
Providing Better Feedback for Students Solving
Programming Tasks Using Project Tomo

Gregor Jerše
Faculty of Computer and Information Science

University of Ljubljana
Ljubljana, Slovenia

Gregor.Jerse@fri.uni-lj.si

Matija Lokar
Faculty of Mathematics and Physics

University of Ljubljana
Ljubljana, Slovenia

Matija.Lokar@fmf.uni-lj.si

Abstract—Systems for automatic assessment of programming
tasks have become a popular choice in programming courses as
several advantages of using automatic assessment in teaching
and learning process have been observed. One of the most
important is the immediate feedback students get. However, the
quality of the feedback is essential to achieve good learning
results. At the University of Ljubljana we use our proprietary
system called Project Tomo as a teaching tool. One of the most
important aspects of our system is the possibility to return a
detailed feedback and to analyze the student’s solution since
every submission is stored on the server. Until now we have
collected more than 110,000 attempts along with their history.
We are currently in the process of analyzing them. Currently we
are concentrating on how to use this data to further improve
the quality of the feedback given to the student. Some of the
observations and the preliminary results are presented in the
paper.

I. INTRODUCTION

Teaching a beginner level programming course can be quite
challenging. Since programming is a skill, it can be learnt
best by solving as many programming tasks as possible. As
Lee and Ko write in [1], for most beginners, the experience
of writing computer programs is characterized by a distinct
sense of failure. The first code beginners write, often leads to
unexpected behaviors, such as syntax errors, run-time errors,
or unintended program output. While all of these forms of
feedback are essential helping a beginner understand what pro-
grams are and how computers interpret them, the experience
can be quite discouraging [2], [3] and emotional [4]. As several
researchers have pointed out, for example in [5], feedback is
an important factor in the learning process.

Teachers should provide the students with the feedback
beyond one that normal tools (compilers, interpreters and run
time environments) provide. But the feedback must be imme-
diate, otherwise the students can get stuck which slows down
their progress considerably. Keuning, Jeuring and Heeren [6]
write “Formative feedback, aimed at helping students to im-
prove their work, is an important factor in learning.“ Also
Campos et al. [7] following [8] conclude that good feedback
is essential for improving the students progress. They can learn
more effectively if they receive quick and appropriate feedback
about their actions in a short amount of time. In addition to
its influence on the students’ achievement, feedback is also
a significant factor in providing motivating for learning. As

Nicol states1 Assessment and feedback practices should be
designed to enable students to become self-regulated learners,
able to monitor and evaluate the quality and impact of their
own work and that of others.

But providing timely and instant feedback in overcrowded
classrooms is a tough task. This calls for a tool that can
automatically provide immediate feedback. In their paper
Keuninig et all. [6] studied what kind of feedback is provided
by systems for automated assessment of programming tasks
(SAAP), which techniques are used to generate the feedback,
how adaptable the feedback is, and how these tools are
evaluated.

The paper is organized as follows. In Section II we describe
our SAAP solution called Project Tomo and its properties. In
Section III we present the results of the analysis of students’
submissions and the conclusion in Section IV.

II. PROJECT TOMO

After evaluating several SAAP (a systematic review can
be found in [9]–[11]), we came to the similar conclusion
as Keuninig et al. in [6] that “Most SAAP tools only grade
student solutions” and “tools do not often give feedback on
fixing problems and taking the next step, and that teachers
cannot easily adapt tools to their own needs.”. Also Rubio-
Sanchez et al. mention in [13] “despite acknowledging that
using Mooshak (SAAP tool) was a good idea, students did
not appreciate the experience as a whole, where the main
reported drawback was related to its feedback.” Most of the
disappointment with the feedback is connected to the fact that
the majority of SAAP tools work as explained in [13]: given
a set of predefined instances of some computational problem
consisting of input-output pairs, the tool compiles and runs
source code in order to verify whether the program generates
the desired outputs given the initial inputs.

So we developed a new web service for automatic assess-
ment called Project Tomo 2 [14]. One of the main design goals
was the flexibility a tool should provide in giving feedback
to the students. Contrary to many SAAPs intended mostly to
support assessment, our goal was to develop a small, flexible

1on webpage https://www.reap.ac.uk/
2https://tomo.fmf.uni-lj.si

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 28

solution, aiming at providing assistance for lab exercises where
students are required to solve numerous programming tasks.
We aimed towards the methods and tools that may help in
providing the necessary feedback to improve the support for
students during the learning of programming. So, our target
was the formative feedback [5].

A. Basic Features
The main design objectives in developing our SAAP service

were:
• Local execution,
• Possibility to use any of the existing programming envi-

ronments,
• Being flexible enough to be functional with any pro-

gramming language (currently we support Python, R and
Octave) and

• Providing as much flexibility as possible in administering
tests to achieve giving the appropriate feedback.

The details for those decision are explained in [14] and [15].
The service is designed to require little or no additional work
from students and teachers, enabling them to focus on the
content.

The service works as follows: the students first download the
files containing problem descriptions to their own computers.
The files are opened in their preferred programming environ-
ment for the chosen programming language and the students
start coding the solutions. Executing the files checks their
solutions locally. If the server is available, the solutions are
automatically stored on the server. The server also optionally
checks for the validity of the solutions by comparing hashed
output from students’ solution to the hashed output of the
official solution.

This approach has several benefits: the service provides
instant insight into the obtained knowledge to both student
and teacher, all without disturbing the teaching process. There
is also no need for powerful servers since all executions are
done on the students’ computers.

B. Testing Possibilities
As much flexibility as possible in administering tests was

another vital feature. For instance, one of the requirements
was that there should be a possibility to administer tests that
can check whether a specific method was (or was not) used in
a student’s submission. For example, if the student’s ability to
write recursive programs is to be tested, non-recursive methods
should not be accepted, even if they give expected results.

After providing the instructions for the task the teachers
enter the expected solution followed by the tests that it has
to pass (see Fig. 1). The solution is separated from the tests
with the Check.part() command. It should be noted that
the officially provided solution needs to pass the same tests as
the students’ solutions. At first this approach seems slightly
more demanding for the teachers compared to the traditional
approach where the teachers only provide instructions in text
form. However, this forces the teacher to test the quality of the
instructions. Namely, it often happens that poorly formulated

===
Computing distances
===@000003=======
#
Write a function dist(x1, y1, x2, y2) that returns the
distance between points (x1, y1) and (x2, y2).
#
>>> dist(1, 2, 3, 4)
2.82842712475
===

def dist(x1, y1, x2, y2):
’’’Returns distance between two points’’’
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5

Check.part()
Check.equal(’dist(1, 2, 3, 4)’, 2 ** 1.5)
Check.equal(’dist(0, 0, 3, 4)’, 5)

Fig. 1. Instructions, solution, and validation from the teachers file.

problems only prove as being such during the attempt to solve
them. This approach also ensures that the official solutions
exist and work properly.

There are two commands that are most often used in testing.
The most simple one tests the equality of the expected result
with the result acquired by evaluating the given expression
(see Fig. 1).

However, Tomo’s main strength is in the possibility
that the teacher composes a test that goes beyond a
direct comparison of the outputs. The tests have ac-
cess to the source code of the submitted solution under
Check.current_part[’solution’]. So it is simple to
make tests that ensure that a solution did not use for or while
loops (e.g. if the students are to write solutions in recursive
style) - see Fig. 2.

Fig. 2. While is required, but for is forbidden

Commands Check.out_file, Check.equal, and
Check.run return True or False. Therefore, they can be
used to determine if additional tests should be run or not. For
instance, if the first test fails, the submission is clearly not
valid and additional tests are not necessary. However, if the
goal is to provide the students with detailed information on
which test data their programs fail, as many tests as desired
can be run.

There are other commands available to test the programs, for
example commands that work with files. Since the validation
is essentially a program written in a chosen programming
language (Python for example) using the capabilities of the
Check class, it can be made more advanced using all pro-
gramming constructs that language offers. Thus, there are
numerous possibilities available to prepare the appropriate
feedback.

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 29

C. Feedback

The basic feedback is the report on the success of the
student’s attempt. This feedback is issued as soon as the
students runs their solutions. Figure 3 shows that the solution
of the first part of the task is accepted, the second one failed
at (at least) one test and there has been no attempt to solve
the third part of the task yet.

1. part has a valid solution.
2. part does not have a valid solution.
- Expression vsote([3,5,1], 4) returns [1] instead of [].

3. part has no solution.

Fig. 3. Basic feedback

We paid special attention to suitable wording of this basic
feedback. One of the first versions of the systems declared
“solution is correct”. But this is not in accordance with
the premise that passing all the tests is not yet the proof
of correctness. Therefore, we changed that into “solution is
accepted”. Several teachers reported this change had positive
influence on student’s awareness on what is the ’right solution’.

As explained before, the basic test is done with
Check.equal method. This method directly compares the
output from the official solution and the one (in [11], [12] see
the discussion on drawbacks when only this kind of test is
provided). Tomo offers much more flexibility. For example,
especially the tasks that require to output text, students often
complain “but just one space is missing. Why is Tomo so
picky!” Here all teacher’s pedagogical knowledge is to be
exploited (as discussed in [5], [8]). The Project Tomo is just
a tool in the hands of a teacher, who should decide on the
purpose of a certain task. In this example the teacher has (at
least) four different possibilities:

1) Leave the task as it is. The purpose of such a task
is to get students to read the instructions, claims, and
requirements carefully, and to keep to them consistently.
SAAP here helps the teacher, because it is not necessary
to explain to each student that his solution is not good
because of a single capital letter.

2) Change the test so that if the student writes “enter”
instead of “Enter”, he receives the feedback that instructs
them to look at the capitalization of the commands.

3) Change the test so that it does not matter which case is
used. This makes sense in the case where the teacher’s
focus lies elsewhere and the output is of secondary
significance.

4) Change the test so that it does not matter what wording
the students use in their solutions.

And of course—most importantly—the teacher’s task is to
react to events that may occur during exercises. And that
is precisely the basic reason why we are developing the
Project Tomo: to relieve the teachers of simple tasks and give
them additional time to interact with the student during lab
exercises.

In Project Tomo it is possible to give a student feedback
not only when a given test fails but anytime during the test

program. This can be used to notify the students that the
solution has passed some test cases and that they are on a
good track. This is achieved using the Check.feedback
construct which prints out the string given. See example in
Fig. 4.

if Check.equal("""start(’miha’, ’meta’)""", 1):
Check.feedback("Bravo! Strings ’miha’ and" +

" ’meta’ match in the first character")

Fig. 4. Positive feedback

A good way to learn is also to observe the official solution
(see Fig. 5). In Project Tomo the teacher can decide when
the students see it for every task. Currently the possibilities
for official solution visibility are “always”, “never” and “after
they have submitted a valid submission”.

The first option is rarely used since it gives the students an
easy possibility to ’cheat’: if their solution is not accepted,
they look at the official one and use obtained information to
solver the task. The second one is used during exams, where
the official solutions are made visible after the end of the exam
and the third one is the default setting.

Fig. 5. Comparing with official solution

III. ANALYZING THE DATA

Till now, we have developed quite an extensive library of
programming tasks with high-quality feedback. Despite that
we are constantly adding new tests and feedbacks to the tasks.
Ideas for additional tasks arise from observing the mistakes
that students make while programming. Many of the mistakes
are missed by the teacher since it is impossible to observe each
and every student all of the time. Since Project Tomo stores
the history of every submission, we can do that retroactively:
checking the history of the students’ submissions we can
analyze them, extract typical mistakes and use that knowledge
to improve the quality of the feedback even further. So our
workflow is as follows.

First the task is created by the teacher. The teacher tries to
predict typical mistakes the students will make and include
them into the test cases. The task is used in a teaching course
and a lot of submissions are acquired from the students. Then
these submissions are analyzed and if need for additional test
cases is seen, they are added. Then the updated task is used
in a teaching course and the entire process is repeated. So
the quality of the feedback (and test cases) is checked and
improved continuously.

Currently we are just starting a thorough analysis of the
submissions. The goal of the first step of the analysis is to
detect problematic tasks. Our assumption is that the exercises

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 30

where the average number of unsuccessful attempts students
made before the accepted one, is high, are prime candidates
for being labeled as problematic. If we manage to improve
the quality of the feedback for these tasks, the students would
benefit the most.

We concentrated on the last year programming course,
where all data is available. For each successful attempt we
checked how many unsuccessful attempts had been made
before the valid one. Using the above mentioned criteria we
detected several tasks where the average number of unsuccess-
ful submissions was higher than 10. We analyzed the source
code of those unsuccessful attempts.

Since the number of attempts is quite large, we have only
managed to analyze some of the tasks so far. One task that
was particularly interesting was a simple one, where students
had to print the amount of money on an bank account in a
grammatically correct way. The average number of unsuc-
cessful submissions for this task was higher than 15. When
we analyzed the history of the 495 attempts made, we found
out that the students had made two typical mistakes. The first
one was that they were unaware of the grammar rules of their
own mother tongue and the second one was that they were
very careless with their output, which usually only slightly
deviated from the official one. Both of them combined caused
the students to submit a lot of attempts that only slightly
deviated in the output from the official solution, but were
rejected by Project Tomo. It looks like students did not manage
to see the difference in the outputs since they submitted lots of
solutions with seemingly random changes to the source code
that did not really fix the problem.

Using the above data we added two additional feedbacks
to the task. The first one informs the student of the necessary
grammar rules in detail if the test detects that they are not
respected. This will hopefully reduce the number of incorrect
attempts since a student can fix all grammatical mistakes in
one step. The second one deals with the sloppy outputs. On one
hand it is good that students learn how to be accurate. On the
other hand it can be very frustrating if one has been working
on a task for hours without visible progress, even more so for
beginners. So we decided to modify the comparison function
between the expected and the given output so that it will show
more clearly where the outputs differ. We hope this will reduce
the number of unsuccessful attempts even further and teach the
students how to be precise at the same time.

We plan to analyze more tasks in the similar manner and
use the updated tasks during future programming courses. We
hope to notice a reduction of unsuccessful attempts.

IV. CONCLUSIONS AND FUTURE WORK

Our goal is to use our analysis results to improve the
feedback for the most problematic tasks and use the improved
exercises in the class next year.

Currently most of the analysis is done manually, which is
a very slow process. In the future we plan to use machine
learning algorithms to extract common patterns from unsuc-

cessful submissions for the given task. This would save our
time trying to analyze the history of all attempts and allow us
to focus on the most common mistake patterns.

Also some aditional features in providing feedback are
planed. We are currently looking into the possibility of adding
an additional option when the official solution can be seen:
make it visible after a specified number of unsuccessful
attempts. This would allow the students to see the official
solution after they had made some real effort towards solving
the task but failed to provide a valid solution. However, we
have to ensure way of verifying that those attempts are “real”,
not merely faking some output in order to reach the required
number of submissions. Here we will probably use some of
the approaches suggested in literature, for example in [12].

REFERENCES

[1] M. J. Lee and A. J. Ko. 2011. Personifying programming tool
feedback improves novice programrs’ learning. In Proceedings of
the seventh international workshop on Computing education re-
search (ICER ’11). ACM, New York, NY, USA, 109-116. DOI:
http://dx.doi.org/10.1145/2016911.2016934

[2] A. J. Ko, B. A. Myers, and H. Aung, 2004. Six Learning Barriers in
End-User Programming Systems. IEEE VL/HCC, 199-206.

[3] A. J. Ko, and B. A. Myers, 2009. Attitudes and Self-Efficacy in Young
Adults’ Computing Autobiographies. IEEE VL/HCC, 67-74.

[4] P. Kinnunen, and B. Simon. 2010. Experiencing programming assign-
ments in CS1: the emotional toll. ICER, 77-86.

[5] V. J. Shute. Focus on formative feedback. Review of Educational
Research, 78(1):153–189, 2008.

[6] H. Keuning, J. Jeuring, and B. Heeren. 2016. Towards a Systematic
Review of Automated Feedback Generation for Programming Exercises.
In Proceedings of the 2016 ACM Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE ’16). ACM, New York,
NY, USA, 41-46. DOI: https://doi.org/10.1145/2899415.2899422

[7] D. S. Campos, A. J. Mendes, M. J. Marcelino, D. J. Ferreira and
L. M. Alves, ”A multinational case study on using diverse feedback
types applied to introductory programming learning,” 2012 Frontiers
in Education Conference Proceedings, Seattle, WA, 2012, pp. 1-6. doi:
10.1109/FIE.2012.6462412

[8] J. Hattie and H. Timperley, The Power of Feedback. Review of Educa-
tional Research. Volume 77, No. 1, pp. 81-112, 2007.

[9] K. M. Ala-Mutka. A survey of automated assessment approaches for
programming assignments. Computer Science Education, 15(2):83–102,
2005.

[10] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala. Review of recent
systems for automatic assessment of programming assignments. In Koli
Calling, pages 86–93, 2010.

[11] D. M. Souza, K. R. Felizardo and E. F. Barbosa, ”A Systematic
Literature Review of Assessment Tools for Programming Assignments,”
2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET), Dallas, TX, 2016, pp. 147–156.

[12] B. Cheang, A. Kurnia, A. Lim, W. Oon, On automated grad-
ing of programming assignments in an academic institution, In
Computers and Education, Volume 41, Issue 2, 2003, Pages 121-
131, ISSN 0360-1315, https://doi.org/10.1016/S0360-1315(03)00030-7.
(http://www.sciencedirect.com/science/article/pii/S0360131503000307)

[13] M. Rubio-Sanchez, P. Kinnunen, C. Pareja-Flores, and Angel Velazquez-
Iturbide. 2014. Student perception and usage of an automated program-
ming assessment tool. Comput. Hum. Behav. 31 (February 2014), 453-
460. DOI: http://dx.doi.org/10.1016/j.chb.2013.04.001

[14] M. Lokar, M. Pretnar. ”A Low Overhead Automated Service for
Teaching Programming”, Proceedings of the 15th Koli Calling Con-
ference on Computing Education Research, Koli, Finland 2015,
http://doi.acm.org/10.1145/2828959.2828964

[15] G. Jerše, M. Lokar. Learning and teaching numerical methods with a
system for automatic assessment. The international journal for technol-
ogy in mathematics education, ISSN 1744-2710, 2017, vol. 24, no. 3,
121–127

ISEE 2018: 1st Workshop on Innovative Software Engineering Education @ SE18, Ulm, Germany 31

