course even though it is an elective
course. Students learn about the principles of patterns in
software development and the structure of a pattern-based
software system. We teach the students how to apply patterns
to a variety of problems and how to deal with the patterns in
concrete applications. The course covers patterns that can be
applied throughout the software lifecycle: design, architectural,
testing, and organizational patterns, as well as anti-patterns
are taught. The PBD lecture was held after nine lectures and
comprised five iterations that involved the following patterns:

• Iteration 1: No Pattern Applied (IC)
• Iteration 2: Observer Pattern (IC)
• Iteration 3: Abstract Factory Pattern (IC)
• Iteration 4: Adapter Pattern (IC)
• Iteration 5: Strategy Pattern (HW)

C. Lecture Structure & Problem Statement

We use Java as the programming language and use UML
class diagrams for modeling. To stay within the scope of
a lecture, we adapt and tailor the software lifecycle based
on our needs and focus on the phase in which we want to
apply an appropriate pattern. In the PBD lectures for both
courses, no pattern is applied in the first iteration as we
found that this gives the students an opportunity to familiarize
themselves with the existing source code. Simple PBIs are
chosen to help the students get started. The last iteration is
assigned as a homework (HW) assignment rather than an in-
class (IC) exercise and the results of this iteration are reviewed
in the following lecture. For the distribution and assessment of
the source code we use ArTEMiS, a platform for automated
assessment of programming exercises in large classes that
makes use of a version control system to track students’
progress [10]. ArTEMiS enables the execution of structural,
behavioral, runtime, performance, and functional tests to test
the desired patterns.

Bumpers, a simple 2D game, in which a certain number
of cars drive on a rectangular game board is chosen as the

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 22

Fast Car

Slow Car

Bumpers

Fig. 4. Screenshot of the Bumpers game: the user interface after iteration 1.
Fast cars are depicted as sports cars and slow cars are represented as classic
cars.

problem. In this game, a car can be controlled by the player
using a mouse. Some cars are fast while others are slow and the
initial driving direction of each car is randomly determined.
Cars collide with each other and a winner and a loser are
determined in each crash; when a car collides with the border
of the game board, it bounces back depending on its speed and
direction according to the laws of physics. Figure 4 shows the
initial user interface of Bumpers. The goal is to continuously
improve the game and incrementally extend its functionality.
To ensure that the timeframe of the lecture is not exceeded, a
source code is provided for the students to work on.

V. DISCUSSION

As we have applied this approach for teaching PBD several
times, we discuss our experiences and share our findings and
best practices with other instructors. By combining theoretical
knowledge delivery with the immediate practical application
of this knowledge, it is possible to attract students to attend the
lectures. As with other major lectures, the number of students
attending our lectures is declining but not as much as for
traditional lectures that are not interactive. Students seem to
be more motivated and recognize the added value of the PBD-
based interactive courses. As additional motivation, we reward
students who actively participate in the exercises. Students
who submit submissions quickly or provide particularly good
submissions are rewarded with small gifts such as gummy
bears or gadgets (for example, bluetooth speakers and power
banks). In our experience, this encourages the students to put
their newly acquired knowledge into practice and deliver fast
and high-quality results. Exercises must be carefully planned,
set up and assessed. It should be noted that it takes more time
and personnel to prepare and execute a PBD lecture than a
traditional lecture. Another positive impact of applying PBD
is that the students become familiar with the methods and
processes of agile software development; specifically, students
learn an adaption of Scrum and learn how to apply it. Changes
do not pose a major obstacle and can be instantly integrated.
When applying PBD in large-scale lectures, we can deal with
students with different levels of apriori knowledge of students

by designing exercises such that experienced students usually
have to solve a challenging additional task in addition to the
standard exercise and thereby ensure that all students can
increase their knowledge during the course. In the lectures,
we demand and promote cooperation between students and
encourage students to use patterns as a language. The goal is
that, e.g., when a student mentions the term “bridge”, all other
students immediately know what the term means and have a
common understanding of a possible solution to the design
problem.

VI. CONCLUSION

In this paper, we describe the foundation for our approach to
teaching PBD. We introduce patterns step-by-step in different
phases and emphasize their application in a dedicated PBD
lecture that is based on an adaptation of Scrum. This lecture
is divided into short, recurring iterations each comprising
planning, development work and review. We have applied this
teaching approach in two different courses to demonstrate that
it is feasible for students at different levels. Based on our
experience, we have developed a best practice catalog for other
instructors so that they can incorporate our method of teaching
PBD into their own courses. In the future, we aim to conduct
qualitative and quantitative evaluations. Further, we plan to
integrate the teaching method into an online course. We expect
to face and overcome various challenges in our work to make
teaching patterns in software development more interactive and
exciting.

REFERENCES

[1] D. W. Shaffer, “Pedagogical praxis: The professions as models for
postindustrial education,” Teachers College Record, vol. 106, no. 7, pp.
1401–1421, 2004.

[2] J. Whitehead, “Collaboration in software engineering: A roadmap,” in
2007 Future of Software Engineering. IEEE Computer Society, 2007,
pp. 214–225.

[3] B. Bloom, M. Engelhart, E. Furst, W. Hill, and D. Krathwohl, “Tax-
onomy of Educational Objectives: The Classification of Educational
Goals,” 1956.

[4] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge, “Interactive Learning:
Increasing Student Participation Through Shorter Exercise Cycles,”
in Proceedings of the Nineteenth Australasian Computing Education

Conference. New York, NY, USA: ACM, 2017, pp. 17–26.
[5] S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and

C. Wöbker, “Chaordic Learning: A Case Study,” in Proceedings of

the 39th International Conference on Software Engineering: Software

Engineering and Education Track, ser. ICSE-SEET ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 87–96.

[6] D. Hock, “The chaordic organization: Out of control and into order,”
World Business Academy Perspectives, vol. 9, no. 1, pp. 5–18, 1995.

[7] S. Yacoub and H. Ammar, Pattern-Oriented Analysis and Design:

Composing Patterns to Design Software Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[8] L. Ackerman and C. Gonzalez, Patterns-Based Engineering: Success-

fully Delivering Solutions via Patterns, 1st ed. Addison-Wesley
Professional, 2010.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[10] S. Krusche and A. Seitz, “ArTEMiS - An Automatic Assessment Man-
agement System for Interactive Learning,” in 49th Technical Symposium

on Computer Science Education (SIGCSE). ACM, 2018.

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 23

